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Abstract

We consider a market-for-lemons model where the seller is a price setter, and,
in addition to observing the price, the buyer receives a private noisy signal of the
product�s quality, such as when a prospective buyer looks at a car or house for
sale, or when an employer interviews a job candidate. Su¢ cient conditions are
given for the existence of perfect Bayesian equilibria, and we analyze equilibrium
prices, trading probabilities and gains of trade. In particular, we identify separating
equilibria with partial and full adverse selection as well as pooling equilibria. We also
study the role of the buyer�s signal precision, from being completely uninformative
(as in standard adverse-selection models) to being completely informative (as under
symmetric information). The robustness of results for these two boundary cases
is analyzed, and comparisons are made with established models of monopoly and
perfect competition.
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1 Introduction

In many market contexts, prospective buyers are imperfectly informed about the utility,
value or quality of the item for sale. Sellers, on the other hand, often know the quality of
their product. In his classical �market for lemons�paper, George Akerlof has shown that
such informational asymmetry can lead to adverse selection. Although there is room for
bene�cial trade in all qualities if only buyers were able to distinguish these from each other,
the complete lack of such discriminatory power may imply a crowding-out of good items,
leaving only the �lemons� in the market (Akerlof, 1970). This was one of the starting
points for the surge of economic analyses of markets with asymmetric information, where
typically one side of the market has better information than the other: the owner of a used
car knowing more about the quality of his car than the prospective buyer, insurance clients
knowing more about their risks than the insurance company, job applicants knowing more
about their abilities than employers.1

In the current paper, we formulate a simple � and we think natural � generalization of
Akerlof�s model: in addition to observing the price posted by the seller, the buyer receives
a private noisy signal about the product�s quality. We believe this is a realistic and relevant
extension. Consumers typically have the opportunity to take a look at the objects for
sale, thus getting an impression of their qualities, and employers interview job candidates,
thus obtaining an impression of the candidates�abilities, etc. In somewhat metaphorical
language: while buyers have perfect vision in the classical model of symmetric information
and are totally blind in Akerlof�s model, the present model covers a continuum range
of intermediate degrees of vision, spanning from one of these extremes to the other.
Moreover, instead of being a price taker, as in Akerlof�s model, the seller is here a strategic
price setter. Thus, while Akerlof treated the case of perfect competition, we here treat
the case of monopoly.
Roughly, the model is as follows: an indivisible good is available in two qualities, low

and high. Buyers are interested in buying at most one unit of the good. At the time of
purchase, they cannot observe with certainty the quality of the unit for sale. Each seller
has a single unit for sale, and knows its quality. Sellers�reservation prices and buyers�
willingness to pay are such that mutually bene�cial trade is possible in both qualities.
When a seller and a buyer meet, the seller sets a take-it-or-leave-it price for his unit. The
buyer is informed of this price, and makes a noisy observation of the quality, modelled as a
convex combination of actual quality and a random noise term. Hence, there is two-sided
asymmetric information in the sense that the buyer does not know the quality of the item
for sale, and the seller does not know the impression the buyer has of the item�s quality.
This paper thus stands somewhat outside the usual literature on adverse selection, where
it is usually assumed that only one side of the market is uninformed.2 Our modelling
approach is instead close to that used when analyzing moral hazard, where it is typically

1We cannot possibly do justice to this rich literature here. The interested reader is referred to Riley
(2001) for a recent survey and to Mas-Colell et al. (1995) for a textbook treatment.

2In this respect, the present model is more similar to principal-agent models, where the principal
makes a noisy observation of the agent�s e¤ort.
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assumed that one party observes the other party�s action with some noise. It should also
be noted that the model is quite distinct from Spence�s (1973) signalling model, which is
a model of one-sided asymmetric information � the seller knows the signal received by
the buyer. Moreover, the signal in Spence�s model is chosen by the seller, and the signal
need not, and in most applications does not, a¤ect the value to the buyer of the unit
for sale (say, the job candidate�s productivity). By contrast, here the seller cannot (by
assumption), a¤ect the signal, but the signal is statistically correlated with the value of
the unit to the buyer.
The solution concept we apply is that of (weak) perfect Bayesian equilibrium, that is,

a player�s beliefs along the path of play are required to be consistent with other players�
strategies and the probabilities for nature�s moves, and, at every information set of a
player, the player�s strategy should be sequentially rational in the sense of maximizing
the player�s conditionally expected payo¤, given the player�s beliefs at the information
set and others�continuation strategies. We analyze the set of prices and trades that can
be sustained in pure-strategy equilibria of this kind. The main focus of the analysis is
on intermediate degrees of signal precision, but we also study the two boundary cases
of symmetric information, that is, when buyers observe the quality of the unit for sale
without error, and of (one-sided) asymmetric information, that is, when buyers have no
information at all about the quality of the unit at hand. Taking limits of buyers�signal
precision towards these two bounds allows us to study the robustness of equilibrium
predictions for the two boundary cases.
Our main results are as follows. First, we prove the existence of separating equilibria.

There are two distinct classes of such equilibria. In one class, high-quality items are
bought with a positive probability below one. Buyers buy only if the quality signal is
su¢ ciently high, and this keeps sellers with low-quality units from deviating to the high
price. Low quality units, by contrast, are sold with probability one. There is a whole
continuum of such separating equilibria, also in the limit as the buyer�s signal precision
is taken down to zero. The upper bound then falls to a positive value, allowing for some
trade in high-quality units even when buyers have no information at all about the quality
of the unit at hand. Low-quality sellers are kept from deviating to the high price because
of the low probability that buyers will bite at that price, while high-quality sellers make
insu¢ cient pro�ts at the low price. The other class of separating equilibria results in
total adverse selection. If high-quality sellers�reservation price is not lower than buyers�
willingness to pay for low quality, then sellers of high-quality units outprice themselves,
leading to no trade in high-quality units. These sellers, who cannot make a pro�t at
the low price, are kept from deviating to intermediate prices by consumers�skepticism.
Buyers interpret any non-equilibrium price as coming from a seller with a low-quality
unit.
Second, we provide necessary and su¢ cient conditions for pooling equilibrium. Unlike

in the standard model of one-sided asymmetric information, buyers condition their pur-
chasing decision, at the going pooling price, on the quality signal they receive: they buy
only if this signal is above a certain equilibrium threshold. Sellers with low-quality goods
thus have a lower probability of selling than sellers with high-quality goods (their cus-
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tomers�signals are stochastically dominated by those emanating from high-quality units).
However, the equilibrium selling probability is still su¢ ciently high to deter these sellers
from deviating to buyers�willingness to pay for low quality, a price at which they would
be sure to sell. There is in general a whole continuum of such pooling equilibrium prices,
and buyers (rationally) condition on their signal even if their signal has low precision.
Indeed, for some parameter constellations this conditioning occurs even in the limit as
the precision of buyers�signals is taken down to zero. This occurs when the going price
equals the average quality (the usual pooling price in models of one-sided asymmetric
information). The reason for this phenomenon is that consumers a priori are indi¤erent
between buying and not buying at that price, and hence even a weak negative signal will
deter a buyer from purchase at that price. If the noise is symmetric and unimodal, the
limiting probability for purchase is one half.
Also in comparison with the classical symmetric-information model do we note two

discontinuities. First, suppose that the sellers�reservation price for high-quality units is
at least as high as buyers�willingness to pay for low quality. Then there are separating
equilibria in our model where high-quality sellers withdraw from the market by outpricing
themselves, as mentioned above, even when buyers�signals are arbitrarily close to being
perfect. By contrast, no such separating equilibria exist if the buyer can observe quality
perfectly. When buyers�willingness to pay for low quality is at least as high as the sellers�
reservation price for high-quality units, then there exists a pooling equilibrium in our
model with a price equal to the buyer�s willingness to pay for low quality. By contrast,
the standard symmetric information model has no equilibria where low and high-quality
sellers charge the same price.
Although there certainly is a related literature, to the best of our knowledge the present

model is new. For example, in Milgrom and Roberts (1986), sellers signal their quality by
way of a posted price and expenditures on advertisement. The seller knows the combined
price-advertisement signal received by buyers, so that is a model of one-sided asymmetric
information. Bagwell and Riordan (1991) develop a model with informed and uninformed
consumers, where the latter update their initial beliefs about quality on the basis of the
price posted by the seller. Hence, also here the seller knows the signal � his price �
received by buyers. Schlee (1996) considers a model in which there is quality uncertainty
on both sides of the market, but where buyers and sellers are symmetrically informed,
that is, available information about quality is public. Hence, in none of these models is
there two-sided asymmetric information, and in none of the models do consumers have
some discriminatory power concerning quality. Ellingsen (1997) considers a version of
Akerlof�s (1970) model of one-sided asymmetric information, where the seller, like here,
is a strategic price setter, rather than a price-taker. Bester and Ritzberger (2001) analyze
interactions of the type modelled in Ellingsen, but where the buyer may undertake a test
and �nd out the exact quality. The relation to these two papers will be highlighted below.
The paper is organized as follows. The model is formalized in section 2. Section 3

prepares the ground for the equilibrium analysis by way of providing certain necessary
conditions on prices to be consistent with pure-strategy perfect Bayesian equilibrium.
Separating equilibria are studied in section 4 and pooling equilibria in section 5. In
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section 6, we consider an equilibrium re�nement based on the behavioral assumption that
buyers also o¤ the equilibrium path use Bayesian updating to form beliefs. In section 7 we
compare the equilibria under one-sided asymmetric information with those that remain in
the limit as the signal precision is brought down towards zero, and, similarly, we compare
the equilibria under symmetric information with those that remain in the limit as the
signal precision approaches one. Section 8 discusses non-pure behavior strategies, and
section 9 concludes with a discussion of directions for further research.

2 Model

An indivisible good is available in two qualities, low and high, denoted qL and qH , where
0 < qL < qH . Buyers are ex ante identical. Without loss of generality, we take the buyers�
valuation of (or willingness to pay for) the two qualities to be vL = qL and vH = qH ,
respectively. Each seller has one unit of the good for sale. The seller knows the quality
of his or her unit. His or her valuation (or reservation price) is wL < vL for a low-quality
item and wH < vH for a high-quality item, where wH � wL. The probability that the
seller�s unit is of low quality is � 2 (0; 1). Let q 2 fqL; qHg be the quality of his product,
and let �q denote the average quality: �q = �qL + (1� �) qH . This is thus also the buyer�s
average valuation, �v = �q.3

The seller sets a take-it-or-leave-it price p for his unit, conditional on its quality. The
buyer is informed of the price p set by the seller, but cannot observe the quality of the
item at hand. Instead, the buyer makes a noisy (or perturbed) observation of the quality:
he or she observes a mean-preserving mix of the unit�s true quality and a noise term.
More exactly, the buyer observes

~q = �q + (1� �) ", (1)

where � 2 [0; 1], and where " is a random variable with mean �q, distributed according
to a cumulative probability distribution function F : R! [0; 1] with continuous and
everywhere positive density f : R! R+.4 The draws of the true quality q and the noise
term " are statistically independent. Given F , the parameter � thus determines the
precision of the buyer�s information about the quality of the unit at hand: the higher
� is, the more precise is the buyer�s signal ~q about the unit�s quality. In particular,
when � = 1, then we have the classical case of symmetric information when buyers
observe quality without error, while the opposite extreme case, � = 0, when buyers have
no information at all about the quality of the unit at hand, corresponds to the usual

3Mathematically, our normalization to set buyers�valuation v� equal to quality q� allows us to use the
notation v and q interchangeably. Conceptually, however, the two are di¤erent: we think of quality as
something objective while buyers�valuations thereof are subjective. Our reason for introducing the two
di¤erent notations is that in models with heterogeneous buyers � not considered in this paper � the
same quality may well imply di¤erent valuations for di¤erent buyers. We have strived to use the notation
q when refering to the physical aspect of quality and v when refering to its subjective aspect, its value to
buyers.

4To be more precise, we assume F to be absolutely continuous: F (z) =
R z
�1 f (z) dz for all z 2 R.
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model of one-sided asymmetric information, pioneered by Akerlof (1970).5 In all cases
between these two extremes, buyers make imperfect observations of quality, and sellers
know this. In a random matching between a seller and a buyer, the seller does not know
the quality signal ~q observed by the buyer. We will refer to these intermediate cases,
� 2 (0; 1), as interactions with two-sided asymmetric information. This parametrization
of the buyer�s signal is made in order to include the traditional cases of symmetric and
one-sided asymmetric information as special cases.6

The sellers are expected-pro�t maximizers, where � = p � w is the pro�t to a seller
with valuation w 2 fwL; wHg who sells a unit at price p. Likewise, the buyers are risk-
neutral utility maximizers, where u = v � p is the utility to a buyer when paying p for a
unit of value v 2 fvL; vHg to the buyer. The buyer�s utility and the seller�s pro�t are both
normalized to zero if no trade takes place. Hence, in force of the assumptions made above,
there are positive potential gains of trade in both cases: vL � wL > 0 and vH � wH > 0.
Expected potential gains of trade are thus

Ŵ = � (vL � wL) + (1� �) (vH � wH) > 0. (2)

One of the main concerns from a welfare viewpoint is to what extent these potential gains
will be realized in equilibrium, and how this depends on the parameters in the model, in
particular, on the precision � of buyers�information.

2.1 The seller-buyer game

Formally, we model the interaction outlined above as an extensive-form game with incom-
plete information between a seller, player 1, and a buyer, player 2, as follows:

1. Nature chooses � 2 fL;Hg, where L has probability � and H probability 1 � �.
Nature also chooses " 2 R, according to the distribution F , and these two moves by
nature are statistically independent.

2. The seller observes � and chooses a price p� 2 R. A pure strategy for the seller is
thus a pair s = (pL; pH) 2 R2 of prices, where pL is the price when � = L and pH
the price when � = H.

3. The buyer observes the price-signal pair (p�; ~q), where ~q = �q� + (1 � �)" (see
equation (1)), and decides whether to buy the item or not. A pure strategy for

5In the case � = 0, there is a subtle di¤erence, though: while the buyer observes no signal at all
in the traditional model of one-sided asymmetric information, here the buyer observes a signal that is
statistically independent from the true quality of the item at hand. See section 7 for a discussion of this
aspect.

6For intermediate cases of two-sided asymmetric information, it would be su¢ cient to use the simpler
formulation ~q = q+"0, where "0 is a random variable. Indeed, for � 2 (0; 1) �xed, the two representations
are mathematically equivalent. Comparative statics with respect to buyer information in the simpler
formulation can be done by varying the �dispersion�of the error term. For example, with "0 � N

�
0; �2

�
one could study the role of �2 very much along the same lines as we here study the role of �.
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the buyer is thus a (Borel-measurable) function b : R2 ! f0; 1g, where b (p; ~q) = 1
means �buy� and b (p; ~q) = 0 means �don�t buy,� given any price p and quality
signal ~q.

4. The game ends and the players receive their payo¤s,

� = (p� � w�) b (p�; ~q) and u = (v� � p�) b (p�; ~q) . (3)

A decision node for the seller is thus a pair (�; "), but the seller does not observe ", the
noise term in the buyer�s perception of the quality of the item at hand. The seller thus
has two information sets (or � seller types�), namely f(L; ") : " 2 Rg and f(H; ") : " 2 Rg,
depending on whether his item is of low or high quality. Likewise, a decision node for the
buyer is a triplet (�; "; p), but the buyer observes only the seller�s price p and the signal
~q. The buyer thus has in�nitely many information sets (or �buyer types�). Each of the
buyer�s information sets is characterized by a pair (p; ~q) 2 R2, specifying the seller�s price
p and the received quality signal ~q. For � < 1, each such information set contains exactly
two nodes of the game tree, namely (L; "L; p) and (H; "H ; p), where

"� =
~q � �q�
1� �

for � 2 fL;Hg . (4)

By contrast, if � = 1, then, by (1), the quality signal ~q coincides with the true quality:
~q 2 fqL; qHg. Hence, for any � 2 fL;Hg, the buyer information set (p; q�) contains
in�nitely many nodes of the game tree, namely (�; "; p), for all " 2 R. In other words,
the observation of ~q then does not give the buyer any clue about ". However, in this
boundary case of perfect precision, the random variable " is irrelevant to the buyer�s
decision making, since we then have ~q = q�: the buyer observes the true quality without
error. As noted above: what makes this game di¤erent from the standard �lemons model�
(see, for example, chapter 13 in Mas-Colell, Whinston, and Green, 1995), is that the seller
is a price setter rather than price taker and that there is incomplete information on both
sides of the market: the buyer does not know the quality of the item for sale, and the
seller does not know what signal the buyer has about the unit�s quality. Note also that the
�types�of the seller and the buyer are correlated: according to (1) the buyer observes the
random variable ~q = �q� + (1� �) ", where � 2 fL;Hg is the random variable observed
by the seller.

2.2 Equilibrium

We solve this game by adapting the usual (weak) perfect Bayesian equilibrium concept
to the present setting (see, e.g., Mas-Colell et al. (1995)). Such an equilibrium speci�es
a strategy for each player, and beliefs for the players over the nodes in their information
sets, such that (a) beliefs are consistent with all players�strategies and the probabilities
for nature�s moves, along the induced path of play, and (b) at each information set, the
strategy of the concerned player is optimal, given the player�s belief at the information

7



set and the strategies of all other players (there is no future move by nature in our
game). Requiring best replies also o¤ the path of play, this concept is more stringent
than (Bayesian) Nash equilibrium, but it imposes no constraints on beliefs at information
sets o¤ the path of play; in this sense it is weaker than sequential equilibrium.7 We
will only consider pure strategies. The present section concerns the case of incompletely
informed buyers (� < 1); the case of completely informed buyers is discussed in section
3.2. Formally (and following Kreps and Wilson, 1982), a belief system is a function �
that assigns to each information set a probability distribution over the nodes in that
information set. A pure-strategy pro�le in the present game is a pair (s; b), where s =
(pL; pH) 2 R2, a pure strategy for the seller, and b : R2 ! f0; 1g is a (Borel-measurable)
function, a pure strategy for the buyer. We will call a triplet (�; s; b) an equilibrium if it
meets conditions [B1]-[B3] and [S] below.

[B1] At each seller information set f(�; ") : " 2 Rg, and for every x 2 R, � assigns
probability F (x) to the subset of nodes f(�; ") : " � xg.

[B2] If pL 6= pH , then at each buyer information set (p�; ~q), � assigns probability 1 to the
node (�; "�; p�), where "� is de�ned in (4).

[B3] If pL = pH , then at each buyer information set (p; ~q) where p = pL, � assigns
probability

�L(~q) =
�f ("L)

�f ("L) + (1� �)f ("H)
(5)

to the node (L; "L; p), and thus probability �H(~q) = 1��L(~q) to the node (H; "H ; p).8

[S] At all information sets: the concerned player�s strategy is a best response to the other
player�s strategy, under the belief induced by � at that information set.

Consistency condition [B1] is met if the seller knows the quality of his item and knows the
c.d.f. F of the buyer�s noise term ". At each of his two information sets, f(L; ") : " 2 Rg
and f(H; ") : " 2 Rg, the seller�s beliefs are then given by the distribution function F for
". Conditions [B2] and [B3] are met if, at every information set of the buyer that can
be reached under the strategy pro�le (s; b), the buyer�s beliefs are consistent with (s; b),
by way of Bayesian updating. More exactly, condition [B2] requires that if the seller
charges di¤erent prices, pL and pH , depending on the quality of his good, an incompletely
informed buyer should believe that the item is of low (high) quality if he price is pL (pH).
Similarly, condition [B3] requires that if the seller charges the same price for high and
low-quality items, the buyer�s belief about which of the two nodes was reached should be
consistent with Bayes�rule applied to the information set in question.9 Finally, condition

7Note also that the present game has in�nitely many information sets, and thus departs from the usual
setting for sequential equilibrium. For exact de�nitions, see Fudenberg and Tirole (1991) and Mas-Colell
et al. (1995). For additional remarks on belief constraints, see section 9.

8In the boundary case � = 0, "� = ~q for both � = L and � = H, and thus �L(~q) = � for all ~q, by (5).
9Expressed di¤erently, [B3] requires the probability �L(~q) to be consistent with the conditional likeli-

hood of the true quality, given the observed quality ~q.
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[S] requires sequential rationality as de�ned in Kreps and Wilson (1982). The subsequent
analysis is focused on pure-strategy equilibria (�; (pL; pH) ; b) as described above. Such
an equilibrium is separating if pL 6= pH and pooling if pL = pH . Let �L and �H denote the
equilibrium trading probabilities for low and high quality units:

�� = Pr[b(p�; ~q) = 1 j �] (6)

for � = L;H. Expected equilibrium gains of trade can then be written

W � = ��L (vL � wL) + (1� �) �H (vH � wH) : (7)

By an equilibrium outcome we mean a quadruple (pL; pH ; �L; �H) such that (�; (pL; pH) ; b)
is a perfect Bayesian equilibrium for some buyer strategy b satisfying (6).

3 Preliminaries

Before embarking on the equilibrium analysis, we brie�y consider certain necessary con-
ditions on price pairs (pL; pH) for these to be sustained in equilibrium, and consider the
boundary case of symmetric information.10

3.1 Necessary conditions for equilibrium

The necessary conditions for equilibrium given below follow more or less immediately from
�rst principles. For instance, it is sequentially rational for the buyer to buy if the seller
would ask a price below the buyer�s willingness to pay for a low-quality unit, and it is
always sequentially rational not to buy if the seller would ask a price above the buyer�s
willingness to pay for a high-quality unit. In sum:

8p < vL;8~q 2 R : b(p; ~q) = 1: (8)

and
8p > vH ;8~q 2 R : b(p; ~q) = 0: (9)

Using this simple observation, a wide range of price pairs can be ruled out from equilibrium
a priori :

Lemma 3.1 For � < 1 there are no equilibria (�; (pL; pH) ; b) where

(a) min fpL; pHg < vL;

(b) pL 6= pH and pL > vL;

10Recall that our model exhibits a form of �discontinuity� at that boundary. At � = 1, the buyer�s
information set contains in�nitely many nodes, while for any � < 1 it contains only two nodes.
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(c) pL = vL and pH 2 (vL; vH);

(d) pL = pH � vH :

Proof: (a) If a seller of type � 2 fL;Hg sets a price below vL, then, by (8), his
expected payo¤ can be increased from p�w� to p0�w� by deviating to a price p0 2 (p; vL).
(b) Suppose pL 6= pH and pL > vL. Consider an information set (pL; ~q) of the buyer.

By [B2], he believes that the item is of low quality, with probability one. Since pL > vL,
the optimal decision by [S] is not to buy. So b(pL; ~q) = 0 for all ~q 2 R. Hence, the
expected payo¤ to a seller with a low-quality unit equals zero, while (8) implies that the
seller can deviate to a price p 2 (wL; vL) and obtain a positive payo¤, p� wL.
(c) Suppose pL = vL and pH 2 (vL; vH). Consider an information set (pH ; ~q) of the

buyer. By [B2], he believes with probability one that the item is of high quality. Since
pH < vH , the optimal decision by [S] is to buy. So b(pH ; ~q) = 1 for all ~q 2 R. The low-
quality seller can then increase his expected payo¤ from (qL�wL) �Pr [~q 2 R j b(qL; ~q) = 1]
to pH � wL by charging price pH instead of qL.
(d) Suppose �rst pL = pH > vH . By (9), the good is not sold at this price, so the

expected payo¤ to the low-quality seller equals zero, while (8) implies that he can deviate
to a price p 2 (wL; vL) and make pro�t p � wL > 0. Suppose now that pL = pH = vH ,
and consider an information set (vH ; ~q) of the buyer. By [B3], he believes with probability
(5) that the item is of low quality, in which case a purchase would give negative utility
(vL� vH < 0), and with the residual probability that the item is of high quality, in which
case a purchase would give zero utility (vH � vH = 0). The expected payo¤ thus being
negative, the optimal decision by [S] is not to buy. The expected payo¤ of the seller with
a low-quality unit hence equals zero, while (8) implies that such a seller can deviate to a
price p 2 (wL; vL) and guarantee himself a positive payo¤ p� wL. End of proof.

We note that, by (a) and (b), in separating equilibria the price of low-quality units
equals buyers�willingness to pay for such units, and, by (c), the price of high-quality
units is never below the buyers�willingness to pay for such units. When trade occurs in
separating equilibria, the seller thus reaps all the gains of trade. This is not surprising,
since by assumption the sellers by assumption can commit to take-it or leave-it o¤ers. By
(a) and (d): in pooling equilibria the price is never below buyers�willingness to pay for
low-quality units but always lower than buyers�willingness to pay for high-quality units.
In sum:

Remark 3.2 It follows from the lemma that the only remaining candidate pure-strategy
equilibria, when � < 1, are: (i) separating equilibria with pL = vL and pH � vH , (ii)
pooling equilibria with pL = pH 2 [vL; vH). /

Before embarking on an analysis of separating and pooling equilibria in cases when
buyers have less than perfect information, we brie�y consider the limiting case of sym-
metric information (� = 1).
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3.2 Symmetric information

The classical case of symmetric information, that is, when buyers know exactly the quality
of the goods they buy, corresponds to � = 1 in the present model. Pure-strategy perfect
Bayesian equilibrium then requires the buyer to make a purchase if and only if the posted
price does not exceed the received quality signal ~q = q�, where q� is the quality of the unit
at hand.11 The seller�s unique best reply to this buyer strategy is to set the price equal
to the buyer�s willingness to pay, (pL; pH) = (vL; vH). Hence, both low and high quality
items are traded with probability one in equilibrium: �L = �H = 1. Moreover, consumer
surplus is zero, E [u] = 0 (see (3)), while the seller�s expected pro�t equals the potential
gains of trade: E [�] = Ŵ (see (2)). Hence, all potential gains of trade are realized in
equilibrium in this boundary case: W � = Ŵ .

4 Separating equilibria

The aim of this section is to establish conditions for the existence of separating equilibria,
and to investigate their nature. Having already dealt with the boundary case � = 1,
we from now on focus on � 2 [0; 1). We will show that low-quality items are sold with
probability one (�L = 0) in all separating (pure-strategy) equilibria and identify two
varieties of separating equilibria. In one variety, high-quality units are not sold (�H = 0),
while in the other variety they are sold with positive probability below one (0 < �H < 1).
We will refer to the �rst variety as �total� adverse selection. These are equilibria in
which high-quality sellers outprice themselves, and thereby �leave the market,�just as in
�classical�adverse selection. The second variety will be referred to as �partial�adverse
selection.

4.1 Total adverse selection

We noted above that the lower bound on the equilibrium probability for trade in high-
quality units is zero if vL � wH . Indeed, in this case, and only then, do there exist
separating equilibria in which the price of high-quality items exceeds vH . Since it is
suboptimal to buy at such high prices, there is no trade in high-quality goods. The reason
why sellers with high-quality units do not lower their price is that, in these equilibria,
buyers believe that such a seller may well hold a low-quality item, and therefore buyers
do not �bite,�unless, of course, the seller would set the price as low as vL, resulting in
non-positive pro�ts. Hence, in these equilibria, it is as if sellers with high-quality units
had left the market � as under classical adverse selection.

Proposition 4.1 Suppose � < 1. Prices pL = vL and pH > vH constitute an equilibrium
price pair if and only if vL � wH . In all such equilibria �L = 1 and �H = 0.
11The buyer�s information sets are of the form (p; q�) and each such set consists of the nodes f(�; "; p) :

" 2 Rg. Perfect Bayesian equilibrium requires that the belief system � assigns probability F (x) to each
subset of nodes f(�; "; p�) : " � xg. However, this consistency requirement is only cosmetic: the error
term " is irrelevant to the buyer when � = 1.
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Proof : To prove necessity, suppose (�; (vL; pH) ; b) is such an equilibrium. Condition
(9) implies that sellers with high-quality units obtain zero pro�t. By condition (8), a
deviation from pH to a price p < vL su¢ ciently close to vL guarantees a pro�t arbitrarily
close to vL�wH . Hence, for pH > vH to be an equilibrium price, it must be that vL�wH �
0. As for su¢ ciency, assume vL � wH . Let (�; s; b) be such that pL = vL; pH > vH , let

b(p; ~q) =

�
1 if p � vL;
0 otherwise,

and let � satisfy [B1] and [B2] (again [B3] has no bite in separating equilibria). At
information sets (p; ~q) of the buyer o¤ the path of (s; b) (i.e., with p =2 fpL; pHg), let �
assign probability one to the node (L; "L; p): the buyer then believes the item is of low
quality. It is easy to verify that (�; s; b) constitutes a perfect Bayesian equilibrium. First,
the belief requirements are ful�lled by construction. Second, consider the information
sets of the buyer. At information sets (vL; ~q), the buyer is indi¤erent between buying and
not buying. Hence, b is a best reply at all these information sets. At information sets
(pH ; ~q), the buyer can only su¤er from purchasing the item: the unique best reply is not
to buy. Hence, b is a best reply also at these information sets. At information sets (p; ~q)
o¤ the equilibrium path, i.e., with p =2 fpL; pHg, the buyer believes the item is of low
quality, so buying at prices p < vL and not buying at prices p > vL is optimal: b is a best
reply also at these information sets. Third, consider the information sets of the seller. At
information set f(L; ") : " 2 Rg, a price p � vL yields pro�t p�wL, so in this price range
the optimal price is vL, yielding pro�t vL � wL > 0. A price p > vL results in no trade
and hence pro�t zero. Hence, the price pL = vL is indeed a best reply at this information
set. At information set f(H; ") : " 2 Rg, a price p � vL yields pro�t p � wH � 0, since
vL � wH , and a price p > vL yields no sale and hence pro�t zero. Hence, any price p > vH
is indeed a best reply at this information set.
To establish the last claim in the proposition, consider any equilibrium (�; s; b) with

pL = vL and pH > vH . It follows as in the proof of the preceding proposition that
b(vL; ~q) = 1 for almost every ~q 2 R, and from (9) that b(pH ; ~q) = 0 for every ~q 2 R. End
of proof.

In other words, if wH � vL, then there are equilibria where high-quality sellers
withdraw from the market by outpricing themselves, regardless of information precision
� 2 [0; 1). In particular, such equilibria exist even as buyers� information is made ar-
bitrarily precise, that is, as � ! 1, despite the fact that no such equilibria exist under
symmetric information, that is, when � = 1 (see section 3.2). In this sense, the classi-
cal result for symmetric equilibrium is non-robust: the slightest noise in buyers�quality
observations allows for equilibria where adverse selection hits at full force. At the other
end of the information spectrum, when � = 0, proposition 4.1 establishes that outpricing
equilibria exists also under one-sided asymmetric information, granted wH � vL. Note,
in particular, that this result allows for equilibria with complete adverse selection even
when wH � �v, the condition for the existence of pooling equilibria in standard models of
one-sided asymmetric information. We should add that we do not �nd these separating
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equilibria very plausible. For if a seller with a high-quality unit were certain that no
buyer will buy at a price above their highest willingness to pay, vH , then such a seller
couldn�t lose, but might gain, by deviating to a price p below vH (but above wH). More
formally, none of the equilibria in proposition 4.1 survive two rounds of elimination of
weakly dominated strategies. To see this, note that any buyer strategy b that assigns
b (p; ~q) > 0 to some p > vH and ~q 2 R is weakly dominated by the buyer strategy b0 that
agrees with b everywhere except at the information set (p; ~q), where b0 instead takes the
value zero. After all such weakly dominated buyer strategies have been eliminated from
the game all seller strategies s = (pL; pH) with pH > vH become weakly dominated by
any seller strategy s0 = (pL; p) for which p 2 (wH ; vH ]. All separating equilibria resulting
in total adverse selection can hence be discarded if this re�nement is deemed appropriate
to the application at hand. Alternatively: in view of the irrationality of prices p > vH , as
well as prices p < wL, one could argue that the seller�s strategy set should be [wL; vH ]

2,
instead of, as here, all of R2. Any of these approaches will lead to the elimination of the
whole set of equilibria with total adverse selection.

4.2 Partial adverse selection

We will construct a continuum of separating with partial adverse selection by focusing on
threshold strategies for the buyer, that is, strategies according to which the buyer buys at
the high price, pH = vH if and only if the quality signal passes above a certain threshold,
speci�c to each such equilibrium. For this purpose, we �rst de�ne a set T of relevant
threshold levels for the buyer:

Lemma 4.2 Suppose � < 1. The following two inequalities together de�ne a non-empty
interval T � R of scalars t:

Pr [~q > t j � = L] � vL � wL
vH � wL

; (10)

Pr [~q > t j � = H] � vL � wH
vH � wH

: (11)

Proof : Recall that the c.d.f. for " is F , and notice that, for any t 2 R,

Pr [~q > t j �] = 1� F

�
t� �q�
1� �

�
so (10) and (11) are equivalent with, respectively,

F

�
t� �qL
1� �

�
� vH � vL
vH � wL

(12)

and

F

�
t� �qH
1� �

�
� vH � vL
vH � wH

: (13)
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Case 1: If wH � vL, then the right-hand side of (13) is at least 1, and hence (13) is met.
Condition (12) is equivalent with

t � �qL + (1� �)F�1
�
vH � vL
vH � wL

�
.

Case 2: If wH < vL, then t 2 R satis�es (12) and (13) if and only if

�qL + (1� �)F�1
�
vH � vL
vH � wL

�
� t � �qH + (1� �)F�1

�
vH � vL
vH � wH

�
:

By hypothesis, qL < qH , wL � wH , and F is strictly increasing, so the lower bound on T
is a smaller number than its upper bound. End of proof.

As seen in the proof, the interval T is of the form [t0;+1) if vL � wH , and of the
form [t0; t1] if vL > wH , where

t0 = �qL + (1� �)F�1
�
vH � vL
vH � wL

�
(14)

and

t1 = �qH + (1� �)F�1
�
vH � vL
vH � wH

�
: (15)

In the �rst case, vL � wH , sellers of high-quality units cannot make a positive pro�t at the
price vL, while in latter case they can. We also note that t0 � t1 < +1. We use lemma
4.2 to show that for every parameter combination (satisfying the assumptions made in
section 2) there exists a set of separating equilibria where (a) the price of each quality
equals buyers�willingness to pay for that quality, (b) items of low quality are sold with
probability one, and (c) items of high quality are sold only with a positive probability
below one. In these equilibria, the buyer�s strategy is to buy from a seller who posts the
low price, pL = vL, irrespective of the perceived quality ~q, but to buy from a seller who
posts the high price, pH = vH , if and only if the perceived quality exceeds an threshold
t 2 T . More exactly:

Proposition 4.3 Suppose � < 1. All equilibria with (pL; pH) = (vL; vH) have �L = 1

and max
n
0; vL�wH

vH�wH

o
� �H < 1. There exists a continuum of equilibria, parametrized by

t 2 T , where (pL; pH) = (vL; vH) and

�H = Pr [~q > t j � = H] = 1� F

�
t� �qH
1� �

�
: (16)

Proof: In order to prove the �rst claim, suppose (�; s; b) is an equilibrium with
(pL; pH) = (vL; vH). By [B2] and [S], the buyer buys with probability 1 at all prices
p < vL, irrespective of her signal ~q. Hence, by choosing p < vL arbitrarily close to vL, a
seller with a low-quality item can guarantee himself a pro�t arbitrarily close to vL � wL.
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Hence, for pL = vL to be optimal for the seller, it must be that b(vL; ~q) = 1 for almost
every ~q 2 R. To prove the second claim, let (pL; pH) = (vL; vH), choose any t 2 T , and
let

b(p; ~q) =

�
1 if p � vL, or if p = vH and ~q > t,
0 otherwise.

This de�nes a pure-strategy pair, (s; b), with

�H = Pr [~q > t j � = H] = 1� F

�
t� �qH
1� �

�
< 1.

Let � be any belief system satisfying [B1] and [B2] ([B3] has no bite in separating equi-
libria). At information sets (p; ~q) of the buyer o¤ the path of (s; b), that is, where
p =2 fvL; vHg, let � assign probability 1 to the node (L; "L; p). In other words, the buyer
then believes the item is of low quality. We verify that (�; s; b) is an equilibrium in three
steps. First, consider the buyer�s information sets. At information sets (vL; ~q) and (vH ; ~q),
the buyer�s expected payo¤ is zero regardless of her choice, for any ~q 2 R. Hence, b is a
best reply at all information sets on the path of (s; b). At information sets (p; ~q) o¤ the
path, the buyer believes the item is of low quality, so buying at a price p � vL and not
buying at a price p > vL is a best reply also at such information sets. Secondly, consider
the information set f(L; ") : " 2 Rg of the seller. A price p � vL would yield pro�t p�wL,
so in this price range the optimal price is vL, yielding pro�t vL�wL > 0. A price p > vL,
di¤ering from vH , would result in no trade, and hence pro�t zero. The price p = vH , by
contrast, would result in trade with probability Pr [~q > t j � = L]. However, using (10),
the resulting expected pro�t would not exceed

vL � wL
vH � wL

(vH � wL) = vL � wL.

Hence charging the price vL is indeed a best reply at this information set. Thirdly, consider
the information set f(H; ") : " 2 Rg of the seller. A price p � vL would yield the pro�t
p � wH , so in this price range the optimal price is vL, yielding pro�t vL � wH . A price
p > vL, di¤ering from vH , would result in no trade, and hence pro�t zero. The price
p = vH , by contrast, results in trade with probability Pr [~q > t j � = H]. Using (11), the
resulting expected pro�t does not fall short of

vL � wH
vH � wH

(vH � wH) = vL � wH .

Hence charging price vH is indeed a best reply at this information set. It remains to
prove the claim that �H � max

n
0; vL�wH

vH�wH

o
in all separating equilibria. The inequality

is trivially met if wH � vL, so suppose wH < vL. If �H < vL�wH
vH�wH , then a seller with a

high-quality unit would earn a higher pro�t by deviating to any price p < vL su¢ ciently
close to vL, since the buyer would surely buy at such a price and this the deviation pro�t
would be arbitrarily close to vL � wH . End of proof.

15



We would like to make some comments to this proposition. First, the continuum of
parametrized equilibria in the statement of the proposition are Pareto ranked: the lower
the threshold t 2 T , the higher is the probability �H for trade in high-quality items, and
thus the higher is the expected pro�t to sellers � the expected utility to buyers being zero
in all these equilibria (see equation (16) and note that the right-hand side is decreasing
in t). Secondly, there are other separating equilibria with the same prices as those in the
proposition: buyers may use other (mixed or pure) strategies than step functions. Since
buyers are indi¤erent between buying and not buying at the equilibrium prices, the only
role that buyers�strategies play is to deter sellers from deviating, and this can be done in
more than one way. Thirdly, step-functions of the kind used by the buyers in the above
equilibria are optimal decision rules in a variety of decision problems related to the one
faced by the buyer in the present model. Suppose, thus, that a decision-maker observes
a signal of the form (1), where the true quality q and the noise term " are statistically
independent random variables. Then the signal distribution from a unit stochastically
dominates those from units with lower quality. Moreover, if the probability distribution
of the noise term has (a version of) the monotone likelihood ratio property (shared by
for instance the normal, exponential and Gumbel distributions), then the conditionally
expected quality, E (q j ~q), is an increasing function of the signal ~q (see e.g. Mattsson
et al. (2004) for an investigation of a general class of such decision problems). In such
cases it is optimal to use decision rules of the threshold form. We �nally examine the
comparative statics properties of these separating equilibria with respect to the precision
� of the buyer�s signal. By (14), the conditional probability �H for a high-quality unit to
be sold in equilibrium is bounded from above by

�� = 1� F

�
F�1

�
vH � vL
vH � wL

�
� � (qH � qL)

1� �

�
. (17)

This upper bound �� deters low-quality sellers from deviating to the high price: the proba-
bility of selling low quality at the high price is kept su¢ ciently low to make such a deviation
non-pro�table. Note that �� increases with �, from a positive value, (vL � wL) = (vH � wL),
when � = 0 towards 1 as �! 1. In other words, the more precise the signal is, the higher
is the upper bound on the equilibrium trading probability for high-quality units, and hence
also on the realized gains of trade. As the signal precision approaches zero, the upper
bound falls to a positive value, allowing for some trade in high-quality units even when
buyers have no information at all about the quality of the unit at hand. By contrast, as
the signal precision approaches one, this upper bound tends to 1, the equilibrium trading
probability under symmetric information (see section 3.2). By contrast, the lower bound
for the conditional equilibrium probability of trade, for a high-quality unit, is independent
of buyer information � < 1:

� = max

�
0;
vL � wH
vH � wH

�
. (18)

This lower bound keeps sellers of high-quality units from deviating to the low price, at
which they can make a sure pro�t of vL � wH . We note that � is positive if and only if
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wH < vL. In particular, even as we approach the case of symmetric information, that is,
as � ! 1, the lower bound stays put at its constant value below one, while the upper
bound was seen to approach one. In this sense, the classical result of full realization of
gains of trade under symmetric information is non-robust: the slightest buyer uncertainty
about quality allows for a whole set of equilibria with partial adverse selection, with
accompanying welfare losses. At the other end of the information spectrum, that is when
� = 0, we note yet another di¤erence from the standard analysis. For while under one-
sided asymmetric information high-quality units have until recently been supposed not
to be traded when wH < �v, they are here traded with positive probability, bounded from
below by a positive number when wH < vL. Ellingsen (1997) establishes the existence of
separating equilibria with positive probability of trade in high-quality items in a related
model (see section 7.1 for a more exact comparison). As for equilibrium gains of trade,
they are all going to the seller: E [u] = 0 in all separating equilibria. As for equilibrium
gains of trade and pro�ts, we note that

vL � �wL � (1� �)wH � W � = E [�] = � (vL � wL) + (1� �) (vH � wH) �� (19)

The dependence on the upper bound �� on buyer information � is illustrated in Figure 1
below, drawn for wL = 0, qL = 1, qH = 3, � = 0:25 and " � N (2:5; 1).12 We see that ��
rises from (1� 0) = (3� 0) = 1=3 towards 1, and that �� is close to 1 for a wide range of
precision levels �. By contrast, � is a constant number between zero (if wH � 1) and 1=3
(if wH = wL = 0). In particular, the lower bound is zero when wH = 2, that is, when the
gains of trade are equal for low and high quality units, which is one of the assumptions
of Ellingsen (1997).

12We then have E["] = �q = 2:5 and

F�1
�
vH � vL
vH � wL

�
= F�1 (2=3) � 2:93:
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Figure 1: The range of trading probabilities for high quality.

5 Pooling equilibria

We saw in section 3.2 that pooling equilibria do not exist in the boundary case � = 1 of
symmetric information. We here focus on the case � < 1. By Remark 3.2, it su¢ ces to
consider prices p in the half-open interval [vL; vH). First, consider the decision problem
faced by a buyer who receives a quality signal ~q 2 R. The conditionally expected value
to the buyer of the unit at hand, given the signal, is

E [v j ~q] = �L(~q)vL + [1� �L(~q)] vH , (20)

where �L(~q) is the conditional probability that the item is of low quality, de�ned in
equation (5).13 For any price p 2 R, let B(p) � R denote the subset of signals ~q at which
the conditionally expected quality is not less than p:

B(p) = f~q 2 R : E [v j ~q] � pg: (21)

If pL = pH = p, then consistency [B3] and sequential rationality [S] together dictate it
is optimal for the buyer to make a purchase if and only if his signal ~q belongs to the set
B(p).14 The following proposition characterizes the set of prices p 2 [vL; vH) that can be
supported in pooling equilibria.

13Recall that if � = 0, then �L(~q) = � for all ~q.
14Indeed, it is the buyer�s unique best reply to buy if E [v j ~q] > p.
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Proposition 5.1 Suppose � < 1. A price p 2 [vL; vH) is a pooling equilibrium price if
and only if (22) and (23) hold.

(p� wL) Pr [~q 2 B(p) j � = L] � vL � wL (22)

(p� wH) Pr [~q 2 B(p) j � = H] � max f0; vL � wHg (23)

Proof: To prove necessity, let (�; s; b) be a pooling equilibrium with price p 2 [vL; vH).
By sequential rationality, [S], b(p; ~q) = 0 if ~q =2 B(p). Hence, a low-quality seller�s expected
pro�t, �L, satis�es

�L � (p� wL) Pr [~q 2 B(p) j � = L] . (24)

Moreover, such a seller can guarantee himself a pro�t arbitrarily close to vL � wL by
choosing prices p0 < vL. Hence,

vL � wL � �L � (p� wL) Pr [~q 2 B(p) j � = L]

proving (22). Likewise, a high-quality seller�s expected pro�t, �H , satis�es

�H � (p� wH) Pr [~q 2 B(p) j � = H] . (25)

Moreover, such a seller can guarantee himself zero pro�t by setting p0 > vH and a pro�t
arbitrarily close to vL � wH by choosing price p0 < vL. Hence,

max f0; vL � wHg � �H � (p� wH) Pr [~q 2 B(p) j � = H]

proving (23). To prove su¢ ciency, de�ne (�; s; b) by setting pL = pH = p 2 [vL; vH),

b(p0; ~q) =

�
1 if p0 < vL or if p0 = p and ~q 2 B(p),
0 otherwise,

and let � satisfy [B1] and [B3] ([B2] has no bite in pooling equilibria). At information
sets (p0; ~q) of the buyer o¤ the path of (s; b), that is, where p0 6= p, let � assign probability
1 to the node (L; "L; p0): the buyer then believes the item is of low quality. This strategy
pro�le is a perfect Bayesian equilibrium. First, the belief requirements are ful�lled by
construction. Second, when the price is p, the buyer plays a best reply, since by de�nition
of B(p) she buys whenever this gives nonnegative expected utility. At prices p0 6= p, she
believes the item is of low quality, and her strategy, to buy i¤ the price p0 is below vL,
is optimal. Conditions (22) and (23) imply that the seller has no pro�table unilateral
deviations: a price p0 � vL, p0 6= p, results in zero trade, and inequalities (24) and (25)
are met with equality under (�; s; b). End of proof.

As is shown in the proof, the �rst (second) condition in the proposition guarantees
that sellers with low (high) quality units do not have an incentive to deviate. We note that
condition (23) fails if p < wH . Hence, not surprisingly, such prices can not be supported
in pooling equilibria � sellers with high-quality units are then better o¤ keeping their
unit. By contrast, the same condition, (23), is trivially met if vL � wH � p. In such cases,
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sellers with high-quality units make a nonnegative pro�t at the going price p, and cannot
make positive pro�ts by deviating to prices p � vL � prices at which it is rational for
buyers to buy irrespective of their signal. An immediate consequence of this proposition
is that if wH � vL, then p = vL is a pooling equilibrium price. For in this case sellers are
willing to part with high-quality units, and it is rational for buyers to buy irrespective
of the signal (the quality cannot be lower than the going price). Formally: B (vL) = R,
and the probabilities on the left-hand sides of (22) and (23) are both one, and thus both
conditions are met for p = vL.15 The reason why this low price is a pooling equilibrium
price is simple: downwards price deviations do not pay o¤, and buyers do not trust sellers
who post prices above the going price.
For the boundary case � = 0 proposition 5.1 implies that pooling equilibria exist if

and only if wH � �v. To see this, �rst note that, by equation (5), we then have �L(~q) = �
for all signals ~q. Consequently, E [v j ~q] = �q for all ~q. In other words, the signal being
completely uninformative, the buyer expects the good to be of average value. The buyer�s
acceptance set thus is the whole real line, B (p) = R for all prices p � �v, while for higher
prices it is the empty set. It is easily veri�ed that the conditions in the proposition are
met if and only if

max fvL; wHg � p � �v: (26)

Hence, the set of pooling equilibrium prices is non-empty if and only if wH � �v. Moreover,
when � = 0, then all pooling equilibria are e¢ cient � they all realize the full potential
gains of trade: �L = �H = 1 and W

� = Ŵ . The only di¤erence between the alternative
pooling equilibria in this special case (� = 0) is the share of the gains of trade that
befalls the buyer: consumer surplus being higher the lower the pooling price. Is the
above result for pooling equilibrium prices p at � = 0 robust with respect to �? Assume,
�rst that � > 0, max fvL; wHg < �v, and consider any price p < �v satisfying (26). As
�! 0, �L(~q)! � for all quality signals ~q, by (4) and (5). Hence, E [v j ~q]! �q as �! 0.
Consequently, p is a pooling equilibrium price for su¢ ciently small �, since E [v j ~q]�p > 0
for � close to 0, by continuity. Moreover, �L and �H converge to 1. Hence, the above
result for prices p satisfying max fvL; wHg � p < �v are robust with respect to �. As will
be shown below, however, the result is discontinuous with respect to � when p = �v. In
order to study intermediate degrees of signal precision, � 2 (0; 1), we make the simplifying
assumption that the error term is normally distributed.

5.1 Normally distributed noise

In the special case when the perturbation " of the consumer�s quality signal is normally
distributed, the necessary and su¢ cient conditions (22) and (23) can be written explicitly
in terms of the primitives of the model. For this purpose, suppose that � 2 (0; 1) and let

' (p) =
� (qH � qL)

2 (1� �)�
+

(1� �)�

�(qH � qL)
ln

�
�(p� vL)

(1� �)(vH � p)

�
. (27)

15This is true even when � = 0.
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Clearly ' (p) 2 R for all p 2 (vL; vH), and ' is increasing in p on the interval (vL; vH),
with limp#vL ' (p) = �1, limp"vH ' (p) = +1, and

' (�v) =
� (qH � qL)

2 (1� �)�
. (28)

Proposition 5.2 Suppose that � 2 (0; 1) and " � N (�q; �2). A price p 2 R is a pooling
equilibrium price if and only if max fvL; wHg � p < vH andZ +1

'(p)

1p
2�
e�x

2=2dx � vL � wL
p� wL

(29)

Proof : Condition (23) is violated if p < wH , so no such price is a pooling equilibrium
price. We observed earlier that p = vL is a pooling equilibrium price for all � 2 (0; 1) if
vL � wH . To see that p = vL satis�es inequality (29), note that its left-hand side then
equals 1 and so does the right-hand side.
It thus only remains to study prices p 2 (vL; vH)\ [wH ;+1). Using (5), we note that

~q 2 B(p) i¤
� (qL � p) f("L) + (1� �) (qH � p) f("H) � 0,

where "� is de�ned in (4) and f is the density of N (�q; �2). Hence, ~q 2 B(p) if and only if

f

�
~q � �qH
1� �

�
� �(p� qL)

(1� �)(qH � p)
f

�
~q � �qL
1� �

�
,

or, equivalently,

exp

"
�
�
~q � �qH
1� �

� �q
�2

=
�
2�2
�#
� exp [� (p)] exp

"
�
�
~q � �qL
1� �

� �q
�2

=
�
2�2
�#
,

where

� (p) = ln

�
�(p� vL)

(1� �)(vH � p)

�
.

The exponential function being strictly increasing, the inequality above holds i¤�
~q � �qH
1� �

� �q
�2
�
�
~q � �qL
1� �

� �q
�2
� 2�2� (p) .

Using (1), we obtain

�L = Pr [~q 2 B(p) j � = L]

= Pr

"�
"� � (qH � qL)

1� �
� �q
�2
� ("� �q)2 � 2�2� (p)

#

= Pr

�
"� �q � � (qH � qL)

2 (1� �)
+
�2� (p) (1� �)

�(qH � qL)

�
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and

�H = Pr [~q 2 B(p) j � = H]

= Pr

"
("� �q)2 �

�
"+

� (qH � qL)

1� �
� �q
�2
� 2�2� (p)

#

= Pr

�
"� �q � �� (qH � qL)

2 (1� �)
+
�2(1� �)� (p)

�(qH � qL)

�
. (30)

As expected, �H > �L. For any p 2 (vL; vH)\ [wH ;+1), inequality (23) is met whenever
inequality (22) is met. Thus, a necessary and su¢ cient condition for such a price to be a
pooling equilibrium price is

Pr

�
"� �q � � (qH � qL)

2 (1� �)
+
�2(1� �)� (p)

�(qH � qL)

�
� vL � wL

p� wL
,

or, equivalently, (29). End of proof.

We �rst illustrate this result by way of plotting the set of pooling equilibrium prices
associated with di¤erent values of � 2 (0; 1), using the same parameters as in �gure 1
(wL = 0, qL = 1, qH = 3, � = 0:25 and � = 1). For wH � vL, the graph of this equilibrium
correspondence is the area between (and on) the curve and the horizontal line p = vL = 1.
For wH > vL the equilibrium graph is the part of that area where p � wH . We note that
for � > 0:5 and wH � vL, only vL and prices just above that level are pooling prices.
Higher pooling equilibrium prices are hard to maintain when buyers receive relatively
precise quality signals. We also note that the curve�s maximum exceeds �v, the buyer�s
willingness to pay for average quality, and that this maximum is obtained for a positive
� (approximately 0:1), while the highest pooling price at � = 0 is �v. Hence, in our model
pooling equilibrium is possible even when wH > �v, but only if buyers�signal carries some
(and not too much) information about the true quality (� is positive but small). The
reason why such equilibria require buyers�quality signal to have some precision is that
otherwise they would expect all units to be of average quality, and thus would be willing
to pay only �v.
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Figure 2: Combinations of price and signal precision that are consistent with pooling
equilibrium.

Having thus studied a numerical example, we now turn back to the general case. First
note that the set of pooling equilibrium prices, if non-empty, is an interval, and that this
interval has max fvL; wHg as its left end point, while inspection of equation (27) shows
that its right end point is decreasing in �. Thus, the larger the share of �lemons,� the
the lower is the highest pooling price. Secondly, the upper bound on the pooling price
also depends in a systematic way on �, the precision of buyers�quality perception. The
following observation follows from (27) and (29): The set of pooling equilibrium prices
approaches the set

P0 =

�
[max fvL; wHg ; �v] if vL�wL

�v�wL < 1
2

[max fvL; wHg ; �v) if vL�wL
�v�wL � 1

2

(31)

as � ! 0. To see this, note that for p = �v, the left-hand side of the inequality in (29)
approaches the value 1=2 from above. The intuition for this is that consumers are willing
to buy at prices p < �v when the precision of their signal is close to zero, since in the limit
their posterior beliefs are identical with their prior, that is, they expect average quality.
However, at p = �v, they are indi¤erent between buying and not buying when � = 0,
while even an imprecise signal carries some information, and thus, due to the symmetry
of the normal distribution, they will optimally buy only with probability 1=2 in the limit
as �! 0.
Conversely, let buyers�signal precision go to one. First, for all p 2 (vL; vH), '(p) is

continuous in �, and tends to +1 as � approaches 1. Hence, for � su¢ ciently close to
1, any such price p ceases to be a pooling price: with P1 denoting the set of pooling
equilibrium prices in the limit as �! 1, we have

P1 \ (vL; vH) = ?. (32)
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Hence, if wH > vL, then P1 = ?. We have already shown that p = vL is a pooling
equilibrium price for all � 2 (0; 1) if vL � wL, and hence we also have vL 2 P1 in this
case. How do trading probabilities and expected gains of trade depend on buyers�signal
precision � in pooling equilibria? The following equations follow immediately from the
above proof:

�L =

Z +1

'(p)

1p
2�
e�x

2=2dx (33)

and

�H =

Z +1

 (p)

1p
2�
e�x

2=2dx, (34)

where

 (p) = �� (qH � qL)

2 (1� �)�
+

(1� �)�

�(qH � qL)
ln

�
�(p� vL)

(1� �)(vH � p)

�
. (35)

As expected,  (p) < ' (p), and hence �H > �L. Moreover, the logarithmic factor that
appears in the de�ning equations for both '(p) and  (p) is negative for prices below �v,
positive for prices above �v, and equal to zero for p = �v. This allows us to make some
qualitative statements about the e¤ect of changes in � on the integration bounds '(p)
and  (p) and hence on the conditional trading probabilities �L and �H . Suppose, thus,
that p 2 (vL; vH) is a pooling equilibrium price.

1. If p < �v, the logarithm is negative, so '(p) is increasing in �, implying that �L
decreases as � increases. The probability that a buyer will accept a low-quality unit
falls as the precision of his quality signal increases.

2. If p = �v, the logarithm is zero, so '(p) increases in � and  (p) decreases in �,
implying that �L decreases and �H increases as � increases. The probability that a
buyer will accept a low-quality (high-quality) unit falls (increases) as the precision
of his quality signal increases.

3. If p > �v, the logarithm is positive, so  (p) is a decreasing function of �, implying
that �H increases as � increases. The probability that a buyer will accept a high-
quality unit increases as the precision of his quality signal increases.

Equilibrium gains of trade are

W � = � (vL � wL)

Z +1

'(p)

1p
2�
e�x

2=2dx+ (1� �) (vH � wH)

Z +1

 (p)

1p
2�
e�x

2=2dx. (36)

We consider the question whether the conditional trading probability for high quality
units can be higher in a pooling equilibrium than in all separating equilibria. Formally,
we ask whether �H > �� is possible. Note that

�H = Pr

�
"� �q � �� (qH � qL)

2 (1� �)
+

�2(1� �)

�(qH � qL)
� (p)

�
= 1� F

�
�q � � (qH � qL)

2 (1� �)
+

�2(1� �)

�(qH � qL)
� (p)

�
(37)
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Hence, �H � �� if and only if

vH � vL
vH � wL

�
Z '(p)

�1

1p
2�
e�x

2=2dx � p� vL
p� wL

, (38)

where the last inequality is necessary and su¢ cient for p to be a pooling equilibrium price.
But the left-most term is greater than the right-most term for all p < vH , so this is not
possible. Conclude that the conditional trading probability for high quality units cannot
be higher in a pooling equilibrium than in all separating equilibria. Since the conditional
trading probability in the low quality is one in all separating equilibria, and less than one
in all pooling equilibria, this implies the following

Remark 5.3 The expected pro�t in every pooling equilibrium falls short of the maximal
pro�t in separating equilibria.

6 A behavioral re�nement: naïve buyers

The (weak) Bayesian perfect equilibrium concept imposes no restrictions on beliefs o¤ the
equilibrium path. It seems natural to impose such restrictions, but not necessarily the
rationalistic restrictions that have been used in the re�nement literature in the past, but
rather restrictions that seem behaviorally plausible. We here consider one such �behav-
ioral�restriction, namely, that buyers form their posteriors for the quality of the item at
hand on the basis of the prior �, also at non-equilibrium prices. Let us thus call a buyer
naïve if she also o¤ the equilibrium path uses Bayesian updating, given the quality signal,
to determine the expected quality of the item for sale � with no consideration of the
possible motives a seller might have to make such a deviation. Formally, this amounts to
adding the following additional requirement on the belief system:

[B4] At each buyer information set (p; ~q) with p =2 fpL; pHg, � assigns the probability
�L(~q), de�ned in equation (5), to the node (L; "L; p).

We call a tuple (�; (pL; pH); b) satisfying [B1]-[B4] and [S] a naïve perfect Bayesian equilib-
rium. Let us investigate the existence of such naïve equilibria. First, note that conditions
[B1]-[B4] completely determine the belief system �: beliefs at information sets of the seller
are determined by [B1], beliefs at information sets of the buyer on the equilibrium path
are determined by [B2] (if pL 6= pH) and [B3] (if pL = pH), and beliefs o¤ the equilib-
rium path are determined by [B4]. Secondly, since the conditionally expected value (upon
seeing the quality signal) is a convex combination of vL and vH , conditions (8) - (9) and
consequently Lemma 3.1 remain true: the same range of price pairs as before can be ruled
out a priori.
Thirdly, by sequential rationality [S], a buyer necessarily buys the item at price p if

E[v j ~q] > p and is indi¤erent between buying and not buying if E[v j ~q] = p. Hence,
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the expected payo¤ to a seller with a unit of quality � 2 fL;Hg who deviates to a price
p =2 fpL; pHg is at least

(p� w�) Pr[E[v j ~q] > p j �]. (39)

A necessary condition for (�; (pL; pH); b) to be a naïve equilibrium is thus that the in-
equality

��(p� � w�) � (p� w�) Pr[E[v j ~q] > p j �] (40)

holds for all prices p 2 R, signals ~q 2 R, and types � 2 fL;Hg, where �� is the equilibrium
trading probability for type �. Likewise, a su¢ cient condition for (40) to hold is that

��(p� � w�) � (p� w�) Pr[E[v j ~q] � p j �] (41)

for all prices p 2 R, signals ~q 2 R, and types � 2 fL;Hg, where �� is the equilibrium
trading probability for type �.
Under reasonable regularity conditions, these two conditions are identical. To see this,

�rst recall from (20) and (5) that

E[v j ~q] = vH � (vH � vL)�L(~q) (42)

= vH � (vH � vL)
�

�+ (1� �) f ("H) =f ("L)
;

where, by (4),

f ("H) =f ("L) = f

�
~q � �qH
1� �

�
=f

�
~q � �qL
1� �

�
. (43)

In other words, the buyer�s conditional expectation for the quality of the unit at hand,
given the buyer�s quality signal, is a strictly increasing function of the associated likelihood
ratio for high quality. Hence, if the error distribution has the monotone likelihood ratio
property (MLRP), then this conditional expectation is a non-decreasing function of the
signal ~q.
Formally, let

[MLRP] The ratio f (x� a) =f (x) is strictly increasing in x, for all a > 0.16

Under this condition, E[v j ~q] is a strictly increasing function of ~q, mapping the real
line to the interval (qL; qH). Hence, since by hypothesis ~q has a continuous probability
distribution (no atoms), also the random variable E[v j ~q] has a continuous probability
distribution. In particular, the probability that the buyer will be indi¤erent then has zero
probability: Pr [E[v j ~q] = p] = 0 for all prices p 2 R. Consequently, conditions (40) and
(41) are identical.
By the monotone convergence theorem, the limit of E[v j ~q] as ~q ! +1 exists. Let

v̂ = lim
~q!+1

E[v j ~q] (44)

16See Mattsson et al. (2004) for a systematic investigation of this version of the MLRP in the context
of discrete choice.
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A critical property of the error distribution for the existence of naive perfect Bayesian
equilibria, is whether or not v̂ = vH . For in this case the probability is positive that
the buyer will buy at any given price p < vH , namely, if the quality signal is su¢ ciently
strong. If instead v̂ < vH , then the buyer will never buy at a price p 2 [v̂; vH ]; no signal
is strong enough to make the conditionally expected value as high as such a price.
We illustrate these two possibilities by means of two examples.17 First, let " be

normally distributed, N(�q; �2). It is easily veri�ed that this distribution has the MLRP,
and, moreover, that the likelihood ratio in equation (43) tends to plus in�nity as ~q !
+1. Hence, in this case v̂ = vH . Secondly, let " be Gumbel (or doubly exponentially)
distributed:

F (") = exp
�
�e��("��)

�
(45)

for parameters � 2 R and � > 0. Then E ["] = � + =� , where  � 0:577 is Euler�s
constant (see, for instance, Ben-Akiva and Lerman, 1985, p. 104). It is not di¢ cult to
verify that also this distribution has the MLRP. Moreover, the likelihood ratio in equation
(43) tends to exp

�
��
1�� (vH � vL)

�
as ~q ! +1. Hence, in this case

v̂ = vH �
� (vH � vL)

�+ (1� �) exp
�
��
1�� (vH � vL)

� < vH : (46)

We �nally note that v̂ ! vH as the signal precision � tends to 1, and v̂ ! �v as the signal
precision � tends to 0. Figure 3 below shows the graph of ~q 7! E[v j ~q], for vL = 1, vH = 3,
� = 0:25, � = 1, and (from the left to the right) � = 0:1, 0:25, 0:5 and 0:75, respectively.
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Figure 3: The conditionally expected value to the buyer as a function of the buyer�s
quality signal, for di¤erent levels of signal precision.

17See Mattsson et al. (2004) for more on the MLRP and similar calculations.
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6.1 Total adverse selection

In this section we derive necessary and su¢ cient conditions for the existence of naïve
equilibria in which high-quality sellers outprice themselves. Such equilibria do not exist if
noise is normally distributed. However, they do exist if noise is Gumbel distributed and
the buyer�s signal precision � is low.

Proposition 6.1 Suppose � < 1 and that the error distribution satis�es [MLRP]. There
is a naïve perfect Bayesian equilibrium with prices pL = vL and pH > vH if and only if
the following two conditions hold:

vL � wH (47)

Pr[E[v j ~q] > wH j � = H] = 0 (48)

In all such equilibria �L = 1 and �H = 0.

Proof : Necessity of (47) follows as in Proposition 4.1. To prove necessity of (48),
suppose (�; (vL; pH) ; b) is a naïve equilibrium with pL = vL and pH > vH . Condition (9)
implies that �H = 0. Sellers with high-quality units thus obtain zero pro�t. Hence, for
pH > vH to be an equilibrium price, substitution in (40) yields the necessary condition

0 � (p� wH) Pr[E[v j ~q] > p j � = H] 8p 2 R: (49)

The inequality is trivially satis�ed when p � wH , in which case p � wH � 0, and when
p > vH , in which case Pr[E[v j ~q] > p j H] = 0. For prices p 2 (wH ; vH ], the inequality in
(49) is met if and only if

Pr[E[v j ~q] > p j � = H] = 0:

The probability on the left-hand side of this equation is non-increasing in p, so condition
(49) is equivalent with (48).
As for su¢ ciency, assume (47) and (48) hold. Let (�; (pL; pH); b) be such that pL = vL,

pH > vH , let � be the unique belief system satisfying [B1]-[B4] and let b(p; ~q) = 1 if and
only if E[v j ~q] > p. It is easy to verify that (�; (pL; pH); b) is a naïve perfect Bayesian
equilibrium.
The proof of the last claim in the proposition is indentical to that in Proposition 4.1.

End of proof.

Although demanding, condition (48) does not rule out the existence of naïve equilibria
with total adverse selection. This depends on how �thin�the tails of the error distribution
is. More precisely, if noise is normally distributed, then naïve equilibria with total adverse
selection do not exist, while they do exist if noise is Gumbel distributed.

Proposition 6.2 There are no naïve equilibria with prices pL = vL and pH > vH if
� 2 (0; 1) and " � N(�q; �2).
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Proof: Just as in our characterization of pooling equilibria under normal distributed
noise, one obtains

Pr[E[v j ~q] > p j � = H] =

= Pr

�
"� �q > �� (qH � qL)

2 (1� �)
+
�2(1� �)� (wH)

�(qH � qL)

�
> 0;

violating (48). End of proof.

Proposition 6.3 Suppose that " has a Gumbel distribution with expectation �q.18 There
is no naïve perfect Bayesian equilibrium with prices pL = vL and pH > vH if �v � wH . If
�v < wH , such equilibria exist for � 2 (0; 1) su¢ ciently close to 0.

Proof: If wH < vL, no such naïve equilibria exist by condition (47). Hence, we
assume in the remainder of the proof that vL � wH . Condition (48) holds if and only if
E[v j ~q] � wH for all ~q, i.e., if and only if v̂ = lim~q!+1 E[v j ~q] � wH . By (46), v̂ is strictly
increasing in � 2 (0; 1), so this is possible if and only if

�v = lim
�!0

v̂ < wH :

To summarize: condition (48) will be violated if �v � wH , excluding the existence of naïve
equilibria with total adverse selection. On the other hand, if �v < wH , then the fact that
v̂ in (46) is strictly increasing in � guarantees the existence of an interval (0; ��) for which
such equilibria do exist. End of proof.

6.2 Pooling equilibria

By (40), a pooling equilibrium price p� 2 [vL; vH) in a naïve equilibrium should simulta-
neously solve

max
p

(p� wL) Pr[E[v j ~q] > p j � = L] (50)

and
max
p

(p� wH) Pr[E[v j ~q] > p j � = H]: (51)

Since the probabilities of trade are independent of sellers�reservation prices wL and wH ,
this generically rules out all interior prices p� 2 (vL; vH). Indeed, assuming the probabil-
ities in (50) and (51) to be di¤erentiable functions of prices p 2 (vL; vH), as is the case if
noise is normally distributed, the �rst order conditions for such an internal maximum are

8� 2 fL;Hg : w� = p+
Pr[~q 2 B(p) j �]
@
@p
Pr[~q 2 B(p) j �]

: (52)

Since the right-hand side is independent of w�, this generically excludes such internal
solutions.
18Since E["] = � + =� , there are in�nitely many such distributions.
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This leaves us with only one candidate for a pooling equilibrium price: p� = vL. Of
course, this requires that the high-quality seller is willing to sell his product at price vL,
i.e., wH � vL. Yet such equilibria are ruled out if information precision is su¢ ciently large:
in that case, a high-quality seller can rely on the information signal to reveal the high
quality, so that he can bene�t from setting a slightly higher price. But also if information
precision is su¢ ciently small, such equilibria are ruled out: in that case, buyers�expected
quality is close to average market quality �v, so that they are with large probability willing
to buy at all prices p 2 (vL; �v), so that a price slightly above vL increases expected pro�ts.
Formally:

Proposition 6.4 Suppose that " � N(�q; �2) and wH � vL. If � 2 (0; 1) is su¢ ciently
close to one or su¢ ciently close to zero, there is no naïve equilibrium with pooling price
p� = vL.

Proof: At price p� = vL, the pro�t to a high-quality seller equals vL � wH . Fix
p 2 (vL; vH). Just as in our characterization of pooling equilibria under normal distributed
noise, one obtains

Pr[E[v j ~q] > p j � = H] =

= Pr

�
"� �q > �� (qH � qL)

2 (1� �)
+
�2(1� �)� (p)

�(qH � qL)

�
! 1

as �! 1. But then

(p� wH) Pr[E[v j ~q] > p j � = H] > vL � wH

for � su¢ ciently large: the high-quality seller�s expected pro�t from deviating to p is
higher than the pro�t at the pooling price p� = vL. Similarly, as � ! 0, �L(~q) ! � for
all signals ~q, so that for every price p 2 (vL; �v) and � su¢ ciently small:

(p� vH) Pr[E[v j ~q] > p j � = H] > vL � wH .

In other words, the high-quality seller�s expected pro�t from deviating to a price p below
average quality is higher than the pro�t at the pooling price p� = vL. End of proof.

7 Comparison with established models

In order to high-light the di¤erence between the present model and established models of
symmetric and one-sided asymmetric information, we brie�y review the results for the fol-
lowing cases: (i) no signal and monopolistic sellers, (ii) no signal and perfect competition,
(iii) perfect signal and monopolistic sellers, (iv) perfect signal and perfect competition.
Case (i) is closely related to Ellingsen (1997) and Bester and Ritzberger (2001), and case
(ii) is the model in Akerlof (1970), while cases (iii) and (iv) are the classical cases of
symmetric information.
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7.1 Pure noise signal

Set � = 0. In this boundary case, the signal is statistically independent of the current
item�s quality. This is very close to certain established models of one-sided asymmetric
information. Technically, however, there is two-sided asymmetric information even when
� = 0, in the trivial sense that the seller does not know the buyer�s uninformative signal.
The signal thus provides the buyer with a private randomization device on which he or she
can condition the purchasing decision. Hence, the signal e¤ectively allows the buyer to
use certain mixed strategies. In this special case, our model resembles those of Ellingsen
(1997) and Bester and Ritzberger (2001). The di¤erences are that in Ellingsen�s model
(a) the set of feasible prices is �nite, (b) the seller may randomize over these, (c) the gains
of trade are the same for both qualities (in our notation: vL�wL = vH �wH), and (d) he
also analyzes the case of many qualities, distributed over a �nite quality grid with �xed
grid size. Bester and Ritzberger (2001) endow the buyer with the option to inspect the
true quality at a cost, an action that the seller is assumed not to observe. Hence, like
our model, also their model contains a form of two-sided asymmetric information. The
di¤erences are that in that model (a) buyers either have no signal or a perfect signal, (b) it
combines one-sided incomplete information (hidden information) with one-sided imperfect
information (hidden action). The analysis in sections 4 and 5 led to the following three
implications in the special case � = 0:19

1. There exist separating equilibria with total adverse selection if and only if vL � wH .
When this inequality is satis�ed, all price pairs pL = vL, pH > vH are equilibria,
and �L = 1 and �H = 0.

2. There exist separating equilibria with partial adverse selection, such that pL = vL,
pH = vH , �L = 1 and

max

�
0;
vL � wH
vH � wH

�
� �H �

vL � wL
vH � wL

:

3. Pooling equilibria exist if and only if wH � �v. The set of pooling prices is

[maxfvL; wHg; �v] ,

and in (pure strategy) equilibrium �L = �H = 1.

7.2 Very noisy signal

Having examined the equilibrium outcomes when � = 0, now suppose � > 0, and let
� ! 0. In other words, let the signal be almost statistically independent of the item�s
quality. We then have seen that:

19In models where there is no quality signal at all, the natural point of comparison would be to allow
buyers strategies that assign to any posted price a probability of buying at that price; technically, a
behavior strategy. The set of equilibria obtained in this way shares these three properties.
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1. The limit set of separating equilibria with total adverse selection is the same as for
� = 0.

2. The limit set of separating equilibria with partial adverse selection converges to that
for � = 0.

3. All prices satisfying
maxfvL; wHg � p < �v,

are pooling equilibrium prices both when � = 0, and in the limit as �! 0. However,
at p = �v, there are two potential discontinuities, at least if " has a unimodal and
symmetric probability distribution

Discontinuity 1 : If 2vL � wL � �v, then p = �v is not a pooling equilibrium price for �
close to 0.
Discontinuity 2 : If 2vL � wL < �v, and wH < �v, then p = �v is a pooling equilibrium

price for � close to 0, but �L; �H ! 1=2.

7.3 Perfect signal

Let � = 1. In this boundary case, the signal is perfectly informative of product quality.
In our model of monopolistic sellers, there is a unique perfect Bayesian equilibrium (see
section 3.2), and we have

pL = vL, pH = vH and �L = �H = 1.

However, the analysis in sections 4 and 5 shows that the set of equilibria is non-robust at
� = 1.

7.4 Almost perfect signal

For � su¢ ciently close to 1:

1. There exist separating equilibria with

pL = vL, pH > vH

if and only if vL � wH . In these equilibria, �L = 1 and �H = 0. We thus have
Discontinuity 3: No such equilibria exist if � = 1.

2. There exist separating equilibria with8><>:
pL = vL, pH = vH
�L = 1

max
n
0; vL�wH

vH�wH

o
� �H � ��

where �� ! 1 as � ! 1. Discontinuity 4: Equilibria with trade probabilities below
1 are absent when � = 1.
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3. No pooling equilibrium exists in the limit as � ! 1 if wH > vL. Hence, in this
case there is continuity at � = 1. However, if wH � vL, then the set P of pooling
equilibria converges to the singleton fvLg as � ! 1. It is easily veri�ed that �L =
�H ! 1 in the latter case. Discontinuity 5: No pooling equilibria exist if � = 1.

8 Randomized buyer strategies

We did not need mixed or (randomized) behavior strategies in order to establish existence
of equilibria. Therefore, we did not adopt such more complex strategies. A behavior
strategy for the seller is a function that assigns to each �type�� 2 fL;Hg a probability
distribution over R for the price to post. We have not investigated this route. The
interested reader is advised to read Ellingsen (1997) who, in a related model of one-
sided asymmetric information allows for such randomization (over a �nite subset of R).
A behavior strategy for the buyer is a function b : R2 ! [0; 1] that assigns to each
price-quality signal pair (p; ~q) the probability b(p; ~q) 2 [0; 1] that the buyer purchases the
item. Our results remain largely una¤ected if we allow buyers to use such randomized
strategies. Indeed, the equilibrium candidates from remark 3.2 remain unchanged, as are
the separating equilibria with total adverse selection. The analysis for partial adverse
selection changes as follows. Let P� for � 2 fL;Hg denote the probability distribution of
the quality signal ~q conditional on quality q� (for �xed information precision �). It follows
that the probability for trade at price pH equals

�� =

Z
~q

b(vH ; ~q)dP�.

Thus, in line with lemma 4.2, these probabilities in a separating equilibriumwith (pL; pH) =
(vL; vH) must satisfy (

�L � vL�wL
vH�wL

�H � maxf0;vL�wHg
vH�wH

Although randomized buying might increase the equilibrium gains of trade above and
beyond what we found for deterministic threshold strategies, we have not succeeded in
�nding such buyer strategies. Also the analysis of pooling equilibria is a¤ected, but
typically only on a set of probability zero. Recall the de�nition (21) of the acceptance set.
If E [q j ~q] > p, then buying with probability one is the unique best reply at the buyer�s
information set (p; ~q). Conversely, if E [q j ~q] < p, then buying with probability zero is
the unique optimal response at the buyer�s information set (p; ~q). Only in the remaining
case, where E [q j ~q] = p, is the buyer indi¤erent between buying and not buying and thus
may optimally randomize. However, except for degenerate cases, this equality occurs with
probability zero.
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9 Directions for further research

The discussion in the preceding sections concerned a certain extension of the standard
paradigm for asymmetric information in markets by introducing a particular form of two-
sided asymmetric information: one party does not know the quality of the unit for sale but
makes a noisy observation of its quality, and the other party knows the quality but not its
impression on the �rst party. We think there are several interesting directions for further
research on this paradigm, and we also believe that it could potentially be developed to
provide a unifying framework for models of hidden information (adverse selection) and
hidden action (moral hazard).

9.1 Equilibrium selection

Our model allows for multiple equilibria, with distinct outcomes. This raises the question
whether there are natural re�nements or stability conditions that one could or should im-
pose on these equilibria. One basic re�nement is structural consistency (Kreps andWilson
(1982)), that is, to require that the belief in each information set can be derived by Bayes�
law from some strategy pro�le that reaches the information set with positive probability.
Indeed, the belief systems used in our proofs stand this test.20 Another relevant re�ne-
ment is Kreps�and Cho�s (1987) intuitive criterion. Adapted to the present setting, this
would essentially require that if only one seller type � 2 fL;Hg would have an incentive
to deviate to some non-equilibrium price, then the buyer should place unit probability on
that seller type when observing that price. Bester and Ritzberger (2001) show, in their
related model (see above), that a somewhat strengthened version of the intuitive criterion
cuts down their equilibrium set to a singleton. An investigation of the e¤ects of such
re�nements on our equilibrium set would be a natural next step. Related belief-based
re�nements have been applied to di¤erent versions of Spence�s (1973) signalling model,
see Hellwig�s (1987) and Riley�s (2001) surveys. One equilibrium which stands out in
these studies is the so-called Riley equilibrium (Riley (1979)). In that equilibrium, high-
productivity job applicants signal their type by choosing the least costly signal needed to
deter low-productivity workers from sending it. Employers�cut-o¤ signal level for the high
wage o¤er then is minimal among all separating equilibria. This separating equilibrium
Pareto dominates all other separating equilibria in Spence�s model. A number of argu-
ments in favor of the Riley equilibrium have been raised in this literature (see Riley (1979,
2001) and Hellwig (1987)). It would therefore be interesting to investigate the relevance
and power of those arguments in the present context, in particular with respect to our set
of separating equilibria with partial adverse selection. Those equilibria were seen to be
Pareto ranked. One might thus ask whether such arguments would single out the Pareto

20The beliefs of the seller are by [B1] induced by nature�s move, so it remains to check the buyer�s
beliefs at information sets o¤ the equilibrium path. In our proofs (of Propositions 4.3, 4.1, and 5.1) the
buyer assigns probability one to the item being of low quality at information sets (p; ~q) o¤ the equilibrium
path. This is structurally consistent with the following strategy for the seller: set pL = p and pH = p0

for some p0 6= p.
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dominant equilibrium, that is, where buyers�signal cut-o¤ level is minimal. We have to
leave this question for future research.21 Nöldeke and Samuelson (1997) and Jacobsen et
al. (2001) used tools from evolutionary game theory to identify stable long-run outcomes
in game-theoretic versions of Spence�s signalling model. While Nöldeke and Samuelson
found some support also for pooling equilibria, Jacobsen et al. found strong support for
the Riley equilibrium. Likewise, Ania et al. (2002) applied similar tools to Rothschild�s
and Stiglitz�(1976) screening model. It would be interesting to investigate the applica-
bility and power of those tools in the present model. A di¤erent approach that might be
used for equilibrium selection in the present model is that of Maskin and Tirole (1992).
They analyze a class of incomplete-information games, where an informed principal (here
the seller) o¤ers a contract to an uninformed agent (here the buyer), a contract that the
agent may accept or reject. The setting is one of common values, that is, the principal�s
type enters directly into the payo¤ function of the agent � the case in our model, where
the principal�s type is the quality of his unit. Most of Maskin�s and Tirole�s analysis
concerns the case when the agent has no private information. However, they also consider
the case of relevance here, namely, when the agent has some private information (here, the
quality signal). Maskin and Tirole characterize the allocations that result under perfect
Bayesian equilibrium and identify a necessary and su¢ cient condition for their game to
have a unique such equilibrium. We would like to investigate the applicability and power
of their methods in the present setting � yet another topic for further research.

9.2 Generalizations

Having discussed potential approaches to equilibrium selection, we �nally turn to po-
tential generalizations of the model. One natural extension would be to allow for more
than two quality levels. In the equilibria analyzed in this paper, buyers condition their
purchasing decisions on the posted price and the quality signal. In separating equilibria,
they buy at the high price only if the quality signal is good enough, and in pooling equi-
libria they likewise buy at the common price only if the quality signal is good enough.
Sellers know this, and, knowing the quality of their own product, take the corresponding
conditional buying probabilities into account in their pricing decisions. This logic does
not hinge on the assumption that there are only two quality levels. We believe that most
of the analysis � most likely at the cost of increased complexity � can be generalized
to an arbitrary �nite number of qualities. Another relevant extension would be to allow
for a heterogeneous population of buyers, for instance by letting their valuations of the
qualities di¤er (see also footnote 3).22 Such heterogeneity would add to the uncertainty
that the seller has about the buyer: on top of not knowing the buyer�s quality signal, the

21It should be noted, however, that although we identify a whole set of separating equilibria in which
high quality goods are traded with positive probability, there may exist other separating equilibria where
trade in high-quality items occurs with an even higher probability, equilibria which thus would Pareto
dominate our equilibria, and which may be robust.
22Alternatively, as in Bester and Ritzberger (2001), one may let buyers have di¤erent reservation values

for not buying (here set equal to zero for all consumers).
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seller would then be uncertain also about the buyer�s valuation. This could be modelled
by way of introducing a probability distribution for buyers�valuations of each quality.
Assuming that the seller knows these distributions, it should be straight-forward to gen-
eralize the current analysis accordingly. If these value distributions are continuous, the
nature of separating equilibria would change from holding all buyers indi¤erent between
buying and not buying (as in the present version), to making them have strict prefer-
ences: with probability one the buyer�s valuation will then di¤er from the posted price.
There are numerous other natural sources of buyer heterogeneity, such as di¤erences in
signal precision; some buyers are more knowledgeable than others about the product in
question. This could be modelled by letting the buyer�s signal precision � be drawn
from some probability distribution (known by the seller). Other directions for generaliza-
tion would be to let the seller in�uence the quality of his product, thereby allowing for
analyses of monopolists�incentives to enhance quality. This could be done by letting the
seller choose the probability distribution over qualities. For example, suppose that in the
present model the seller could choose �, the probability that the product will be of low
quality, and suppose that a low � would be more costly than a high. If this choice were
observed by the buyer, then such an extension should be straight-forward � the model
would remain a pure adverse-selection model. By contrast, if the buyer could not observe
the seller�s choice of �, the resulting model would also contain a moral hazard element.
Likewise, it could be interesting to model situations in which the seller could in�uence �,
the precision of the buyer�s signal. Clearly, a seller with a high-quality unit could have an
incentive to increase �. The present simple model seems to lend itself to a wide variety of
such generalizations. In a similar vein, it would seem natural to allow buyers to in�uence
their signal precision, that is, learn about the product in question before they go to the
market, thereby increasing their signal precision. The buyer would then have to trade
o¤ the cost or disutility associated with such learning against its expected bene�t for the
subsequent purchasing decision (see Mattsson et al. (2004) for an analysis of such decision
problems).
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