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randomization to Nash equilibrium.

JEL classi�cation: C72

Keywords: quantal response equilibrium, t-solutions, linear probability model, bounded

rationality

SSE/EFI Working Paper Series in Economics and Finance, No. 542

October 2003, this version: December 2004

�I thank Jacob Goeree, Eric van Damme, Jörgen Weibull, Tore Ellingsen, Jan Potters, Dolf Talman,

Jean-Jacques Herings, Peter Borm, Andrés Perea, Ronald Peeters, and several seminar audiences for

helpful comments.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/7097752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

The literature on quantal response equilibria (QRE) provides a set of solution concepts for

boundedly rational players in noncooperative games by replacing expected utility maxi-

mization with probabilistic choice models. In these probabilistic choice models, players

may choose suboptimal strategies, but at least play �better�responses with probabilities

not lower than �worse�responses. The QRE studied in most detail use the logit choice

model, well-known from pioneering contributions of Nobel laureate McFadden (1974) and

formulated in a game-theoretic framework by McKelvey and Palfrey (1995). Numerous

experimental studies (cf. Camerer, 2003, Goeree and Holt, 2001) indicate that QRE have

substantial descriptive power.

The current paper focuses on one of the earliest contributions � if not the earliest

contribution � to the literature on QRE: the t-solutions of Rosenthal (1989). Instead of

using the logit choice model, it is based on the linear probability model (cf. Ben-Akiva and

Lerman, 1985, Section 4.2), where choice probabilities are essentially linear in expected

payo¤ di¤erences: there is a parameter t � 0 (hence the nomenclature �t-solutions�) such
that the di¤erence between the probabilities with which a player chooses any pair of pure

strategies is equal to t times their expected payo¤ di¤erence. Since probability di¤erences

are bounded in absolute value by one, this is impossible for large values of t, so the actual

de�nition, provided and discussed in Section 2, requires a slight modi�cation.

The main results are the following.

� The determination of a player�s choice probabilities given mixed strategies of the
others is related to the computation of leveling taxes in taxation problems (Young,

1987) or � equivalently � the constrained equal losses solution in bankruptcy

problems (Aumann and Maschler, 1985). This perhaps surprising connection is

discussed in Section 3.

� Theorem 4.2 generalizes an unproven statement in Rosenthal (1989, p. 292) about

the connection between t-solutions and equilibria of games with control costs: the

set of t-solutions equals the set of Nash equilibria of a game with quadratic control

costs. This provides a microeconomic foundation for the probabilistic choice model
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as rational behavior for decision makers who have to make some e¤ort (incur costs)

to implement their strategic choices. A similar derivation of logit QRE using an

entropic control cost function is provided in Mattsson and Weibull (2002).

� As a consequence of these results, we obtain two proofs (Remarks 3.4 and 4.1) of
the existence of t-solutions; a matter of interest, because Rosenthal�s proof is not

entirely correct (see Remark 2.3). The proofs use distinct economically relevant

notions: taxation and control costs. Therefore, we believe it is of interest to provide

both proof methods.

� Evaluating the set of t-solutions for increasing values of t, one �nds (Theorem 5.1)

that players become increasingly capable of iteratively eliminating never-best replies

(in particular strictly dominated actions) and that players eventually only choose

rationalizable actions with positive probability. These properties discern the linear

probability QRE from the logit QRE, where all actions are chosen with strictly

positive probability.

� Theorem 5.2 indicates that there is a continuous way to walk from low-rationality

t-solutions to Nash equilibrium behavior as t approaches in�nity: there is a path of

t-solutions linking uniform randomization at t = 0 to Nash equilibrium behavior in

the limit as t!1.

Concluding remarks are provided in Section 6.

2 Notation and preliminaries

A (�nite strategic) game is a tuple G = hN; (Ai)i2N ; (ui)i2Ni, where N is a nonempty,

�nite set of players, each player i 2 N has a nonempty, �nite set of pure strategies (or

actions) Ai and payo¤/utility function ui : �j2N Aj ! R.

For i 2 N , A�i = �j2NnfigAj denotes the set of pure strategy pro�les of the remaining
players. Payo¤s are extended to mixed strategies in the usual way. The set of mixed

strategies of player i 2 N is denoted by

�(Ai) = f�i : Ai ! R+ j
X
ai2Ai

�i(ai) = 1g:
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The mixed strategy space of G is denoted by � = �i2N�(Ai). As usual, (�i; ��i) is the
pro�le of mixed strategies where player i 2 N plays �i 2 �(Ai) and his opponents play
according to the strategy pro�le ��i = (�j)j2Nnfig 2 �j2Nnfig�(Aj). The set of Nash
equilibria of the game G is denoted by

NE(G) = f� 2 � j 8i 2 N : ui(�) = max
�i2�(Ai)

ui(�i; ��i)g:

Rosenthal�s linear probability QRE are de�ned as follows:

De�nition 2.1 (Rosenthal, 1989, p. 276) Let G = hN; (Ai)i2N ; (ui)i2Ni be a game
and let t 2 [0;1). A strategy pro�le � 2 � is a t-solution of G if for each player i 2 N
and all ai; aj 2 Ai:

�i(ai) > 0) �i(ai)� �i(aj) � t(ui(ai; ��i)� ui(aj; ��i)):

The set of t-solutions of G is denoted by S(t; G) � �, or, if no confusion arises, by S(t).
/

Some comments on Rosenthal�s de�nition: Let t 2 [0;1), let � 2 � be a t-solution of G

and let ai; aj 2 Ai be two pure strategies of player i 2 N . Notice:

� If ui(ai; ��i) � ui(aj; ��i), then �i(ai) � �i(aj). This is clear if �i(aj) = 0. If

�i(aj) > 0, it follows from the de�nition of a t-solution:

�i(aj)� �i(ai) � t(ui(aj; ��i)� ui(ai; ��i)) � 0:

The last inequality holds because t � 0 and ui(ai; ��i) � ui(aj; ��i). This means in
particular that a player in a t-solution chooses pure strategies having equal expected

payo¤ with equal probability and that the probabilities are weakly increasing with

expected payo¤s: as stated in the introduction, �better�responses are chosen with

a probability not less than �worse�responses.

� If both ai and aj are chosen with positive probability (�i(ai) > 0 and �i(aj) > 0),
then De�nition 2.1 implies that

�i(ai)� �i(aj) � t(ui(ai; ��i)� ui(aj; ��i))
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and

�i(aj)� �i(ai) � t(ui(aj; ��i)� ui(ai; ��i));

so

�i(ai)� �i(aj) = t(ui(ai; ��i)� ui(aj; ��i));

the di¤erence in the probabilities is linear in the expected payo¤ di¤erence. Since

probability di¤erences are bounded in absolute value by one, this linearity require-

ment is infeasible for large values of t, motivating Rosenthal�s use of a weak in-

equality in De�nition 2.1: linearity holds if both actions are chosen with positive

probability, but � in accordance with the previous point � actions with low ex-

pected payo¤ are chosen with probability zero.

� For t = 0, the unique t-solution is the mixed strategy combination in which each

i 2 N chooses all pure strategies with equal probability 1= j Ai j.

� Since t-solutions are de�ned in terms of expected payo¤ di¤erences, adding a con-
stant to each payo¤ function does not a¤ect the set of t-solutions. This allows us,

for instance, to assume without loss of generality that payo¤s are nonnegative, as is

done in Theorem 3.2 and Remark 3.3.

These properties are used often in the remainder of the text. In addition to many exam-

ples, Rosenthal (1989) provides the following results:

Proposition 2.2 Let G = hN; (Ai)i2N ; (ui)i2Ni be a game.

(a) Existence: For each t 2 [0;1), S(t) 6= ;.

(b) Upper semicontinuity: The t-solution correspondence S : [0;1)� � is upper semi-

continuous.

(c) Convergence to Nash equilibrium: Let (tn)n2N be an increasing, unbounded sequence

in [0;1) and let �n 2 S(tn) for all n 2 N. If �n ! �, then � is a Nash equilibrium

of G.
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Intuitively, the parameter t is an indication of rationality: at t = 0, players disregard

payo¤s and randomize uniformly over their pure strategies, while t-solutions approximate

Nash equilibrium behavior for large values of t. This intuition is made more precise in

Section 5, where we show that (i) higher values of t correspond with higher levels of

iterated elimination of never-best replies and (ii) there is a path of t-solutions linking

uniform randomization at t = 0 to Nash equilibrium behavior as t goes to in�nity.

Remark 2.3 The existence proof of Rosenthal (1989, p. 288) is not entirely correct: he

provides an algorithm to de�ne a function from and to the mixed strategy space of the

game. The interested reader may check that the claim that this algorithm stops after

�nitely many steps is not correct: the algorithm may cycle. Indeed, it does so in the

simple 2� 1 bimatrix game with payo¤ matrices:24 1; 1
1; 1

35
The result, however, remains true. Two di¤erent existence proofs will be provided, both

having economic appeal: the �rst is related to taxation (Remark 3.4), the second to

control costs (Remark 4.1). /

3 t-Solutions and leveling tax

There is an extensive economic/game-theoretic literature on taxation and bankruptcy

problems; the reader is referred to Thomson (2003) for a recent survey and Young (1987)

and Aumann and Maschler (1985) for pathbreaking studies. In a taxation problem

(Young, 1987), a tax T � 0 has to be paid by drawing from the gross income xi � 0

of individuals i = 1; : : : ; n, where T �
Pn

i=1 xi: the tax is feasible. A well-known taxation

rule is the socalled leveling tax: in a taxation problem with tax T and income vector

x 2 Rn+, each i pays a tax de�ned by

maxf0; xi � �g;

where � � 0 is such that
Pn

i=1maxf0; xi � �g = T . Similarly, in a bankruptcy problem
(Aumann and Maschler, 1985), an estate E � 0 is to be divided among n 2 N claimants
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with claims c1; : : : ; cn � 0, where E �
Pn

i=1 ci. The constrained equal losses rule in

a bankruptcy problem with estate E and claims vector c 2 Rn+ assigns to claimant i an
amount

maxf0; ci � �g;

where � � 0 is such that
Pn

i=1maxf0; ci � �g = E.
Determination of the choice probabilities in t-solutions is closely related to the compu-

tation of leveling taxes in taxation problems or � equivalently � constrained equal losses

rules in bankruptcy problems. Theorem 3.1 indicates that t-solutions are �xed points of

a certain function. In Theorem 3.2, this function is related to the leveling tax rule.

Theorem 3.1 Let G = hN; (Ai)i2N ; (ui)i2Ni be a game.

(a) For each � 2 �; t 2 [0;1), and i 2 N , there is a unique �i(t; �) > 0 such thatX
ai2Ai

max

�
0; �i(t; �)� t

�
max
ak2Ai

ui(ak; ��i)� ui(ai; ��i)
��

= 1:

(b) For each � 2 �; t 2 [0;1), let �(t; �) 2 � be the strategy pro�le de�ned for each

i 2 N and ai 2 Ai by

� i(t; �)(ai) = max

�
0; �i(t; �)� t

�
max
ak2Ai

ui(ak; ��i)� ui(ai; ��i)
��

: (1)

Then � 2 � is a t-solution if and only if �(t; �) = �.

Proof.

(a) Let � 2 �; t 2 [0;1), and i 2 N . The function T : [0;1) ! [0;1) de�ned for each
� 2 [0;1) by

T (�) =
X
ai2Ai

max

�
0; �� t

�
max
ak2Ai

ui(ak; ��i)� ui(ai; ��i)
��

is the composition of continuous functions, hence continuous. Since

max

�
0; �� t

�
max
ak2Ai

ui(ak; ��i)� ui(ai; ��i)
��

= �

if ai is a best response to ��i, i.e., if ui(ai; ��i) = maxak2Ai ui(ak; ��i), the function

T is strictly increasing. Moreover, T (0) = 0 and T (�) ! 1 as � ! 1. By the
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intermediate value theorem there exists a �i(t; �) > 0 with T (�i(t; �)) = 1. Since T is

strictly increasing, this number is unique.

(b) The strategy pro�le �(t; �) is well-de�ned by the above. If �(t; �) = �, then � 2 S(t):
for each i 2 N and ai; aj 2 Ai, if �i(ai) > 0, then

�i(ai)� �i(aj) = � i(t; �)(ai)� � i(t; �)(aj)

= �i(t; �)� t
�
max
ak2Ai

ui(ak; ��i)� ui(ai; ��i)
�

� max

�
0; �i(t; �)� t

�
max
ak2Ai

ui(ak; ��i)� ui(aj; ��i)
��

� �i(t; �)� t
�
max
ak2Ai

ui(ak; ��i)� ui(ai; ��i)
�

�
�
�i(t; �)� t

�
max
ak2Ai

ui(ak; ��i)� ui(aj; ��i)
��

= t(ui(ai; ��i)� ui(aj; ��i));

in correspondence with De�nition 2.1.

Conversely, let � 2 S(t). We know that player i chooses all best responses to ��i with
equal, positive probability, say �i > 0. Fix a best response aj 2 Ai against ��i:

ui(aj; ��i) = max
ak2Ai

ui(ak; ��i) and �i(aj) = �i > 0: (2)

Let ai 2 Ai.

� If �i(ai) > 0, then by de�nition of a t-solution and (2):

�i(aj)� �i(ai) = �i � �i(ai) = t(ui(aj; ��i)� ui(ai; ��i));

which together with �i(ai) > 0 and (2) yields

�i(ai) = max

�
0; �i � t

�
max
ak2Ai

ui(ak; ��i)� ui(ai; ��i)
��

:

� If �i(ai) = 0, then by de�nition of a t-solution:

0 = �i(ai)

� �i(aj)� t(ui(aj; ��i)� ui(ai; ��i))

= �i � t
�
max
ak2Ai

ui(ak; ��i)� ui(ai; ��i)
�
;
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so

�i(ai) = max

�
0; �i � t

�
max
ak2Ai

ui(ak; ��i)� ui(ai; ��i)
��

:

Hence for all ai 2 Ai:

�i(ai) = max

�
0; �i � t

�
max
ak2Ai

ui(ak; ��i)� ui(ai; ��i)
��

and
P

ai2Ai �i(ai) = 1, which given (a) implies that �i = �i(t; �). Conclude that

�i(ai) = � i(t; �)(ai), showing that � = �(t; �). �

The fact that every � 2 S(t) is a �xed point of the function �(t; �) : �! � allows a nice,

perhaps somewhat surprising link to the literature on taxation and bankruptcy problems:

Theorem 3.2 Let G = hN; (Ai)i2N ; (ui)i2Ni be a game, � 2 �, and t 2 (0;1). For each
i 2 N , assume without loss of generality that

ui � 0 and
X
ai2Ai

tui(ai; ��i) � 1:

The strategy � i(t; �) 2 �(Ai) of player i 2 N coincides with the vector of leveling taxes

of the taxation problem with tax T = 1 and gross income vector (tui(ai; ��i))ai2Ai 2 R
jAij
+ .

Proof. By assumption, the gross income vector is nonnegative and its coordinates add

up to at least T = 1, so the taxation problem is well-de�ned. The leveling tax rule in this

problem associates with every gross income tui(ai; ��i) a tax equal tomaxf0; tui(ai; ��i)�
�g, where � � 0 is such that

P
ai2Ai maxf0; tui(ai; ��i) � �g = 1. Notice from (1) that

for each ai 2 Ai:

� i(t; �)(ai) = max

�
0; tui(ai; ��i)� t max

ak2Ai
ui(ak; ��i) + �i(t; �)

�
: (3)

Since
P

ai2Ai � i(t; �)(ai) = 1 �
P

ai2Ai tui(ai; ��i) by assumption, it follows from tui(ai; ��i) �
0 for all ai 2 Ai and (3) that the number � := tmaxak2Ai ui(ak; ��i)� �i(t; �) is nonneg-
ative. Rewriting (3) yields

� i(t; �)(ai) = maxf0; tui(ai; ��i)� �g;

where � � 0 is such that
P

ai2Ai � i(t; �)(ai) =
P

ai2Ai maxf0; tui(ai; ��i)� �g = 1, show-
ing that � i(t; �) is indeed the stated vector of leveling taxes. �
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Remark 3.3 Similarly: let G = hN; (Ai)i2N ; (ui)i2Ni be a game, t 2 [0;1), and � 2 �.
Assume without loss of generality that ui � 0 for all i 2 N . The strategy � i(t; �) of player
i 2 N coincides with the vector of leveling taxes of the taxation problem with tax T = 1

and gross income vector (ui(ai; ��i) + 1)ai2Ai 2 R
jAij
+ . /

The relations between our probabilistic choice model and the computation of leveling

taxes/constrained equal losses in the theorem and remark above are more than just a

mathematical curiosity. The problems are related in a very intuitive way that is perhaps

most explicit in terms of the bankruptcy problem: in QRE, each player divides a prob-

ability mass (estate) of one over his pure strategies, where pure strategies with higher

expected payo¤s exert a higher claim, re�ecting the intuition that �better�responses are

chosen with a probability not lower than �worse�responses.

Remark 3.4 Using the connection in Theorem 3.2 and Remark 3.3 with leveling taxes,

which are continuous in the gross income vector (Young, 1987, Thomson, 2003) and the

continuity of the gross income vector in t and �, it follows that the function � : [0;1)�
�! � de�ned in Theorem 3.1 is continuous. By Brouwer�s �xed point theorem, for every

t 2 [0;1) there is an � 2 � with �(t; �) = �, so S(t) 6= ;, proving Proposition 2.2(a).
We also �nd an alternative proof of upper semicontinuity of the t-solution correspondence

S, since its graph

graph(S) = f(t; �) 2 [0;1)�� : � 2 S(t)g

= f(t; �) 2 [0;1)�� : �(t; �) = �g

= f(t; �) 2 [0;1)�� : �(t; �)� � = 0g

is the pre-image of the closed set f0g under the continuous function (t; �) 7! �(t; �)� �,
hence closed. /

4 Control costs

Rosenthal (1989, p. 292) states1 � without proof � that �every t-solution is a special

case of an equilibrium of a game with control costs�, i.e., if a strategy pro�le is a t-solution,
1He credits the result to Eric van Damme. The result has, to my knowledge, corroborated by Eric

van Damme and Jacob Goeree, not appeared in print.
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it is also a Nash equilibrium of a game with suitably chosen control-cost function (see Van

Damme, 1991, Ch. 4, for a detailed discussion of the control cost approach to equilibrium

re�nements). This section makes Rosenthal�s statement more precise and also proves the

converse: a strategy pro�le is a t-solution if and only if it is a Nash equilibrium of a game

with quadratic control costs.

Recall that for t = 0, the unique t-solution is the strategy pro�le in which each player

randomizes uniformly over his pure strategies. Next, �x t 2 (0;1). Suppose that in order
to implement a mixed strategy �i 2 �(Ai), player i 2 N incurs a control cost equal to

1

2t

X
ai2Ai

(�i(ai)� 1= j Ai j)2:

This means that strategies further away in terms of Euclidean distance from the equiprob-

able mixture (1= j Ai j; : : : ; 1= j Ai j) incur larger costs and the parameter t is a scaling
parameter. This transforms the payo¤ function of player i 2 N to

� 7! ui(�)�
1

2t

X
ai2Ai

(�i(ai)� 1= j Ai j)2: (4)

Remark 4.1 Due to the concavity of this payo¤ function in player i�s own strategy, a

direct application of Kakutani�s �xed point theorem to the best-response correspondences

in the game with control costs gives that this game has a Nash equilibrium (Glicksberg,

1952). The following theorem shows that the nonempty set of Nash equilibria of the

control-cost game coincides with the set of t-solutions S(t; G), yielding a second proof of

the existence of t-solutions (Prop. 2.2(a)). /

Theorem 4.2 Let G = hN; (Ai)i2N ; (ui)i2Ni be a game and let t 2 (0;1). A strategy

pro�le �� 2 � is a t-solution of G if and only if it is a Nash equilibrium of the game with

control costs with payo¤s as in (4).

Proof. By de�nition, �� 2 � is a Nash equilibrium of the control cost game if and only

if for every i 2 N , ��i 2 �(Ai) is a best response to ���i, i.e., ��i solves

[P ]

8>>>>><>>>>>:
max ui(�i; �

�
�i)� 1

2t

P
ai2Ai(�i(ai)� 1= j Ai j)

2

s.t. 8ai 2 Ai : �i(ai) � 0;P
ai2Ai �i(ai) = 1:
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This is a concave quadratic optimization problem with linear constraints, so the Karush-

Kuhn-Tucker conditions are necessary and su¢ cient for a maximum: ��i 2 �(Ai) solves
[P] if and only if there exist Lagrange multipliers �(ai) � 0 associated with the inequality
constraints �i(ai) � 0 and � 2 R associated with the equality constraint

P
ai2Ai �i(ai) = 1

such that for each ai 2 Ai:

ui(ai; �
�
�i)�

1

t
(��i (ai)� 1= j Ai j) + �(ai)� � = 0; (5)

�(ai)�
�
i (ai) = 0: (6)

Condition (5) is the �rst order condition obtained from di¤erentiating the Lagrange func-

tion

(�i; (�(ai))ai2Ai ; �) 7! ui(�i; �
�
�i)�

1

2t

X
ai2Ai

(�i(ai)� 1= j Ai j)2

+
X
ai2Ai

�(ai)�i(ai) + �(1�
X
ai2Ai

�i(ai))

with respect to �i(ai) and condition (6) is the complementary slackness condition. So two

things remain to be shown:

Step 1: If for each i 2 N there exist Lagrange multipliers �(ai) � 0 for each ai 2 Ai and
� 2 R such that (5) and (6) hold, then �� is a t-solution.
Indeed, assume such Lagrange multipliers exist. Let i 2 N and ai; aj 2 Ai. If ��i (ai) >

0, then �(ai) = 0 by (6). Equating the �rst order conditions in (5) for ai and aj and

substituting �(ai) = 0, we �nd

��i (ai)� ��i (aj) = t(ui(ai; ���i)� ui(aj; ���i))� t�(aj) � t(ui(ai; ���i)� ui(aj; ���i));

where the inequality follows from t > 0 and �(aj) � 0. By De�nition 2.1, �� is a t-solution.

Step 2: If �� 2 � is a t-solution, there exist, for each player i 2 N , Lagrange multipliers
�(ai) � 0 for each ai 2 Ai and � 2 R such that (5) and (6) hold.
Let �� 2 S(t; G) and i 2 N . Choose aj 2 Ai with ��i (aj) > 0 and de�ne

� = ui(aj; �
�
�i)�

1

t
(��i (aj)� 1= j Ai j) 2 R: (7)

Then � is unambiguously de�ned: for all ai; aj 2 Ai, if both ��i (ai) > 0 and ��i (aj) > 0,
we know by de�nition of a t-solution that

��i (ai)� ��i (aj) = t(ui(ai; ���i)� ui(aj; ���i));
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so

ui(ai; �
�
�i)�

1

t
(��i (ai)� 1= j Ai j) = ui(aj; ���i)�

1

t
(��i (aj)� 1= j Ai j) = �: (8)

For each ai 2 Ai, de�ne

�(ai) =

8<: 0 if ��i (ai) > 0;
1
t
(��i (ai)� 1= j Ai j)� ui(ai; ���i) + � if ��i (ai) = 0:

(9)

For each ai 2 Ai, the complementary slackness condition (6) follows from (9). Also the

�rst order condition (5) is satis�ed: simply discern between ai 2 Ai with ��i (ai) = 0 and
��i (ai) > 0 and substitute (8) and (9). It remains to show that the Lagrange multiplier

�(ai) is nonnegative if ��i (ai) = 0. So assume ��i (ai) = 0. Choose aj 2 Ai such that
��i (aj) > 0. By de�nition of a t-solution:

��i (aj)� ��i (ai) � t(ui(aj; ���i)� ui(ai; ���i)): (10)

Substituting (7) in (9) and using (10) yields

�(ai) =
1

t
(��i (ai)� 1= j Ai j)� ui(ai; ���i)

� 1

t
(��i (aj)� 1= j Ai j) + ui(aj; ���i)

= (ui(aj; �
�
�i)� ui(ai; ���i))�

1

t
(��i (aj)� ��i (ai))

� 0:

This proves the existence of the desired Lagrange multipliers. �

Theorem 4.2 indicates a close relation with Mattsson and Weibull (2002) who prove that

logit QRE coincide with the Nash equilibria of a game with control costs of the relative-

entropy form.

5 Towards rational behavior

The parameter t essentially measures rationality: at t = 0, players disregard payo¤s

and choose by uniformly randomizing over their pure strategies, while for t ! 1 the

13



solutions converge to Nash equilibrium (Prop. 2.2(c)). We show in Theorem 5.1 that �

along the way � players become increasingly capable of iteratively eliminating never-best

replies (in particular strictly dominated actions) and that player eventually only choose

rationalizable actions with positive probability. This distinguishes the QRE based on the

linear probability model from the logit QRE: probabilities in the logit QRE are strictly

positive, since the exponential function takes values in (0;1). Hence the logit QRE
cannot properly explain behavior where certain actions are played with zero probability,

except in the limiting case of full rationality, where the logit QRE select Nash equilibria

(McKelvey and Palfrey, 1995, Thm. 2).

Subsection 5.2 shows that there is a continuous link of t-solutions connecting low-

rationality behavior starting with uniform randomization to Nash equilibrium behavior

as t approaches in�nity.

5.1. Iterated elimination and rationalizability

Recall that an action aj 2 Ai of player i 2 N is a never-best reply if, regardless of

the behavior of the remaining players, there is always an action of i that is better than

aj: maxbi2Ai ui(bi; ��i) � ui(aj; ��i) > 0 for all ��i 2 �j2Nnfig�(Aj). The next result
indicates that for su¢ ciently large values of t, never-best replies are played with zero

probability in a t-solution. Extending this result implies that for ever larger values of t,

the players are capable of successively eliminating higher levels of never-best replies and

that eventually the only actions that are chosen with positive probability in a t-solution

must be rationalizable:

Theorem 5.1 Let G = hN; (Ai)i2N ; (ui)i2Ni be a game.

(a) Let i 2 N and aj 2 Ai. If aj is a never-best reply, then there is a T 2 (0;1) such
that for all t � T and all � 2 S(t), �i(aj) = 0.

(b) Inductively, let G1 = G and for all n 2 N, let Gn+1 be the game obtained from Gn

by deleting its never-best replies. There is an increasing sequence (Tn)n2N in (0;1)
such that for all n 2 N and all t � Tn: if player i�s action aj is a never-best reply
in Gn, then for all � 2 S(t); �i(aj) = 0.

14



(c) For t 2 (0;1) su¢ ciently large, all actions chosen with positive probability in a
t-solution are rationalizable.

Proof. (a): If aj is a never-best reply of i 2 N , it follows by continuity of the function

��i 7! maxbi2Ai ui(bi; ��i)� ui(aj; ��i) and compactness of �j2Nnfig�(Aj) that

"(i; aj) := min
��i2�j2Nnfig�(Aj)

�
max
bi2Ai

ui(bi; ��i)� ui(aj; ��i)
�
> 0 (11)

and T = 2="(i; aj) > 0 are well-de�ned. Then for all t � T and all � 2 S(t); �i(aj) = 0.
Suppose, to the contrary, that for some t � T and � 2 S(t); �i(aj) > 0. Let ai 2 Ai be
a best reply to ��i. Since aj is a never-best reply and choice probabilities in a t-solution

are weakly increasing in expected payo¤s:

ui(ai; ��i)� ui(aj; ��i) = max
bi2Ai

ui(bi; ��i)� ui(aj; ��i) � "(i; aj) and �i(ai) > 0:

By de�nition of a t-solution:

�i(ai)� �i(aj) = t(ui(ai; ��i)� ui(aj; ��i))

� t"(i; aj)

� T"(i; aj)

= 2; (12)

which is impossible, since �i(ai) and �i(aj) are probabilities.

(b): We prove that for t 2 (0;1) su¢ ciently large, the set of t-solutions of G = G1

coincides � up to zero probability assigned to omitted actions � with the set of t-

solutions of the game G2 obtained from G = G1 by eliminating its never-best replies.

Since the game G is arbitrary, repeated application of this result to G2; G3; : : : implies

that consecutively increasing the parameter t makes the players capable of more and more

steps of iterative elimination of never-best replies, proving (b).

To avoid trivialities, assume some player has a never-best reply. For each i 2 N and

each never-best reply aj 2 Ai, de�ne "(i; aj) as in (11). Let " = minf"(i; aj)g > 0 be the
minimum of these numbers and T = 2=" > 0.

Let t � T and � 2 S(t; G1). Since never-best replies in � are chosen with probability
zero by (a), it follows that � (after omitting zero coordinates associated with never-best
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replies) also is an element of S(t; G2). The converse is a bit harder. Let � 2 S(t; G2).
With a minor abuse of notation, we consider � to be a mixed strategy in the original

game G = G1 by assigning probability zero to the remaining actions. We prove that

� 2 S(t; G1). It su¢ ces to show for arbitrary i 2 N; ai 2 Ai, and never-best reply

aj 2 Ai: if �i(ai) > 0, then

�i(ai) = �i(ai)� �i(aj) � t(ui(ai; ��i)� ui(aj; ��i)): (13)

The remaining conditions for a t-solution in G1 are automatically satis�ed, since � 2
S(t; G2) and never-best replies in G1 are assigned probability zero.

First, assume that ai is a best reply to ��i. Then �i(ai) > 0 and, similar to (12):

t(ui(ai; ��i)� ui(aj; ��i)) � 2: (14)

Since �i(ai) = �i(ai)��i(aj) 2 (0; 1], this proves (13). Finally, consider any other bi 2 Ai
with �i(bi) > 0. By de�nition of a t-solution:

�i(bi)� �i(ai) = t(ui(bi; ��i)� ui(ai; ��i)) (15)

To see that

�i(bi) = �i(bi)� �i(aj) � t(ui(bi; ��i)� ui(aj; ��i));

notice that

t(ui(bi; ��i)� ui(aj; ��i)) = t(ui(ai; ��i)� ui(aj; ��i))

+ t(ui(bi; ��i)� ui(ai; ��i))

� 2 + �i(bi)� �i(ai)

� �i(bi);

where the �rst inequality follows from (14) and (15).

(c): Iterated elimination of never-best replies requires at most
P

i2N(jAij � 1) rounds,
so, by (b), for su¢ ciently large t only actions that survive this process are played with

positive probability in a t-solution. By Bernheim (1984, p. 1025), these are exactly the

rationalizable ones. �
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Not all rationalizable actions are necessarily played with positive probability in t-solutions

for large values of t. Possibly the simplest example is the 2� 2 bimatrix game below.

L R

T 1; 1 0; 0

B 0; 0 0; 0

Since T and L are weakly dominant strategies, it follows that �1(T ) � �1(B) and �2(L) �
�2(R) for all t-solutions � 2 �. Indeed, simple calculations indicate that S(t) consists
of the single vector � 2 � where �1(T ) = �2(L) = 1=(2 � t) if t 2 [0; 1) and �1(T ) =
�2(L) = 1 otherwise. Conclude that for large values of t, only T and L have positive

support, although both B and R are rationalizable: (B;R) is even a Nash equilibrium.

A stronger statement2 than Theorem 5.1, namely that only actions with positive sup-

port in a Nash equilibrium will be part of a t-solution for large values of t, is not correct.

Consider the 2� 2 bimatrix game below.

L R

T 1; 0 0; 0

B 0; 1 1; 0

Its set of Nash equilibria equals f� 2 � j �1(T ) = 1; �2(L) 2 [1=2; 1]g and for every
t 2 [0;1), its set of t-solutions equals

f� 2 � j �1(T ) = (2 + 2t2)=(4 + 2t2); �2(L) = (t2 + t+ 2)=(4 + 2t2)g;

soB is chosen with positive probability in all t-solutions, while it is chosen with probability

zero in the Nash equilibria of the game. Moreover, this example (as well as the game of

Rosenthal, 1989, p. 285) shows that a weakly dominated strategy like R can remain in

the support of t-solutions. Consequently, there is no obvious relation between t-solutions

or Nash equilibria that are limits of t-solutions on the one hand and re�nements of the

Nash equilibrium concept like perfect and proper equilibria on the other hand.

5.2. A path to Nash equilibrium

The purpose of this subsection is to show that the graph of the t-solution corre-

spondence contains a path linking uniform randomization at t = 0 to Nash equilib-
2I am grateful to Andrés Perea for raising this issue.
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rium behavior in the limit as t ! 1. To make this statement precise, �x a game

G = hN; (Ai)i2N ; (ui)i2Ni and parametrize the t-variable as follows. The function

f : [0; 1)! [0;1) with f(�) = �=(1� �) for each � 2 [0; 1) (16)

is a strictly increasing bijection: instead of letting t range from 0 to in�nity, we can let

� range from 0 to 1. By Proposition 2.2(c), the t-solutions approximate a subset of the

Nash equilibria of G as t!1, or, equivalently, as �! 1. So de�ne the correspondenceeS : [0; 1]� � by

eS(�) =
8<: S( �

1��) if � 2 [0; 1);
NE(G) if � = 1:

(17)

We prove:

Theorem 5.2 For every game G, de�ne eS as in (17). There is a continuous function
 : [0; 1] ! graph(eS), i.e., a path, such that (0) 2 graph(eS) \ (f0g � �) and (1) 2
graph(eS) \ (f1g ��).
By de�nition of eS,

graph(eS) \ (f0g ��) = f0g � S(0)
consists of the single vector (0; �), where � 2 � is the strategy pro�le in which each player
randomizes uniformly over all pure strategies and

graph(eS) \ (f1g ��) = f1g �NE(G):
Hence Theorem 5.2 indeed gives us the desired path of t-solutions linking uniform ran-

domization at t = 0 to Nash equilibrium behavior. The proof is inspired by Herings�

(2000) proof of the feasibility of the linear tracing procedure and uses results from real

algebraic geometry which can be found in clear presentations of Blume and Zame (1994)
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and Schanuel, Simon, and Zame (1991). Notice that

graph(eS) = f(�; �) 2 [0; 1]�� j � 2 eS(�)g
= f(�; �) 2 [0; 1)�� j � 2 S(�=(1� �))g (18)

[ (f1g �NE(G))

= f(�; �) 2 [0; 1)�� j 8i 2 N;8ai; aj 2 Ai : �i(ai) > 0) (19)

(1� �)(�i(ai)� �i(aj)) � �(ui(ai; ��i)� ui(aj; ��i))g

[ (f1g �NE(G)):

The set of Nash equilibria of G is semi-algebraic (Blume and Zame, 1994, p. 789).

Rewriting the condition (�; �) 2 [0; 1)�� in terms of (linear) equalities and inequalities

and combining this with (19), it follows that the set in (18) can be de�ned in terms of a

�rst-order formula over the real variables � and (�i(ai))i2N;ai2Ai. By the Tarski-Seidenberg

theorem (cf. Blume and Zame, 1994, p. 787), it is semi-algebraic. As the union of two

semi-algebraic sets, graph(eS) is semi-algebraic: it can be described by a �nite number of
polynomial (in)equalities and all its components, i.e., maximally connected subsets, are

path-connected (cf. Schanuel, Simon, and Zame, 1991). Hence, it su¢ ces to show that

graph(eS) contains a component that intersects both f0g � � and f1g � �. We use a
special case of a result by Mas-Colell (1974); see Herings (2000, Thm. 3.2):

Theorem 5.3 Let S be a nonempty, convex, compact subset of Rm and let ' : [0; 1]�S �
S be an upper semicontinuous correspondence. Then the set F = f(�; x) 2 [0; 1]�S j x 2
'(�; x)g contains a connected set F c such that (f0g�S)\F c 6= ; and (f1g�S)\F c 6= ;.

De�ne the correspondence ' : [0; 1]��� � for each (�; �0) 2 [0; 1]�� by

'(�; �0) = eS(�):
Its value is independent of �0. The correspondence ' is upper semicontinuous, since its

graph

graph(') = f(�; �0; �) 2 [0; 1)���� j � 2 S(�=(1� �))g

[ (f1g ���NE(G))
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is closed: consider a sequence (�n; �0n; �n) in graph(') converging to (�; �0; �) 2 [0; 1] �
� ��. If � = 1, then either �n = 1 for all su¢ ciently large n or there is a subsequence
of (�n)n2N with �

n 6= 1. In the �rst case, a tail of the sequence (�n; �0n; �n) lies in the

closed set f1g ���NE(G), so

(�; �0; �) 2 f1g ���NE(G) � graph('): (20)

In the second case, the subsequence converges to one, so �n=(1 � �n) ! 1. With

Proposition 2.2(c), this implies that �n 2 S(�n=(1��n)) converges to a Nash equilibrium,
so that again (20) holds. Similarly, if � 2 [0; 1), continuity of the function f in (16) and
S having a closed graph (Proposition 2.2(b)) implies

(�; �0; �) 2 f�g ��� S(�=(1� �)) � graph('):

By Theorem 5.3, the set

F = f(�; �) 2 [0; 1]�� j � 2 '(�; �)g

= f(�; �) 2 [0; 1]�� j � 2 eS(�)g
= graph(eS)

contains a connected component F c intersecting both f0g�� and f1g��, �nishing the
proof of Theorem 5.2.

6 Concluding remarks

In this paper we investigated properties of the QRE based on the linear probability model:

the t-solutions of Rosenthal (1989). There are several directions for further research. We

brie�y mention two.

The present paper was of a theoretical nature; a more experimentally oriented paper

could investigate � for instance � the empirical content of Theorem 5.1: in contrast with

logit QRE, the t-solutions exhibit higher levels of iterated elimination of never-best replies

and eventually rationalizable behavior due to increases in the model�s parameter. This

may imply better predictive power than logit QRE in certain dominance solvable games

or other games where actions are chosen with small or zero probability. More generally, it
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would be interesting to compute the t-solution correspondence for di¤erent economically

relevant games. The examples of Rosenthal (1989) and those in Section 5 involve only

small games; already in these games, the computations can become tedious. The reader

is referred to Rosenthal (1989, Remark 6.1, p. 290 - 291) for additional remarks on

computational aspects.

Section 5.2 proves existence of a path of t-solutions linking uniform randomization to

Nash equilibrium in all games. An interesting open question is whether, in correspondence

with a result of McKelvey and Palfrey (1995) for logit QRE, such paths select a unique

equilibrium in generic games. This is a challenging problem: the graph of the t-solution

correspondence is typically not a manifold (see the examples of Rosenthal, 1989), so usual

techniques from di¤erential topology cannot be used. The next step would be to use real

algebraic geometry, but so far, the problem de�es my attacks.
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