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Abstract
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The failure of many economic policies, and indeed of other social policies or military

actions, often invokes opposite reactions from different segments of the citizenry. Some

argue that the failure indicates the need for a reversal of the policy, while others interpret

the same evidence as showing that the policy was not followed fully or firmly enough and

arguing for a strengthening or more zealous enforcement of existing measures.

A few examples will make the point. When the British economy was performing poorly

under the Labour governments in the 1970s, the Conservatives led by Margaret Thatcher

called for drastic market-oriented reforms, while traditional Labour supporters said that

the real problem was the failure to adopt true Socialism. Similar divisions arose in former

Socialist economies as their initial attempts at market reforms met with limited and mixed

success, or in some cases outright failure and decline of the economies. One part of their

populations wanted the reforms speeded up and made more drastic, while others wanted to

slow down or even reverse the reforms and go back to many of the old Communist policies.

In these instances, many individuals wanted broadly the same results — more output and

growth — and observed the same outcomes of the prevailing policies — success or failure in

various respects — but drew divergent conclusions from these observations. Similarly large

splits of public opinion opened up in the United States in the late 1960s and early 1970s

about the Vietnam war — whether to pursue it with greater force or to withdraw. Most of

the opponents of the war agreed with the proponents that a democratic Vietnam would be

desirable, but drew different inferences from the same events. Today we witness political

polarization in many parts of the world on issues of discrimination, multiculturalism, religion,

immigration, human rights, terrorism, civil war and nuclear armament.

How can we explain such increasing polarization of opinion even when both sides are

broadly agreed on the objective of the policy and are observing the same evidence? One

could simply appeal to biases in perception and reasoning, but it would be desirable to

understand whether increased polarization is compatible with standard theories of statistical

inference. We argue that the standard locational model of policy preferences that is used

in political science and economics implies a natural bimodality that can generate temporary

polarization under Bayesian updating.1

1In a working paper that appeared after our first draft was completed, Acemoglu, Chernozhukov and
Yildiz (October 2006) develop a model that can even generate permanent divergence of beliefs. They provide
a general theory for distinct priors, establish asymptotic results and consider applications to coordination
games, asset trading and bargaining. While they require a positive prior probability that the observed signal
is uninformative, our model of temporary polarization works even with surely informative signals.
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1 Definition and General Propositions

We develop our argument in a simple model where the outcome of policy depends on some

underlying unobservable “state of the world.” Denote states of the world by points s in a

set S of possible states. Each state of the world could be a fact about or aspect of how

the world works; indeed it could be an entire “possible world”. In the case of monetary

policy, for example, the two states can be “Keynesian” and “monetarist” worlds.2 The

state of the world is fixed and unaffected by policy, but different policies may result in

different outcomes.3 Actual policy outcomes are often multidimensional, complex and not

observed with much detail or accuracy. What can usually be observed is a summary indicator

of the outcome, which is subject to random disturbances of measurement and estimation.

For example, outcomes of monetary and fiscal policies include the effects on incomes and

prices faced by millions of consumers and firms; what we observe is an index of inflation

or unemployment constructed by the relevant bureau of statistics. Sometimes citizens are

aware of only a binary indicator, such as an estimate of whether a policy is judged a success

or failure. Denote the random disturbance affecting the observed magnitudes by u ∈ U . The

product set Ω = S × U is then our sample space over which probabilities are defined, with

typical element (sample point) denoted by ω = (s, u).4

Neither the true state of the world s nor the disturbance u is observable. However, each

individual can observe the actual policy x that is being pursued and some (potentially noisy)

indicator y of the policy outcome, which in turn depends on the policy and the true state

of the world. Thus there is a known functional relationship, y = Y (x, s, u). Each individual

has his or her own prior probability distribution over S, the possible states of the world.

These priors may be thought of as initial “world views” or beliefs about the “true nature” of

the world we live in. Upon observing y, the individual updates his or her prior, using Bayes’
rule to obtain a posterior concerning the state of the world. This is the individual’s revised

(or confirmed) world view or belief.5 The individual cannot in general infer s from x and y,

2Piketty (1995) considers a model of fiscal policy where individuals’ priors about the extent of equality
of opportunity in society and the effectiveness of individual effort differ in just such a way.

3The subsequent analysis can be generalized to dynamic situations in which the state of the world is not
fixed but changes over time in part depending on policy.

4Even more generally, we could consider an abstract sample space Ω endowed with a sigma algebraM and
(M-measurable) random variables s and u that map sample points ω ∈ Ω to states of the world, s (ω) ∈ S,
and errors, u (ω) ∈ U , where U and S are sets in Euclidean spaces, see e.g. Billingsley (1999, pp. 16—42).

5Note that this whole situation is the opposite of the one of “agreeing to disagree” familiar to many
economists (Aumann, 1974, see also Geanakoplos and Polemarchakis, 1982). There, individuals have common
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not only because of the random disturbance u but also because the mapping y = Y (x, s, u)

from s to y, given x and u, need not be one-to-one. We will assume that the probability

distribution of the random disturbance u is known, so no Bayesian revision of its probability

distribution need be made, but even this can be generalized. We assume the random draws

of s and u to be statistically independent.

Our concept of polarization of different individuals’ probabilistic beliefs is illustrated in

Figures 1 and 2, where the horizontal axis represents a one-dimensional spectrum of states s

of the world. Figure 1 shows the prior and posterior cumulative distributions F , and Figure

2 shows the corresponding probability density functions f , for two individuals identified by

the colors red and blue. The priors are shown as solid curves and the posteriors as dashed

curves. The prior of red is to the left of that of blue in the sense of first-order stochastic

dominance. The posterior of red is even farther to the left than her prior, and the posterior

of blue is even farther to the right than his prior. We call this polarization, and examine

when it can arise.

s

F(s)

Figure 1: Polarization illustrated using cumulative distribution functions.

priors but get different observations; here, they have different priors but get common observations. Economic
and game-theoretic analyses often rely on an assumption of common priors on the argument that it “enables
one to zero in on purely informational issues” (Aumann 1976, p. 14) but recently departures from this
assumption have been made to “zero in on open disagreement issues”; see Van den Steen (2001, p. 5) and
Morris (1995). Indeed, open disagreement issues are often the essence of political problems.
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s

f(s)

Figure 2: Polarization illustrated using density functions.

It helps to start with a condition that rules out such polarization. Let g(y|x, s) be the
probability density of the observable y conditioned on the policy x and state s. Polarization

will be ruled out if, in response to a higher y, the posterior for s, calculated using Bayes’ Rule,

always shifts in the same direction in the sense of first-order stochastic dominance. It is well

known that a necessary and sufficient condition for this is that g(y|x, s) has the monotone
likelihood ratio property (MLRP), namely that the likelihood ratio g(y|x, s1)/g(y|x, s2) for
any policy x and states s1 > s2 is a monotone (increasing or decreasing) function of y.6

MLRP holds for many standard distributions such as the normal, which is often used

and has affected thinking about polarization. Suppose the observable y is a linear function

of its arguments, with coefficients set equal to 1 by choice of units:

y = x+ s+ u.

Let an observer’s prior distribution of s– his or her “initial world view” – be normal with

mean µ and precision τ s (reciprocal of variance), and let the known distribution of u be

normal with mean 0 and precision τu. When x and y are observed and the distribution of

s is updated according to Bayes’ Rule, the posterior distribution for the state of the world

(the observer’s “revised world view”) is normal with mean ν given by

ν = (1− β)µ+ β(y − x),

6This property was first identified by Rubin in the 1950’s, further developed in Karlin and Rubin (1956)
and introduced into the economics literature by Milgrom (1981).
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where

β =
τu

τ s + τu
,

a convex combination of the prior µ and the “signal” y − x,which we abbreviate as y0. The

precision of the posterior is τ s + τu. Thus in this model, the posterior is more precise than

the prior, and a higher (lower) realization of the observable indicator y leads to a higher

(lower) mean of s under the posterior distribution, for any given prior µ.

Suppose two observers have different prior means, say µ1 and µ2, and possibly different

βs, β1 and β2. Choose the labels so that µ1 > µ2. When the two observe the same y and

update their priors, let the posterior means be ν1 and ν2. Using the above formula for the

posterior mean, we have the following three cases:

[1] If y0 > µ1, then µ1 < ν1 < y0 and µ2 < ν2 < y0, so both distributions shift to

the right.

[2] If y0 < µ2, then y0 < ν2 < µ2 and y0 < ν1 < µ1, so both distributions shift to

the left.

[3] If µ2 < y0 < µ1, then µ2 < ν2 < y0 and y0 < ν1 < µ1, so the two distributions

shift toward each other.

In no case can the distributions shift as in Figures 1 and 2; polarization cannot occur.

Users of the linear-normal model then have to explain the instances of belief polarization

by invoking some biases of perception or learning to modify Bayesian updating. Gerber and

Green (1999) review this literature.

We now illustrate how the monotone likelihood ratio property fails in some politico-

economic situations where policies form a one-dimensional spectrum, such as left to right or

dove to hawk. Think of a policy as a real number. In the example of monetary policy, this

can be the rate of growth of the money supply, or the federal funds rate. If policy x is used

when the state is s, this will generate a loss, L(x, s). The individual knows the actual policy,

x, and observes an indicator of the ensuing loss. In order to contrast our approach with the

usual approach in current political science and economics, where individuals hold the same

prior but have distinct preferences and hence loss functions, we here assume that everyone

is agreed about the function L; disagreement is limited to probabilities of the states of the

world. We do not deny the realistic possibility that people also have distinct preferences.

However, heterogeneity of beliefs about the nature of the world we live in is also realistic, and

here we focus on its consequences by leaving out the other possibility. Preference differences

can be an additional reason for polarization.
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An optimal policy x∗ (s) in state s is one that minimizes the loss L(x, s). For the sake

of simplicity we assume that the optimal policy is unique in every state. Thus everyone is

agreed about the function x∗ : S → R that maps each state to its optimal policy, but people
may disagree about what policy should be chosen in order to minimize the expected loss

if they have distinct probabilistic beliefs about the true state of the world. For notational

convenience, suppose that x∗(s) ≡ s.

The loss is not directly observed, but only an indicator Y (x, s, u) is observed. We consider

two cases of this.

Suppose, first, that the function Y only takes two values; either 0, “success,” or 1,

“failure” and let X = S be a subset of the real line. Failure becomes more likely both when

the policy is farther to the right of its optimum and when it is farther to the left of the

optimum. Conversely, success becomes more likely when policy gets closer to its optimum

from either direction. The individual knows the actual policy, x, and observes whether it

succeeds or fails. So here y simply is “success or failure” of policy x. For y ∈ {0, 1}, let
g(y|x, s) denote the conditional probability of the event Y (x, s, u) = y, given the policy

x, state s, and observation error u. For y = 1 (“failure”), this probability increases with

the distance |x− s| between the actual and optimal policy, say g(1|x, s) = ε + δ |x− s| for
ε, δ > 0 such that g(1|x, s) is always less than one over the ranges of the variables in the
context. Consider any two states s1 and s2 > s1. Then the likelihood ratio for failure is

g(1|x, s1)
g(1|x, s2)

=
ε+ δ |x− s1|
ε+ δ |x− s2|

and that for success (y = 0) is

g(0|x, s1)
g(0|x, s2)

=
1− ε− δ |x− s1|
1− ε− δ |x− s2|

.

For the MLRP to hold, one of these likelihood ratios, say the first, should always exceed the

other. This is equivalent with the requirement that either x > (s1 + s2) /2 or x < (s1 + s2) /2

for all x and s. This not being the case, the posterior may just as easily shift in one direction

as in the other, depending on the prior. Since all individuals know the policy and make the

same observation as to its success or failure, their posteriors may shift in different directions

depending on their priors concerning the state of the world.

Secondly, consider an example where a suboptimal policy generates a loss on a continuum

scale. Common forms in the political science and economics literatures for the loss function
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are

L (x, s) = [x− x∗ (s)]2 and L (x, s) = |x− x∗ (s)| ,

where x is the actual policy and x∗ (s) the optimal policy in state s. Suppose that the loss

is observed only with noise: y = Y (x, s, u) = L (x, s) + u, where u is an observation error.

Suppose the actual policy x is known, but x∗ (s) and u are not known or observed. Then

the observer will infer that, conditional on y and x, the optimal policy in the current state

satisfies

x∗ = x±
√
y − u and x∗ = x± (y − u)

in the respective cases. Whether the plus or the minus part gets more posterior probability

weight, after x and y have been observed, and therefore whether the person’s preferred policy

shifts to the left or the right, depends on the person’s prior. Thus the usual locational or

spatial spectrummodel of policy creates an automatic bimodality in revisions of beliefs about

the optimal policy.

Here are some concrete examples of bimodality. [1] Suppose country A intervenes militar-

ily in country B, and the result is violence and ethnic conflict in B. This could be happening

either because each ethnic group in B supports its own militants to resist A’s forces and the

militants then turn on each other, or because A’s forces are not strong enough to maintain

law and order. That is, the ideal policy could be either no intervention or a much stronger

intervention, and the actual policy may be failing in the respective cases because it is too

much or because it is too little. [2] Suppose a country is experiencing high unemployment.

Those who take a Keynesian view of the world may think this is because monetary policy

is too tight, whereas those who take a monetarist view may think that the policy is too

loose, and that businesses are not hiring because they think that the loose policy will lead

to inflation and then to much higher interest rates.

The kind of polarization we find does not last for ever. Under mild technical conditions,

the difference between the posteriors eventually goes to zero when these are successively

updated following a sequence of observations (Blackwell and Dubins, 1962).7 But there

is no general guarantee that the convergence occurs monotonically. Our examples show

how divergences can temporarily increase, and thereby help us understand the process of

polarization in greater detail. Moreover, these examples show that political polarization can

arise quite naturally and consistently with Bayesian updating, without any need to invoke

7See, however, Acemoglu et al (2006) who show that if the conditional success probabilities (our table at
the bottom of p. 6) are unknown and individuals’ subjective beliefs about these are sufficiently diffuse, their
posteriors will not converge even asymptotically.
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selective perception or biased learning. Of course these things exist in reality and can further

aggravate the polarization.

2 Binary indicator of success

We now develop these two examples of polarization of individual prior beliefs into fuller

models of political polarization, where the policy is chosen by majority rule applied to the

votes of the same diverse individuals. Our modeling of politics is admittedly special, but

does bring out some useful intuitions. Specifically, we assume that all voters vote, and

that they vote sincerely, that is, each voter in each election votes for his or her currently

most preferred alternative according to his or her current belief. We do not consider more

sophisticated strategic, forward-looking behavior. The context we have in mind is that of

an election with numerous voters, where each has a negligible probability of being pivotal to

the outcome, and therefore no one has the ability to manipulate the outcome strategically.8

Suppose there are five states of the world, s ∈ S = {1, 2, 3, 4, 5}, and equally many
voter types, θ ∈ Θ = {1, 2, 3, 4, 5}, with equally many voters of each type. Each voter type
holds a distinct subjective prior about the true state of the world. Table 1 shows the prior

probabilities at the start of period 1 with voter types as rows and states of the world as

columns.

Table 1 - Prior probabilities for different types of voters

s =1 2 3 4 5

θ =1 0.700 0.297 0.001 0.001 0.001

2 0.200 0.600 0.198 0.001 0.001

3 0.001 0.269 0.500 0.229 0.001

4 0.001 0.001 0.198 0.600 0.200

5 0.001 0.001 0.001 0.297 0.700

The general motivation behind these specific numbers is as follows. [1] Each type of voter

8See Laslier and Weibull (2007) for a rigorous analysis of this issue. Strategic voting under a common
prior but private signals is modeled by Austen-Smith and Banks (1996) and Feddersen and Pesendorfer
(1998). Experimental evidence for small electorates (3 or 6 voters) gives some (but not strong) support to
strategic voting; see Guarnaschelli, McKElvey and Palfrey (2000). Degan and Merlo (2007) find that “by
and large sincere voting can explain virtually all of the individual-level observations on voting behavior in
presidential and congressional U.S. elections in the data."
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assigns high positive probability to the state of the world corresponding to his type, a signif-

icant probability for it being one position away from his type, but very small probabilities

for it being farther away.9 [2] Extremist individuals attach higher probabilities to their own

type being the “right” type. [3] The voter of type 3 has a slightly higher prior probability

of the state being 2 than it being 4.

There are five policies: Far Left (FL), Left (L), Center (C), Right (R) and Far Right

(FR), which we label x = 1, 2, ..., 5. Formally, X = S. The loss function equals 1 if the

policy fails and 0 if it succeeds. Therefore minimization of expected loss is equivalent to

minimizing the probability of failure. Then x = 1 (FL) is the (unique) optimal policy in

state 1, x = 2 (L) the optimal policy in state 2 etc. Formally: x∗ (s) = s for all s ∈ S.

We develop the example assuming that the true state of the world is 4, so x = 4 (R) is the

optimal policy.

At any time, the voter can observe what policy is actually being followed, and can observe

a binary indicator of the outcome (success or failure). Table 2 shows the probabilities of

failure for each policy in each state of the world (with policies as rows and states of the

world as columns):

Table 2 - Probabilities of failure for available policies in each state of the world

s =1 2 3 4 5

x =1 0.01 0.2 0.4 0.7 1

2 0.2 0.01 0.2 0.4 0.7

3 0.4 0.2 0.01 0.2 0.4

4 0.7 0.4 0.2 0.01 0.2

5 1 0.7 0.4 0.2 0.01

The policy x = 1 is optimal in state 1 and fails with probability only 0.01, but it is

farther from optimal in states 2, 3, 4, and 5, and fails with higher probabilities. Similarly

for other policies. Thus there is a small probability that even the optimal policy will fail,10

and failure probabilities rise when the actual policy is farther away from the optimal. Note

9Even a voter of one extreme type attaches positive (albeit very small) probability to the state of the oppo-
site extreme type; the priors are non-dogmatic. This is to alleviate any concern that zero prior probabilities
might be driving our results.

10As with our previous assumption of non-dogmatic priors, we introduce these small probabilities of failure
of ideal policies so as to mitigate any reader’s concern that our results are being driven by Bayesian updating
on zero probability events.
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that policy 3 is optimal in state 3, its failure probability is higher when the true state is 2

or 4, and higher still when the true state is 1 or 5. This is the natural bimodality that arises

in the spatial model, and drives our results.

We assume that each type of voter knows the table of failure rates. In period 1, given

their priors, each type’s sincere vote is for the policy that coincides with his type. Preferences

are single-peaked, and the outcome is the median voter’s preferred policy, which in this case

is 3. So policy x = 3 is adopted. Suppose, however, that policy 3 leads to failure. The voters

now revise their priors using Bayes’ Rule. The posterior from period 1 become the priors at

the start of period 2. For each voter type, the posterior probability that the true state is j

is proportional to

Pr(Failure | s = j and x = 3) ∗ PriorPr(s = j).

The actual probabilities are found by normalizing these products. Table 3 shows these

products, with voter types as rows and states as columns:

Table 3 - Products of prior and conditional probabilities

s =1 2 3 4 5

θ =1 0.28 0.0594 0.00001 0.0002 0.0004

2 0.08 0.12 0.00198 0.0002 0.0004

3 0.0004 0.0538 0.005 0.0458 0.0004

4 0.0004 0.0002 0.00198 0.12 0.08

5 0.0004 0.0002 0.00001 0.0594 0.28

Then Table 4 shows (to four significant digits) the resulting posteriors, found by dividing

each entry by the sum of all the cells in its row (still with voter types as rows and states as

columns).

Table 4 - Period 1 posterior probabilities for different types of voters

s =1 2 3 4 5

θ =1 0.8235 0.1747 0.0000 0.0006 0.0012

2 0.3949 0.5924 0.0098 0.0010 0.0020

3 0.0038 0.5104 0.0474 0.4345 0.0038

4 0.0020 0.0010 0.0098 0.5924 0.3949

5 0.0012 0.0006 0.0000 0.1747 0.8235
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Now consider period 2 voting, given these as the new priors. Voter types 1, 2, 4, and 5

obviously vote for their corresponding policies 1,2, 4 and 5, respectively. But voter type 3’s

prior has become bimodal because the observed failure of policy 3 causes him to revise that

probability drastically. So we must be more careful and calculate voter type 3’s estimate of

the probability of failure for all five policies in order to determine his most preferred policy,

given his new prior. The failure probability of each policy i ∈ X is

Σj Pr(Failure|s = j and x = i) ∗New PriorPr(s = j).

Table 5 shows the result of this calculation:

Table 5 - Voter type 3’s assessment of policy failure probabilities

x =1 0.4291

2 0.1918

3 0.1925

4 0.2222

5 0.4670

So voter 3’s preferences are still single-peaked, and his best choice is 2; this is his new

most preferred policy. Therefore the median voter is at 2, and policy 2 is adopted — policy

shifts in the “wrong” direction. Suppose policy x = 2 also leads to failure. Now the Bayesian

revision yields posteriors shown in Table 6:

Table 6 - Period 2 posterior probabilities for different types of voters

s =1 2 3 4 5

θ =1 0.9832 0.0104 3.5 E-5 0.0014 0.0049

2 0.8911 0.0668 0.0221 0.0045 0.0156

3 0.0040 0.0266 0.0495 0.9061 0.0138

4 0.0008 1.9 E-5 0.0038 0.4594 0.5360

5 0.0004 1.9 E-6 9.1 E-6 0.1081 0.8915

So voter type 3 has an epiphany — his probability distribution switches drastically to

state 4. Hence, his most preferred policy is now 4. And the others become polarized: even

type 4’s most preferred policy now switches to 5.

This example serves to make three points: [1] Even slight asymmetries in initial beliefs

can build into substantial differences. [2] Polarization can occur in a way that even voters
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who are moderately biased in one direction come to favor the extreme policy in that direction.

[3] The outcome of an election can be determined by the switching of a very small number of

the centrist type 3 voters, but everyone else is polarized to favor extreme policies; therefore

the outcome is likely to cause a lot of dispute and acrimony.

3 Observable continuous loss

Our second example allows policies to range over a continuum. Here we focus on the pos-

sibility that polarization can arise because the function Y (x, s, u) is not monotonic in x;

therefore we assume that there is no error term u.Voters are denoted by an index θ ranging

over the unit interval, and for simplicity of exposition they are assumed to be uniformly

distributed over this range. Each voter has a continuous prior distribution about the true

state of the world s, where s ranges over S = R, the real line. The prior probability density
function of voter θ is fθ, that is, θ assigns probability fθ (s) ds to the event that the true

state of the world lies in the interval (s, s+ ds). Let X = S.

The loss associated with an outcome is equal to the absolute value of the difference

between the actual policy and state. The optimal policy in any state s is thus x = s, that

is, x∗ (s) ≡ s. Writing x for the actual policy, the observable is therefore given by

y = L (x, s) = |x− s|.

Voter θ likes best the policy x that minimizes the expected loss, Eθ[L (x, s) | x], calculated
under his prior. This is θ’s most preferred policy, given his or her prior. We write this loss

as:

cθ(x) =

Z +∞

−∞
|x− s| fθ(s)ds =

Z x

−∞
(x− s) fθ(s)ds+

Z +∞

x

(s− x) fθ(s)ds.

The first-order condition for its minimization is

c0θ(x) =

Z x

−∞
fθ(s)ds−

Z +∞

x

fθ(s)ds = 2Fθ(x)− 1 = 0,

where Fθ is the cumulative distribution function for voter θ’s prior. And

c00θ(x) = 2F
0
θ(x) = 2fθ(x) > 0,

so the second-order condition is globally satisfied. Therefore the optimum is given by Fθ(x) =

13



1
2
. Hence, voter θ’s most preferred policy xθ is the median of his prior distribution over the

states of the world. Moreover, each voter’s preferences are single-peaked around his most

preferred policy.

Consider the first election (Period 1) under this set-up. Under majority rule, the median

of the most preferred policies becomes the chosen policy. To keep the notation simple,

suppose this is the point 0 on the policy spectrum. Suppose the optimal policy, in the true

state of the world, is different from this; for the sake of definiteness suppose the true state

is s = 1 and hence x∗ = 1.

The actual policy and the loss are by assumption observable without error. These ob-

servations enable people to infer that the true state must be either s+ = x + L (x, s) or

s− = x − L (x, s). Thus the continuous prior is updated to a two-point posterior. To keep

the notation simple again, suppose L (x, s) = 1. With x = 0, the posteriors then become

concentrated on 1 and −1. From Bayes’ rule, the posterior probabilities for voter θ are

Pr [s = 1] =
fθ(1)

fθ(1) + fθ(−1)

and Pr [s = −1] = 1− Pr [s = 1] .

Suppose there is a number z > 1
2
such that the priors of voters in the range 0 < θ < z

satisfy fθ(−1) > fθ(1), and the priors of voters in the range z < θ < 1 satisfy fθ(−1) < fθ(1).

Figure 3 below illustrates this, with red curves showing the prior densities of voters θ < z

and the blue curves those of voters θ > z.

s

Figure 3: Prior densities for different types of voter.
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Then the voters in [0, z) have posteriors with Pr(s = −1) > 1
2
> Pr(s = 1), and those in

[z, 1] have posteriors with Pr(s = −1) < 1
2
< Pr(s = 1). These posterior become the new

priors in the next election (Period 2). Therefore in that election more than half of the voters

vote for the policy x = −1, their new most preferred policy, and fewer than half vote for
the policy x = 1, their new most preferred policy. Whereas the election in Period 1 was a

contest with a continuum of opinions leading to a moderate policy (albeit not the optimal,

given the state), the election in Period 2 is polarized between two quite distinct positions,

and the choice shifts away from the optimal policy. This can happen even if z is very close

to one half.

With the optimal policy at 1 and the actual policy at −1, the outcome in Period 2 will
be a loss equal to 2. With the priors concentrated on 1 and −1, and the actual policy at −1,
this loss can arise only if the optimal policy is 1. Therefore Bayesian updating will lead to a

convergence of opinions at the optimal policy, and that policy will be adopted unanimously

in the election of Period 3.

In this example, once again quite small differences among voters can create polarization,

and non-monotonic shifts in priors. However, the special structure with no error term in

the loss function leads to quick reversal of the polarization and convergence to the optimal

policy. An error term with a suitably large dispersion can slow down this process. We omit

the details because the algebra gets complicated.

4 Concluding comments

We have seen how an electorate can become polarized and policies can shift away from

the optimal, when the observable indicators of policy outcomes are not monotonic in the

policy choice, and how such polarization is perfectly consistent with voters agreeing on

values and using Bayesian updating and vote for the conditionally optimal policy given their

information.

Political polarization entails quite serious risks; political debates get bitter and the very

existence of a civil society may be threatened. Current examples are policies concerning

discrimination, immigration, gender, religion, welfare state, human rights, terrorism, civil

wars, national sovereignty and nuclear armament. One way to reduce these risks, therefore,

is to attempt to create observable indicators that are not bimodal like the ones above, and

satisfy the monotone likelihood ratio property. Of course that can still leave untouched the

additional problems caused by biased perception and learning. Moreover, such indicators
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may be hard to identify. However, our argument unambiguously supports the case for search-

ing out and publicizing such indicators–under the here maintained hypothesis that people

broadly agree on values but may have differing beliefs about the world. Contrary to the cur-

rent tendency in many countries to avoid high-lighting socially and politically controversial

and pressing issues, our simple examples suggest that political polarization may be reduced

rather than increased if instead more information about the factual current situation and

the effect of employed policies are made available in the public debate, even when the issues

at hand are controversial.
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