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Abstract

In this paper we discuss the pricing of commercial real estate index
linked swaps (CREILS). This particular pricing problem has been studied
by Buttimer et al. (1997) in a previous paper. We show that their results
are only approximately correct and that the true theoretical price of the
swap is in fact equal to zero. This result is shown to hold regardless
of the specific model chosen for the index process, the dividend process,
and the interest rate term structure. We provide an intuitive economic
argument as well as a full mathematical proof of our result. In particular
we show that the nonzero result in the previous paper is due to two specific
numerical approximations introduced in that paper, and we discuss these
approximation errors from a theoretical as well as from a numerical point
of view.
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1 Introduction

The object under study in the present paper is a commercial real estate index
linked swap (CREILS). The basic construction of such a swap is that the appre-
ciation and yield of a given real estate index is swapped, quarterly, against the
three months spot LIBOR. In an interesting paper previously published in this
journal, Buttimer et al. (1997) presented a two-state model for pricing securities
dependent upon a real estate index as well as upon an interest rate, and the
model was then used to calculate the arbitrage free value of a CREILS. For this
concrete application, the authors in Buttimer et al. (1997) used a numerical
method based upon replacing their original continuous time model by a bivari-
ate binomial tree, and it was found that, for a notional amount of $10,000,000,
the value (to the receiver of the swap) was around $50. Buttimer et al. (1997)
then proceed to discuss the sensitivity of their numerical results to changes in
volatilities, correlations and the initial term structure.

The object of the present paper is to show that the results in Buttimer et
al. (1997) are only approximatively true, in the sense that the arbitrage free
theoretical value of the CREILS is in fact exactly equal to zero. More precisely
we carry out the following program.

• In Section 2 we present the institutional setup of the swap.

• We begin the theoretical analysis in Section 3 where we give a simple
verbal arbitrage argument showing that the theoretical value of the swap
in fact equals zero.

• In Section 4 we add to the verbal discussion in the previous section by
presenting a very general mathematical framework for the swap along the
following lines.

– The real estate index is allowed to be a general (semimartingale)
process with the only requirement that it should be possible to view
it as the price of a traded asset.

– The income (dividend) process associated to the index is allowed to
be completely general.

– The interest rate model is allowed to be completely general.

– We assume absence of arbitrage.

This framework is considerably more general than that of Buttimer et
al. (1997) where the index is assumed to be lognormal with a constant
dividend yield, and where the interest rate structure is given by a CIR
short rate model.

• Within the above framework, and using the standard (martingale) machin-
ery of arbitrage theory, we prove formally that the arbitrage free value of
the swap is exactly equal to zero.
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• In Section 5 we discuss why the pricing results in Buttimer et al. (1997)
differ (although not much) from the correct value zero. We show that the
reasons for the nonzero computational results in Buttimer et al. (1997) are
due to two specific approximation errors introduced in the numerical cal-
culations. We discuss these errors from a theoretical as well as numerical
a perspective.

2 Institutional setup

In this section we give a description of the institutional setup of a commercial
real estate index linked swap (CREILS). We follow Buttimer et al. (1997).

• The swap is assumed to be active over a prespecified time period. This
period is subdivided by equidistant time points t0 < t1 < . . . < tn, and we
denote by ∆ the length of an elementary time interval, i.e. ∆ = tk+1 − tk.
In a typical example the length tn − t0 of the total time period could be
five years, whereas the length ∆ of the elementary time interval would be
three months.

• One leg of the CREILS is based upon a real estate index, henceforth
denoted by It. This index varies stochastically over time and it also carries
with it a (possibly stochastic) income (dividend).

• The other leg of the CREILS is based upon a market rate, such as the
spot LIBOR rate, over the elementary time intervals.

• The CREILS is a sum of individual “swaplets”, where the individual
swaplet is active over an elementary interval [tk−1, tk].

• At the end of each elementary interval [tk−1, tk] the CREILS receiver will
have the following cash flows from the swaplet active over the interval:

– A cash inflow consisting of appreciation of the index plus all income
generated by the index over the interval [tk−1, tk].

– A cash outflow equal to the spot LIBOR, plus a given spread δ, for
the period [tk−1, tk], acting on the ingoing index Itk−1 .

• The CREILS payer will have the same cash flows with opposite signs.

• The CREILS would in real life be operating on a notional amount, rather
than directly on the index value. This however is only a scaling factor,
and without loss of generality we disregard this (or rather set it equal to
one).

We assume that we are standing at time t, and that t ≤ t0. Our problem is
to find the arbitrage free value, at time t, of the CREILS.

A typical (see Buttimer et al., 1997) value of the spread δ could be δ =
0.00125%. For the rest of the paper we will follow Buttimer et al. (1997) in
assuming that there is no spread, i.e. we assume that δ = 0.
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The main object of the present paper is to show that, regardless of any
specific assumptions about the dynamics of the index, the income process, or
the interest rate model, the arbitrage free value of the CREILS is in fact equal
to zero.

For this strong result to hold, we will however need the following important
assumption.

Assumption 2.1 We assume that the real estate index process It can be treated
as the price process of a traded asset with a certain associated dividend (income)
process.

The practical relevance of this assumption can of course be questioned. The
assumption is however in complete agreement with Buttimer et al. (1997),
who in fact assume Geometrical Brownian Motion for the index, and model the
income process as a constant dividend yield.

3 Verbal discussion

We begin our analysis by giving an simple verbal arbitrage argument, which
shows that the value at an arbitrary time t ≤ t0 of the CREILS equals zero.
Let us thus consider a trading strategy starting at time t and ending at tn.
The strategy consists of the following simple scheme which is repeated at each
elementary time period [tk−1, tk], for k = 1, . . . , n.

• At time tk−1, borrow the sum Itk−1 over the period [tk−1, tk] at the spot
LIBOR L = L(tk−1, tk). Use all the borrowed money to buy one unit of
the index.

• All the income generated by the index holdings during the interval [tk−1, tk]
is invested in the bank.

• At tk sell the index to obtain Itk
. Repay the loan, i.e. the principal Itk−1

plus the accrued interest ∆ · L · Itk−1 where L = L(tk−1, tk) is the spot
LIBOR for [tk−1, tk]. Collect the income that was generated and invested
during the elementary period.

The net result of this strategy is that we obtain the following cash flow at each
tk for k = 1, . . . , n.

• Plus: Itk
(selling the index).

• Minus: Itk−1 (repayment of the principal of the loan).

• Plus: the value, at tk, of the invested income during the period [tk−1, tk].

• Minus: LIBOR on the borrowed capital during the period, i.e. ∆ ·L ·Itk−1 .

We have thus exactly replicated the cash flow of the receiver of a CREILS. Since
the strategy is self financing and the initial cost of setting up the strategy is
zero, the arbitrage free value of the strategy, and hence that of the CREILS,
has to equal zero.
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4 Formal analysis

In this section we present a formal mathematical proof of our claim that the
arbitrage free price of the CREILS is zero. The reasons for including this “extra”
proof are as follows.

• It highlights the logical structure of the argument and shows more precisely
where the various assumptions are needed.

• By presenting a formalized argument we can more easily compare our
calculations to the computations made in Buttimer et al. (1997). In par-
ticular we will see that certain approximation errors are in fact introduced
into the computations in Buttimer et al. (1997) and we will be able to
study the relative importance of these numerical errors.

4.1 The mathematical model

Our chosen framework is a very general one (see Bjrk et al., 1999; Harrison
et al., 1981; Musiela et al., 1997). We consider a financial market living on
a stochastic basis (filtered probability space) (Ω,F ,F, P ) where F = {Ft}t≥0.
Here the measure P is interpreted as the objective probability measure, whereas
the σ-algebra Ft formalizes the idea of the information available to the agents
in the economy at time t. We assume that the basis carries the following basic
financial objects:

• An index process It. As a notational convention we consider the index
process ex dividend.

• A cumulative dividend (income) process Dt. The interpretation is that
if you hold the index over an infinitesimal interval (t, t + dt] then you
will receive the amount dDt = Dt+dt − Dt in dividend payments. Put in
other words; over the interval (s, t] the holder of the index will receive the
(undiscounted) amount Dt − Ds.

• A short rate process rt.

• A liquid bond market (at any time) for bonds of all possible maturities.
The market price at time t for a zero coupon bond maturing at T is
denoted by p(t, T ).

• A money market account process denoted by Bt, where by definition

dBt = rtBtdt.

Note that we make no assumptions whatsoever about any specific dynamical
structure of the index, the short rate, or the dividend process. For example;
we do not assume that the processes above are driven by Wiener processes or
that they are Markov processes (they are allowed to be arbitrary semimartin-
gales). Our setup is thus extremely general and in particular it includes the
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model considered in Buttimer et al. (1997). In that paper, It is assumed to
be Geometrical Brownian Motion, the dividend process is assumed to be of the
form

dDt = ηItdt,

(i.e. a constant dividend yield η), and the short rate process is assumed to be of
Cox-Ingersoll-Ross type. The one assumption we make is that the market is free
of arbitrage possibilities in the sense that there exists an equivalent martingale
measure Q ∼ P . We recall (see [1]) the following standard properties of Q.

• The normalized gains process GB
t , defined by

GB
t =

It

Bt
+

∫ t

0

1
Bs

dDs. (1)

is a Q-martingale.

• Bond prices are given by the expression

p(t, T ) = EQ

[
e
−

∫ T

t
rsds

∣∣∣∣Ft

]
. (2)

• For any contingent claim X , payed out at time T , the corresponding ar-
bitrage free price process Π (t; X) is given by the “risk neutral valuation
formula”

Π (t; X) = EQ

[
e
−

∫ T

t
rsds · X

∣∣∣∣Ft

]
. (3)

4.2 Pricing

We now proceed to price the CREILS within the above framework, and by con-
vention this is done from the point of view of the receiver. Denoting the arbitrage
free value (always for the receiver) at time t of the CREILS by Π (t; CREILS)
we have

Π (t; CREILS) =
n∑

k=1

Π(t; Xk)

where Xk denotes the net payments, at time tk, to the CREILS receiver. We
now go on to compute Π (t; Xk) and by the “risk neutral valuation formula” (3)
we have

Π (t; Xk) = EQ

[
e
−

∫
tk

t
rsds · Xk

∣∣∣∣Ft

]
.

Now, from the definition of the CREILS, it follows that Xk is given by

Xk = Itk
− Itk−1 +

∫ tk

tk−1

e

∫ tk

s
rudu

dDs − ∆L(tk−1, tk)Itk−1 . (4)

In this expression, the first term Itk
−Itk−1 equals the appreciation of the index.
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The integral term represents the total value, at time tk, of all dividends
generated by the index during the interval (tk−1, tk]. By convention all divi-
dends are being invested in the bank account until time tk, so the dividend dDs

generated during the small time interval (s, s + ds] will, at time tk have grown
to

e

∫ tk

s
rudu

dDs.

The integral term is thus the total value at time tk of the entire income stream
generated during the interval.

The third term obviously represents the cash outflow, which by definition is
the spot LIBOR operating on Itk−1 .

Remark 4.1 Note the reinvestment of the dividends into the bank account.
This is of course an institutional assumption, and to a certain extent it is crucial
to our results below. The exact logical situation is as follows.

• For our results below to hold it is essential that dividends either are payed
out directly at the time they are generated by the index, (i.e. the CREILS
receiver obtains the amount dDs at time s) or are being reinvested in a
traded asset and payed out at time tk.

• Exactly which asset that is used for reinvesting the dividends is, from
the point of view of our calculations, irrelevant. We have by convention
chosen the bank account, but the dividends could in fact be invested in
any traded asset (or reinvested in the index) without affecting our results.

We now go on to compute Π (t; Xk) and to this end we recall that the spot
LIBOR L(tk−1, tk) for the period [tk−1, tk] is given by the relation

p(tk−1, tk) =
1

1 + ∆L(tk−1, tk)
,

so in particular we have

∆L(tk−1, tk) =
1

p(tk−1, tk)
− 1.

We can thus write Xk as

Xk = Itk
− Itk−1 +

∫ tk

tk−1

e

∫
tk

s
rudu

dDs −
(

1
p(tk−1, tk)

− 1
)

Itk−1

= Itk
− Itk−1

p(tk−1, tk)
+

∫ tk

tk−1

e

∫
tk

s
rudu

dDs,

and we obtain

Π (t; Xk) = EQ

[
e
−

∫
tk

t
rsds

Itk

∣∣∣∣Ft

]
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− EQ

[
e
−

∫
tk

t
rsds Itk−1

p(tk−1, tk)

∣∣∣∣Ft

]
+ EQ

[
e
−

∫
tk

t
rsds

∫ tk

tk−1

e

∫
tk

s
rudu

dDs

∣∣∣∣∣Ft

]
.

In this expression we can, by iterated conditional expectation, write the second
term as

EQ

[
e
−

∫
tk

t
rsds Itk−1

p(tk−1, tk)

∣∣∣∣Ft

]
= EQ

[
EQ

[
e
−

∫
tk

t
rsds Itk−1

p(tk−1, tk)

∣∣∣∣Ftk−1

]∣∣∣∣Ft

]
The inner expectation can now be simplified as

EQ

[
e
−

∫
tk

t
rsds Itk−1

p(tk−1, tk)

∣∣∣∣Ftk−1

]
= e

−
∫

tk−1
t

rsds Itk−1

p(tk−1, tk)
EQ

[
e
−

∫ tk

tk−1
rsds

∣∣∣∣∣Ftk−1

]

= e
−

∫ tk−1
t

rsds Itk−1

p(tk−1, tk)
· p(tk−1, tk) = e

−
∫ tk−1

t
rsds

Itk−1 ,

where we have used (2) together with the fact that the objects

Itk−1 , p(tk−1, tk), e
−

∫
tk−1

t

are known at tk−1 and can thus be brought outside the conditional expectation.
The third term in the expression for Π (t; Xk) can be written

EQ

[
e
−

∫ tk

t
rsds

∫ tk

tk−1

e

∫ tk

s
rudu

dDs

∣∣∣∣∣Ft

]
= EQ

[∫ tk

tk−1

e
−

∫ s

t
rudu

dDs

∣∣∣∣∣Ft

]
.

Collecting our results we finally obtain

Π (t; Xk) = EQ

[
e
−

∫
tk

t
rsds

Itk

∣∣∣∣Ft

]
− EQ

[
e
−

∫
tk−1

t
rsds

Itk−1

∣∣∣∣Ft

]
+ EQ

[∫ tk

tk−1

e
−

∫ s

t
rudu

dDs

∣∣∣∣∣Ft

]

= Bt · EQ

[
Itk

Btk

− Itk−1

Btk−1

+
∫ tk

tk−1

1
Bs

dDs

∣∣∣∣∣Ft

]
= Bt · EQ

[
GB

tk
− GB

tk−1

∣∣∣Ft

]
= 0.

In the last equality we have used the fact that the normalized gains process GB
t

defined in (1) is a martingale under Q.
Since this holds for every k and the receiver value of the CREILS is given

by

Π (t; CREILS) =
n∑

k=1

Π(t; Xk) ,

we have thus formally proved the following proposition, which is the main result
of this paper.
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Proposition 4.1 At any time t ≤ t0 the arbitrage free price of the CREILS is
zero, i.e.

Π(t; CREILS) = 0.

Remark 4.2 In this section we have formally worked within a continuous time
model. We note, however, that the results above are true also in a discrete
time framework and that, in particular, Proposition 4.1 remains unchanged.
The proofs remain the same, the difference simply being that all integrals are
interpreted as sums.

5 The effects of approximation errors

As we have seen above, the theoretical value of the swap equals zero regardless
of the model under consideration. In Buttimer et al. (1997), however, the
authors computed a numerical (receiver) value of $50 on a notional amount of
$10,000,000 and even if, in relative terms, this is very close to the true value it
may still be interesting to see exactly where the numerical errors were introduced
in Buttimer et al. (1997).

A closer look at Buttimer et al. (1997) reveals that, compared to their
original model, the following three approximations were made by the authors:

• The original continuous time model was approximated by a discrete time
tree model.

• The dividend process was approximated.

• There was an approximation made in the computation of the bond prices
and hence of the LIBOR rates.

It is clear that numerical computations will in general produce approxima-
tion errors that cause estimated and theoretical values to diverge. However, as
explained below the discrete time method employed by Buttimer et al. (1997)
should still produce the zero result. The reason is that it is a pure arbitrage
argument that holds also in a correctly specified discrete time model.

Even so, Buttimer et al. (1997) find a value that differs from zero. The
basic reason for this appears to be that simple interest and dividend rates are
approximated by continuous rates. We estimate that the errors introduced by
these approximations are in the order of 10−5 to 10−6, which is in line with
the reported results. The side that is long in the real estate swap gains from
an increase in the absolute difference between the short rate and the dividend
yield.

Once simple rates are replaced by continuous rates, other parameters may
also come into play though it is not obvious what the net effect will be. In
Buttimer et al. (1997) it is for instance reported that the variance of the index
and the short rate both have an impact on the value of the real estate swap.
The interpretation given in the main text is that a higher volatility increases
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the value of the swap to the side that is long in the corresponding asset, while
the data given (eg. table III) present an opposite result. Understanding these
results would require precise knowledge of the numerical implementation and
we therefore do not pursue the issue further.

5.1 The discrete time approximation

Within a continuous time model, a discrete time approximation can be intro-
duced in essentially two ways:

• The continuous time valuation equation, such as a pricing partial differ-
ential equation, may be replaced by a discrete time approximation, such
as a finite difference scheme. This can be done as a purely numerical
approximation, and it is not necessarily the case that the numerical ap-
proximation scheme has an economic interpretation as an arbitrage free
discrete time financial model. Thus; in such a case the numerical result is
typically not an exact arbitrage free price, neither in the original contin-
uous time model, nor in any discrete time financial model.

• The continuous time model for the evolution of asset prices may be re-
placed by a discrete time model. The binomial model of Cox et al. (1979),
and its extension to the bivariate binomial model used by Buttimer et al.
(1997), is an example of this procedure. In this approach one requires that
the discrete time model should be arbitrage free, and also that it should
converge to the continuous time model as the length of the time step goes
to zero. As a consequence, in this approach the numerical prices produced
are arbitrage free within the discrete time model. They are, however,
not necessarily arbitrage free w.r.t the continuous time model, but they
are (hopefully good) approximations to the continuous time arbitrage free
prices.

In Buttimer et al. (1997) the approach taken is clearly the latter one, i.e.
the intention is is to approximate the original continuous time model by an
arbitrage free discrete time model. In doing so, an approximation error will
typically be introduced, but for the CREILS the situation is in fact different:

Since, by the results of Sections 3 and 4, the arbitrage free value
of a CREILS equals zero regardless of the model, this should
also hold for any arbitrage free discrete time approximation of the
original model. In other words, the result that the real estate swap
has value zero should remain intact.

As noted in Remark 4.2, the result of Proposition 4.1, that the arbitrage
free value of the CREILS equals zero, remains true also in any arbitrage free
discrete time model. However, for the sake of completeness we now also give an
independent proof of this discrete time result within the framework of Buttimer
et al. (1997).
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Let us thus consider the pricing of a swaplet in the discrete model from the
viewpoint of the side that is long in the real estate index. We stand at time
tk−1 and consider the payoff at time tk with time step ∆ = tk − tk−1. We
denote by Rk the dividends paid out at time tk, and by L the LIBOR rate
for the period. The value of the swaplet Xk at time tk is then given by the
expression

Xk = Itk
− Itk−1 + Rk − ∆ · L · Itk−1 .

From equation (6) in Buttimer et al. (1997) it is clear that the short rate is
quoted as a continously compounded rate. We denote the level of this short
rate at tk−1 by r, and hence the price at tk−1 of a zero coupon bond maturing
at tk is given by

p(tk−1, tk) = e−r∆.

To ensure that the discrete time model is arbitrage free it is necessary and
sufficient that the discounted gain process of the index is a Q-martingale, i.e.
that

e−r∆EQ[Itk
+ Rk|Ftk−1 ] = Itk−1

Furthermore, the (simple) LIBOR rates are given by the standard definition

L(tk−1, tk) =
1/p(tk−1, tk) − 1

∆

=
1/e−r∆ − 1

∆
=

er∆ − 1
∆

. (5)

The arbitrage free value of the swaplet at tk−1 is given by

Π (tk−1; Xk) = e−r∆EQ
[
Xk|Ftk−1

]
and we have the simple calculation

EQ
[
Xk|Ftk−1

]
= EQ

[
Itk

+ Rk|Ftk−1

] − Itk−1 − ∆ · L · Itk−1

= Itk−1

[
er∆ − 1 − (er∆ − 1)

]
= 0.

From this it follows that the value of the swap is indeed equal to zero in a
correctly specified discrete model. Thus the discrete time approximation in
Buttimer et al. (1997) should not per se introduce an approximation error for
the swap. However, in Buttimer et al. (1997) two further approximations are
introduced, which cause the calculated price to differ from zero, and we now go
on to discuss these.

5.2 The dividend approximation

From the discussion in Buttimer et al. (1997) and especially equation (2) it
follows that,

EQ
[
Itk

|Ftk−1

]
= Itk−1e

(r−η)∆, (6)
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which indicates that the dividend yield is (implicitly) quoted as a continuously
compounded rate. However, according to equation (9) in Buttimer et al. (1997),
the dividend in the discrete model paid out at time tk is set to a fraction of the
index at time tk−1:

Rs
k = ∆ηItk−1. (7)

In this expression the dividend yield η is thus quoted on a simple basis, (hence
the superscript) which is not consistent with the continuously compounded in-
terpretation of η in (6) above. In fact it follows directly from (6)-(7) that the
expected payoff at time tk discounted back to tk−1 is:

e−r∆EQ
[
Itk

+ Rs
k| Ftk−1

]
= e−r∆Itk−1

[
e(r−η)∆ + η∆

]
.

Thus the discounted gain process is not a martingale under Q, which means
that the model is not arbitrage free. In more concrete terms: if one insists on
quoting η as continuously compounded as in equation (6), then one has to use
this convention consistently and replace (7) by the continuously compounded
counterpart

Rk = er∆Itk−1

[
1 − e−η∆

]
. (8)

With this expression for Rk, the no arbitrage condition

e−r∆EQ
[
Itk

+ Rk| Ftk−1

]
= Itk−1 ,

is indeed satisfied, and the precise interpretation of (8) is that the amount(
1 − e−η∆

)
Itk−1 is put into the bank account at tk−1, and payed out at tk.

What the authors do in Buttimer et al. (1997) is thus to approximate R in
(8) with Rs in (7). The approximation error can easily be calculated, and is as
follows for the benchmark values in Buttimer et al. (1997):

Rs
k − Rk = η∆Itk−1 + e(r−η)∆Itk−1 − er∆Itk−1

= Itk−1

[
0.04 · 0.25 + e(0.05−0.04)·0.25 − e0.05·0.25

]
= −Itk−1 · 7.53 × 10−5.

Thus Buttimer et al. (1997) somewhat underestimate the dividends.

We end this section by noting that in the continuous model, the discounted ex-
pected dividends over the interval [tk−1, tk] at time tk−1 can easily be computed
as

EQ

[∫ tk

tk−1

e
−

∫ u

tk−1
rsds

ηIudu

∣∣∣∣∣Ftk−1

]
= Itk−1

∫ tk

tk−1

ηe−η(u−tk−1)du

= Itk−1

[
−e

−
∫

u

tk−1
ηds

]tk

tk−1

= Itk−1

[
1 − e−η∆

]
12



If paid out at tk this amount will in the discrete model grow with interest to,

Rk = er∆Itk−1

[
1 − e−η∆

]
,

which is exactly equal to the expression in (8). With this method the discounted
gain process is of course a Q-martingale:

e−r∆E[Itk
+ Rk] = Itk−1e

−η∆ + Itk−1

[
1 − e−η∆

]
= Itk−1 .

It is interesting to note that,

e−η∆ = 1 − η∆ +
(η∆)2

2
− ...

Therefore a first order Taylor expansion gives,

Itk−1

[
1 − e−η∆

] ≈ Itk−1η∆.

This is the term used by Buttimer et al. (1997) and given in (7), apart from
the interest factor.

5.3 The interest rate approximation

In Buttimer et al. (1997), the LIBOR rate is set equal to the spot rate, i.e.

L̂(tk−1, tk) = r.

Now, as noted earlier, r is quoted as continuously compounded, while the LIBOR
rate should be a simple rate, so this is again an inconsistency introduced in
Buttimer et al. (1997). The correct expression for the simple LIBOR rate is
given in (5) and it is easily seen that

L̂(tk−1, tk) = r <
er∆ − 1

∆
= L(tk−1, tk),

so Buttimer et al. (1997) underestimate the LIBOR rate and thus overestimate
the value of the swap for the side that is long in the real estate index. For the
benchmark values used by Buttimer et al. (1997) we have that,

Itk−1

[
(er∆ − 1) − r∆

]
=

(
e0.05·0.25 − 1

) − 0.05 · 0.25

= Itk−1 · 7.85 × 10−5.

This is the magnitude of the overestimate of the value of the swap due to the
interest rate approximation.

5.4 Combined effect

With the approximations introduced in Buttimer et al. (1997) we have,

E
[
Xk|Ftk−1

]
= Itk−1e

(r−η)∆ + Itk−1η∆ − Itk−1 + ∆ · r · Itk−1

= Itk−1

[
e(r−η)∆ − (1 + (r − η)∆)

]
.
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The net effect is roughly that continuous and simple interest rates are confused.
With the benchmark values in Buttimer et al. (1997) the following is ob-

tained,

E
[
Xk|Ftk−1

]
= Itk−1

[
e(0.05−0.04)·0.25 − (1 + (0.05 − 0.04) · 0.25)

]
= Itk−1 · 3.13 × 10−6.

This is of the same order of magnitude as the numbers reported in Buttimer et
al. (1997).

6 Conclusion

We studied the pricing of a real estate index linked swap and found that in
a very general setting, its arbitrage free price is exactly equal to zero. This
sharpens the result of Buttimer et al. (1997) who, under specific assumptions,
found a result close to zero using numerical methods.
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