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Abstract

In this paper we model an evolutionary process with perpet-
ual random shocks, where individuals sample population-specific
strategy and payoff realizations and imitate the most successful
behavior. For finite n-player games we prove that in the limit, as
the perturbations tend to zero, only strategy-tuples in minimal
sets closed under single better replies will be played with posi-
tive probability. If the strategy-tuples in one such minimal set
have strictly higher payoffs than all outside strategy-tuples, then
the strategy-tuples in this set will be played with probability one
in the limit, provided the minimal set is a product set and the
sample is sufficiently large.
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1 Introduction

In most game-theoretical models of learning, the individuals are assumed
to know a great deal about the structure of the game, such as their
own payoff function and all players’ available strategies. However, for
many applications, this assumption is neither reasonable nor necessary;
in many cases, individuals may not even be aware that they are playing a
game. Moreover, equilibrium play may be achieved even with individuals
who have very little knowledge of the game, an observation made already
in 1950 by John F. Nash. In his unpublished Ph.D. thesis (1950), he
referred to it as “the ‘mass-action’ interpretation of equilibrium points.”

Under this interpretation:

“It is unnecessary that the participants have full knowledge of
the total structure of the game, or the ability and inclination to go
through any complex reasoning processes. But the participants
are supposed to accumulate empirical information on the relative

advantages of the various pure strategies at their disposal.”

In the present paper, we develop a model in this spirit, where individ-
uals are only required to know their own available pure strategies and a
sample of the payoffs that a subset of these strategies have earned in the
past. We use an evolutionary framework with perpetual random shocks
similar to Young (1993), but our assumption of individual behavior is
different. Whereas the individuals in his model play a myopic best reply
to a sample distribution of their opponents’ strategies, the individuals in
our model imitate other individuals in their own population. Imitation is

a behavior with both experimental, empirical, and theoretical support.!

'For experimental support of imitation, see for example, Huck et al. (1999, 2000)

and Duffy and Feltovich (1999), for empirical support see Graham (1999), Wermers
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More specifically, we assume that in every period, individuals are
drawn at random from each of n arbitrary-size populations to play a
finite n-player game. Each of these individuals observes a sample from
a finite history of her population’s past strategy and payoff realizations.
Thereafter, she imitates by choosing the most attractive strategy in her
sample. This could, for instance, be the strategy with the highest aver-
age payoff, or that with the highest maximum payoff. In the special case
when each population consists of only one individual, this behavior can
be interpreted as a special kind of reinforcement learning.? In this case,
each individual plays the most successful strategy in a sample of her
own previous strategy choices. With some small probability, the indi-
viduals also make errors or experiment, and instead choose any strategy
at random from their set of strategies.® Altogether, this results in an
ergodic Markov process, which we denote imitation play, on the space
of histories. We study the stationary distribution of this process as the
experimentation probability tends to zero.

Imitation in a stochastic setting has previously been studied by Rob-
son and Vega-Redondo (1996), who modify the framework of Kandori
et al. (1993) to allow for random matching. More precisely, they as-

sume that in each period, individuals are randomly matched for a finite

(1999), and Griffiths et al. (1998), and for theoretical support, see Bjornerstedt and

Weibull (1996) and Schlag (1998, 1999).
2This behavior is related to one of the interpretations of individual behavior in Os-

borne and Rubinstein (1998), where each individual first samples each of her available

strategies once and then chooses the strategy with the highest payoff realization.
3An alternative interpretation, which provides a plausible rationale for experi-

mentation and is consistent with the knowledge of individuals in the model is the
following: if and only if the sample does not contain all available strategies, then
with a small probability, the individual instead picks a strategy not included in the

sample at random.



number of rounds and tend to adopt the strategy with the highest av-
erage payoff across the population. Robson and Vega-Redondo (1996)
assume either single- or two-population structures and obtain results for
symmetric 2x2 games and two-player games of common interest.

Our model differs from these and other stochastic learning models,
and has several advantages. First, we are able to prove general results,
applicable to any finite n-player game, about the limiting distribution of
imitation play. We are thus not restricted to the two classes of games in
Robson and Vega-Redondo (1996), or even to a generic class of games,
as in Young (1998). Second, we find that this distribution has some in-
teresting properties. For instance, it puts probability one on an efficient
set of outcomes in a large class of n-player games. Third, the speed of
convergence of our process is relatively high. We show that in 2x2 Co-
ordination Games, the expected first passage time may be considerably
shorter than in Young (1993), Kandori et al. (1993), and Robson and
Vega-Redondo (1996), for small experimentation probabilities.

The perturbed version of imitation play is a regular perturbed Markov
process. This implies that the methods employed by Young (1993) can
be used to calculate the states that will be played with positive probabil-
ity by the stationary distribution of the process as the experimentation
probability tends to zero, i.e. the stochastically stable states.

We prove three results which facilitate this calculation and enable us
to characterize the set of such states. First, we show that from any initial
state, the unperturbed version of imitation play converges to a state
which is a repetition of a single pure-strategy profile, a monomorphic
state. Hence, the stochastically stable states of the process belong to

the set of monomorphic states.



Second, we prove for the perturbed process that in the limit, as the
experimentation probability tends to zero, only pure-strategy profiles in
particular subsets of the strategy-space are played with positive prob-
ability. These sets, which we denote minimal sets closed under single
better replies (minimal cusber sets), are minimal sets of strategy pro-
files such that no player can obtain a weakly better payoff by deviating
unilaterally and playing a strategy outside the set.

Minimal cusber sets are similar to Sobel’s (1993) definition of non-
equilibrium evolutionary stable (NES) sets for two-player games and to
what Noldeke and Samuelson (1993) call locally stable components in
their analysis of extensive form games. They are also closely related to
minimal sets closed under better replies (Ritzberger and Weibull, 1995).
We show that every minimal set closed under better replies contains a
minimal cusber set and that if a minimal cusber set is a product set, then
it is also a minimal set closed under better replies. The relationship be-
tween minimal cusber set and the limiting distribution of imitation play
should be contrasted with Hurkens’s (1995) and Young’s (1998) findings
that adaptive best-reply processes for generic games selects pure-strategy
profiles in minimal sets closed under best replies.

Finally, we show that in a certain class of games, imitation play se-
lects efficient outcomes. If the pure-strategy profiles in a minimal cusber
set have strictly higher payoffs than all other pure-strategy profiles, then
the pure-strategy profiles in this set will be played with probability one in
the limit, provided that the minimal cusber set is a product set. This is a
generalization of previous results for games of common interest. Robson
and Vega-Redondo (1996) prove that in their model a Pareto-dominant

pure-strategy profile is selected in two-player games of common interest.



Applied to 2x2 games, our three results give clear predictions. In
Coordination Games, imitation play selects the strictly Pareto-superior
Nash equilibrium. This result differs sharply from the predictions in
Young’s (1993) and Kandori et al.’s (1993) models, where the stochas-
tically stable states correspond to the risk-dominant equilibria, but it is
consistent with the predictions of Robson and Vega-Redondo’s (1996)
model for symmetric Coordination Games. However, if neither equilib-
ria Pareto dominates the other, the latter model may select the risk-
dominant equilibrium, whereas both equilibria are played with positive
probability in our model. In games without pure Nash equilibria, all
four monomorphic states are stochastically stable.

The paper is organized as follows. In Section 2, we define the un-
perturbed and perturbed versions of imitation play. In Section 3, we
derive general results for the limiting distribution of the process. In Sec-
tion 4, we apply our results to 2x2 games and compare our findings to
those in previous literature. In Section 5, we discuss an extension of the
model and in Section 6, we conclude. Omitted proofs can be found in

the Appendix.

2 Model

The model described below is similar to Young (1993), but the sampling
procedure is modified and individuals employ a different decision-rule.
Let I' be a n-player game in strategic form. Let X; be the finite set of
pure strategies z; available to player i € {1,...,n} = N and let A(X;) =
{p e R
product sets X = [[. X; and O(X) =[],

7

p'1 = 1} be player i’s set of mixed strategies p;. Define the
A(X5).
To each player role ¢ in the game I' corresponds a finite and non-

empty population of individuals. These populations need not be of the



same size, nor need they be large. The population of individuals corre-
sponding to player role 7 have payoffs represented by the utility function
7; + X — II;, where II; C R.* Expected payoffs are represented by the
function w; : O(X) — R. Note that we write “players” when referring
to the game I' and “individuals” when referring to the members of the
populations.

The play proceeds as follows. Let t = 1,2, ... denote successive time
periods. The game I' is played once every period. In period ¢, one indi-
vidual is drawn at random from each of the n populations and assigned
to play the corresponding role. An individual in role i chooses a pure
strategy ! from a subset of her strategy space X;, according to a rule
that will be defined below. The pure-strategy profile z* = (¢, ..., 2t) is
recorded and referred to as play at time t. The history of plays up to

t=m+1 - x'), where m (4 < m) is a given

time ¢ is the sequence h! = (x
positive integer, the memory size of all individuals.

Let h be an arbitrary history. Denote a sample of s (1 < s < m/2)
elements from the m most recent strategy choices by individuals in pop-
ulation ¢ by w; € X7, and the corresponding payoff realizations by
v; € II{. For any history h, the mazimum average correspondence,
a; + X7 x II} — X;, maps each pair of strategy sample w; and pay-
off sample v; to the pure strategy (or the set of strategies) with the
highest average payoff in the sample. Following Young (1993), we can
think of the sampling process as beginning in period ¢ = m + 1 from
some arbitrary initial sequence of m plays h™. In this period and every

period thereafter, each individual in player role i inspects a pair (w;, v;)

and plays a pure strategy z; € a; (w;,v;). This defines a finite Markov

4 Actually, utility functions need not be identical within each population for any
of the results in this paper. It is sufficient if each individual’s utility function is a

positive affine transformation of a population-specific utility function.



process P*™0 on the finite state space H = X™ of histories. Given a
history h! = ('™ . 2') at time ¢, the process moves to a state of
the form Al = (xt-™2 2! ') in the next period. Such a state is

called a successor of ht. We call the process P%m™%0

imatation play with
memory m and sample size s.
As an example, consider imitation play with memory m = 6 and

sample size s = 3 in the 2 x 3 game in Figure 1.

a b c
Al12,2]0,0]3,3
B{0,0]1,110,0

FIGURE 1

Let h = ((A,a), (B, a),(A,b), (B,b), (A, c),(B,c)) be the initial his-
tory. Assume that the individual in the role of the row player (player 1)
draws the last three plays from this history, such that w, = (B, A, B)
and v; = (1,3,0). This gives an average payoff of 3 to strategy A and
1/2 to strategy B. Hence, the individual in role of the row player will
choose strategy A in the next period. Further, assume that the indi-
vidual in the role of the column role (player 2) draws the first three
plays, such that wy = (a,a,b) and vo = (2,0,0). This gives an aver-
age payoff of 1 to strategy a and 0 to strategy b. Strategy ¢ cannot
be chosen since it is not included in the sample. Hence, the individ-
ual in the column role will choose strategy a in the next period. Al-
together, this implies that the unperturbed process will move to state
= ((B,a), (A,b),(B,b), (A, c),(B,c), (A, a)) in the next period.

The perturbed process can be defined as follows. In each period,
there is some small probability ¢ > 0 that each individual ¢ drawn to
play chooses a pure strategy at random from X;, instead of according

to the imitation rule. The event that ¢ experiments is assumed to be
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independent of the event that j experiments for every j # i and across
time periods. The process defined in this way is denoted P*™*¢ and
it is referred to as imitation play with memory m, sample size s, and

experimentation probabilities e.

3 Stochastic Stability

In this section, we turn our attention to the limiting distribution of
imitation play as the experimentation probability tends to zero. We first
show that we can apply some of the tools in Young (1993) to calculate
this distribution. Thereafter, we prove that it puts positive probability
only on the pure-strategy profiles in particular subsets of the strategy-

space.

3.1 Preliminaries

In what follows, we will make use of the following definitions. A recurrent
class of the process P“™%" is a set of states such that there is zero
probability of moving from any state in the class to any state outside,
and there is a positive probability of moving from any state in the class to
any other state in the class. We call a state b’ absorbing if it constitutes a
singleton recurrent class and we refer to a state h, = (x,z, ..., z), where
x is any pure-strategy profile from X, as a monomorphic state. In other
words, a monomorphic state is a state where the individuals in each
player role played the same pure strategy in the last m periods. If each
player i has | X;| > 1 strategies in the game I', then there are | X| =
1, |Xi| monomorphic states in this game. The following result shows
that the monomorphic states correspond one to one with the recurrent

classes of imitation play.

Theorem 1 All monomorphic states are absorbing states of the unper-



turbed process P*™*0.  From any state, the process converges almost

surely to a monomorphic state.

Proor: It is evident that any monomorphic state is an absorb-
ing state, since any sample from a monomorphic state will contain one
strategy only. We shall prove that if s/m < 1/2, then the monomorphic
states are the only recurrent classes of the unperturbed process. Con-
sider an arbitrary initial state ht = (z'=™%1 .. 2'). If s/m < 1/2, there

is a positive probability that all individuals drawn to play sample from

t—s+1

%

t—s+1

xtferl’ . :

L2t (ie. 4, for i € N, sample x o xband T s, ) AN
every period from ¢ 4+ 1 to t + s inclusive. All of them play the pure
strategy with the highest average payoff in their sample. Without loss
of generality, assume that this is a unique pure strategy z} for each of
the player roles (if there is more than one pure strategy, all of them have
positive probability according to the assumptions). With positive prob-
ability, all the individuals drawn to play thereafter sample only from
plays more recent than z' in every period from ¢ + s + 1 to t + m in-
clusive. Since all of these samples have the form w} = (z},...,z}) and

*
i’.-

v¥ = (nf, ..., mF), the unique pure strategy with the highest payoff in the

)

sample is z7. Hence, there is a positive probability of at time ¢ + m
obtaining a history At = (z*,...,2*), a monomorphic state. It fol-
lows that for s/m < 1/2, the only recurrent classes of the unperturbed

process are the monomorphic states. ll

By the same logic as in Young (1993), the perturbed process P "<
is a reqular perturbed Markov process, and hence it has a unique station-

»S,€

ary distribution u® satisfying the equation p° P %% = ;. Moreover, by
Theorem 4 in Young (1993) lim. ¢ ¢ = p° exists, and p° is a stationary

distribution of P*™s0,
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The following concepts are due to Freidlin and Wentzell (1984), Fos-
ter and Young (1990), and Young (1993). A state h € H is stochastically
stable relative to the process P*™*¢ if lim._ou°(h) > 0. Let h’ be a
successor of h and let x be the right-most element of h'. A mistake in
the transition from h to h’ is a component z; of x that does not have the
maximum average payoff in any sample of strategies and payoffs from h.
For any two states h, h', the resistance, r, is the total number of mis-
takes involved in the transition h — A’ if ' is a successor of h, otherwise
r = oo. For each pair of distinct monomorphic states, an xy-path is a
sequence of states ( = (hy, ..., h,) beginning in h, and ending in h,. The
resistance of this path is the sum of the resistances on the edges that
compose it. Let 75, be the least resistance over all zy-paths. Construct
a complete directed graph with | X| vertices, one for each recurrent class.
The weight on the directed edge h, — hy, is r,. A tree rooted at h, is a
set of | X| — 1 directed edges such that, from every vertex different from
h., there is a unique directed path in the tree to h,. The resistance of
such a rooted tree ¥(x) is the sum of the resistances 7./, on the | X|—1
edges that compose it. The stochastic potential p(x) of a monomorphic
state h, is the minimum resistance over all trees rooted at h,.

The following theorem describes the long-run behavior of the per-

turbed process as the experimentation probability tends to zero.

Theorem 2 The stochastically stable states of P*™*¢ are the monomor-

phic states with minimum stochastic potential.

ProOOF: This follows from Theorem 1 above and Theorem 4 in Young

(1993). W

In order to characterize the sets of monomorphic states with mini-

mum stochastic potential, the better-reply correspondence v =T[,cn 7 :
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O(X) — X turns out to be useful. This concept, due to Ritzberger and
Weibull (1995), is defined as follows:

Vi (p) = {zi € X | w; (wi,p-i) > w; (p)}, Vi € N. (1)

If p € O(X) has support only on a single pure-strategy profile x € X,
we write 7, (x) instead of v, (p) in order to simplify the notation.
The following lemma is helpful in calculating the stochastic potential

of a monomorphic state.

Lemma 1 The resistance from hy to hy, is positive for any y # x. It is

equal to one if and only if y € (v;(x),x_;) for some player i.

PrOOF: The first statement follows since a monomorphic state con-
sists of a repetition of a single strategy profile and since only strategies
included in the sample can be selected in the absence of perturbations.
The resistance is equal to one if y € (v;(z), z_;) for some player i, since
then h, can be reached if an individual in player role ¢ plays y; by mistake,
and m — 1 consecutive individuals in player role i thereafter draw a sam-
ple including strategy y;. Moreover, it is clear that if y ¢ (v,(z), z_;) for
all 7, then a single mistake is insufficient to make any individual change
strategy. Hence, the resistance of the transition from h, to hy is equal

to one only if y € (v,(x), z_;) for some player i. B

In order to illustrate how to calculate the stochastic potential under
imitation play, we present an example of a two-player game. In the game
in Figure 2, every player has three strategies, labeled A, B and C' for the
first player and a, b and ¢ for the second player. The game has one strict
Nash equilibrium (A, a), where both players gain less than in a mixed
equilibrium with the probability mixture 1/2 on B (b) and 1/2 on C (c)

for the first (second) player.”

[Sl{[eM)

))-

U=
U=

SThere is also a third equilibrium, ((2, 1, 1), (2,1,
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Al1,1]0,0]0,0

B(10,0]3,2|0,3

C10,0]0,3](3,2
FIGURE 2

Denote by 27 € {A, B,C} some strategy choice by player 1 and
z9 € {a,b, c} some strategy choice by player 2. To find the stochastically
stable monomorphic states, construct directed graphs with nine vertices,
one for each monomorphic state. In Figure 3, we illustrate two such trees.
The numbers in the squares correspond to the resistances of the directed
edges and the numbers in the circles represent the payoffs associated
with the monomorphic states. It is easy to check that for s > 2, the
stochastic potential p (A4, a) = 8, whereas all other monomorphic states
have a stochastic potential of 9. Hence, the monomorphic state h4 4 is

stochastically stable.

FIGURE 3-Minimum-resistance trees rooted at h(4q) and h(gy), respectively.

3.2 Stochastically Stable Sets

In this subsection, we will show that the stochastically stable states of

imitation play correspond to pure-strategy profiles in particular subsets
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of the strategy-space. In order to do this, we will introduce some new

concepts and prove four lemmata.

Lemma 2 If 2’ € (v,(z),z_;) for some player i € N, then the follow-
ing inequality holds for the stochastic potentials p (z) and p(x') of the

monomorphic states h, and hy, respectively:
p(x)=p(a'). (2)

PRrROOF: By definition, p () is the minimum resistance over all trees
rooted at state h,. Construct a tree rooted at h,s by taking (one of) the
tree(s) with minimum resistance rooted at h,, adding the directed edge
from x to 2’ and deleting the directed edge from z’. By Lemma 1 above,
the resistance of the added edge is exactly one and that of the deleted
edge at least one, so the total resistance of the new tree is p (z) at most.

Definition 1 A non-empty set of strategy profiles V is closed under
single better replies, or a cusber set, if, for each v € V and i € N,
(v;(z),x_;) C V. Such a set is called a minimal cusber set if it does

not properly contain another cusber set.

From the definition it follows that every game contains a minimal cus-
ber set and that any minimal closed sets under better replies (Ritzberger
and Weibull, 1995) contains a minimal cusber set. However, unlike min-
imal closed sets under better replies, minimal cusber sets are not neces-

sarily product sets (see for example the game in Figure 4).

Let a better-reply path be a sequence of pure-strategy profiles !, z2...,

such that for every k € {1,...,l — 1}, there exists a unique player, say

player 4, such that %! € (v,(2%),2*,) and 2/ # 2.
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Lemma 3 For any two strategy profiles x, x' in a minimal cusber set'V,
there exist better-reply paths x,....x' and 2, ..., x, which connect these

strategy profiles.

PrOOF: Let V be a minimal cusber set. Suppose that the claim is
false and there exist two pure strategy profiles z, 2’ € V' such that there
is no better-reply path from x to z’. Consider all better-reply paths,
starting at strategy profile x. There are a finite number of paths and a
finite number of pure strategy profiles along all these paths. Collect all
these strategy profiles in a set. By construction this set is a cusber set
and by assumption it does not contain the vertex z’, contradicting the

assumption of V' being a minimal cusber set. B

To every strategy profile z € X of a minimal cusber set V' corresponds
a monomorphic state h, which is a repetition of the associated pure-
strategy profile. We call the set of these monomorphic states an a-set

and denote it by V. In other words, V={h, € H:z € V}.

Lemma 4 All monomorphic states in an a-set have equal stochastic

potential.

PrOOF: On the one hand, by Lemma 3, there exists a better-reply
path from an arbitrary strategy profile x in a minimal cusber set to any
other strategy profile 2’ in the same minimal cusber set. Let the sequence
x,...,2" be such a path. By Lemma 2, the following inequalities hold
for the stochastic potential of the corresponding monomorphic states
hyy .o by -

p(x) > .. =p(). (3)
On the other hand, by applying Lemma 3 once more, there exist a better-

reply path from the strategy tuple z’ to the strategy tuple z. Using
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Lemma 2, gives:
pa) = .. = p(x). (4)

From the inequalities in (3) and (4) it follows that p () = p (2') for the

monomorphic states h, and h,,. B

Based on Lemma 4, we can define the stochastic potential of an a-set

as the stochastic potential of any monomorphic state contained in it.

Lemma 5 For every monomorphic state which does not belong to any

a-set, there exists a monomorphic state with lower stochastic potential.
PRrROOF: See the Appendix.
We are now in a position to state the following main theorem.

Theorem 3 The stochastically stable states of P“™*% are the monomor-

phic states contained in a-set(s) with minimum stochastic potential.

PrOOF: The theorem follows immediately from Lemma 4, Lemma

5, and Theorem 2. W

Theorem 3 establishes a relation between the stochastically stable
states of imitation play and minimal cusber sets, which is similar to the
relationship between the stochastically stable states and minimal curb
sets first proved for a particular dynamic by Hurkens (1995), and later
modified for a different dynamic by Young (1998, p. 111).

We say that a finite set Y of pure-strategy profiles strictly Pareto
dominates a pure-strategy profile x if for any pure-strategy profiley € Y,
7 (y) > m; (x), for all i. The following theorem shows that if the sample
size is sufficiently large, imitation play selects sets of efficient outcomes

in a large class of games.

16



Theorem 4 If a minimal cusber set V is a product set and strictly
Pareto dominates all pure-strategy profiles outside V', then there exists
an s* > 1, such that for every sample size s > s*, the stochastically stable

states of P*™*¢ are the monomorphic states contained in the a-set V.
PRrROOF: See the Appendix.

The intuition behind this result is that for a sufficiently large sample
size, the transition from a state inside V to any state outside V requires
more mistakes than the number of player roles, while the opposite transi-
tion requires one mistake per player role at most. The following corollary

follows immediately from Theorem 4.

Corollary 1 If a strict Nash Equilibrium x strictly Pareto dominates
all other pure-strateqy profiles, then there exists an s* > 1, such that for

every sample size s > s*, h, is a unique stochastically stable state of

Pom.s.e

The requirement in Theorem 4 that V' be a product set is necessary,

as shown by the game in Figure 4.

a b c
Al1,110,0]0,0
B{0,0]0015,3
C10,0]2,4|5,4

FIGURE 4

In this game, the minimal cusber set V' = {(C,b), (C,¢),(B,c)}
strictly Pareto dominates all pure-strategy profiles outside V. Let V be
the a-set associated with V. It is evident that two mistakes are enough
to move from monomorphic state h(4,) to any monomorphic state in

V. We will show that two mistakes are also enough to move from V to

17



a monomorphic state outside of V. Suppose the process is in the state
hc,) at time t. Further, suppose that the individual in player role 1
plays B instead of C' at time t + 1 by mistake. This results in play
(B, c) at time ¢+ 1. Assume that the individual in player role 2 makes a
mistake and plays b instead of ¢, and that the individual in player role 1
plays C' in period ¢ + 2. Hence, the play at time t 4+ 2 is (C,b). Assume
that the individuals in both player roles sample from period ¢t — s + 2
to period t + 2 for the next s periods. This means that the individuals
in player role 1 choose to play B and the individuals in player role 2
choose to play b from period t + 3 to period t + s+ 2. There is a positive
probability that from period ¢ + s 4+ 3 through period t + m + 2, the
individuals in both player roles will sample from periods later than ¢+ 2.
Hence, by the end of period t + m + 2, there is a positive probability
that the process will have reached the monomorphic state hp ) outside
V. It is now straightforward to show that all the monomorphic states

hiaa)s M), hice), and h(p,) have equal stochastic potential.

4 Applications to 2x2 Games

In this section, we apply the results from Section 3 to 2x2 games. First,
we find the stochastically stable states in three special classes of games
and second, we study the speed of convergence in general 2x2 games.
In all of the following games, we denote player 1’s strategies A and B,

and player 2’s strategies a and b, respectively.

4.1 Stochastically Stable States

In this subsection, we analyze the stochastic stability in games with
two strict Nash equilibria, games with one strict Nash equilibrium and
games without Nash equilibria in pure strategies. We start with the

class of games with a unique strict Nash equilibrium, which includes, for
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example, Prisoners’ Dilemma Games.

Corollary 2 In 2x2 games with a unique strict Nash equilibrium, the

corresponding monomorphic state is a unique stochastically stable state.

PrOOF: Games in this class contain exactly one minimal cusber set,
consisting of the unique strict Nash equilibrium. By Theorem 3, the cor-
responding monomorphic state must be the unique stochastically stable

state. H

We now proceed with the class of games with two strict Nash equi-
libria. Coordination Games and Hawk-Dove Games are two examples

of games in this class.

Corollary 3 In 2x2 games with two strict Nash equilibria, where one
Nash Equilibrium strictly Pareto dominates the other, there exists an
s* > 1, such that for every sample size s > s*, the unique stochastically
stable state corresponds one to one with the monomorphic state of the

Pareto dominant equilibrium.

PrOOF: Games in this class contain two minimal cusber sets, either
{(A,a)} and {(B,b)} or {(A,b)} and {(B,a)}. Without loss of gener-
ality, assume that {(A,a)} and {(B,b)} are the minimal cusber sets. If
(A, a) strictly Pareto dominates (B, b), it must also strictly Pareto dom-
inate the two other pure-strategy profiles, (A4,b) and (B, a). Hence, by
Corollary 1, the monomorphic state h(4q) is the unique stochastically

stable state.

This implies that, unlike Young’s (1993) process of adaptive play,
imitation play does not generally converge to the risk-dominant equi-

librium in Coordination Games. Our result is consistent with Robson
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and Vega-Redondo’s (1996) result for generic symmetric Coordination
Games. However, for the non-generic case when m;(A, a) = m;(B,b), the
stochastically stable states in their model depend on the details of the
adjustment process, whereas imitation play always selects both equilib-

ria.

Proposition 1 In 2x 2 games with two strict Nash equilibria, where nei-
ther strictly Pareto dominates the other, the stochastically stable states

correspond one to one with the monomorphic states of the two equilibria.
PROOF: See the Appendix.

Finally, we consider games which do not have any Nash equilibrium
in pure strategies. One of the games in this class is the Matching Pennies

Game.

Corollary 4 In 2x2 games without Nash equilibria in pure strategies,
the stochastically stable states correspond one to one with the four monomor-

phic states of the game.

PrOOF: Games in this class contain exactly one minimal cusber set
{(A,a),(A,b),(B,a),(B,b)}. By Theorem 3, the four corresponding

monomorphic states are all stochastically stable. B

4.2 Speed of Convergence

In this subsection, we analyze the speed of convergence of imitation play.

Proposition 2 In 2x 2 games, the mazximum expected first passage time
for the perturbed process P from any state to a stochastically stable

state is at most 62 units of time, for some positive constant 6.
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PrOOF: The claim follows from the observation that in any 2x2
game, the transition from an arbitrary state to a stochastically stable

monomorphic state requires two mistakes at most. W

This result should be contrasted with the speed of convergence in
Young (1993), Kandori et al. (1993), and Robson and Vega-Redondo
(1996). In Young’s (1993) model, the maximum expected first passage
for a 2x2 Coordination Game is at least 0y~ where v depends on the
sample size and both players’ payoffs. In Kandori et al. (1993) the max-
imum expected first passage time is of the order dxprre V%, where N
is the size of the population and u is determined by the game’s payoff
structure. In Robson and Vega-Redondo (1996), the corresponding fig-
ure is dgye~?, where ¢ is a positive integer independent of the payoffs
and the current state. Thus, when v, Nu, and ¢ are greater than two
and ¢ is sufficiently small, then imitation play converges considerably

faster than the processes in these three models.

5 Extensions

All results in this paper hold for a more general class of imitation dy-
namics. Let the maximum correspondence be a correspondence which
maps a strategy sample w; and the associated payoff sample v; to a strat-
egy with the highest payoff in the sample. This correspondence defines
a new Markov process on the space of histories with the same set of
absorbing states and (for a sufficiently large sample size) stochastically
stable states as imitation play. Moreover, if each population consists of
arbitrary shares of individuals who make choices based on the maximum
correspondence and the maximum average correspondence, respectively,
then the results of this paper still hold. Hence, the model allows for a

certain kind of population heterogeneity, where individuals make their
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choices based on different rules.

6 Conclusion

In this paper we develop an evolutionary model with perpetual random
shocks where individuals, in every period, choose the strategy with the
highest average payoff in a finite sample of past play. We denote the
resulting Markov process imitation play and prove that, provided infor-
mation is sufficiently incomplete and the sample size sufficiently large,
the stochastically stable states of imitation play are repetitions of the
pure-strategy profiles in minimal closed sets under single better-replies.
We call such sets minimal cusber sets. These sets are related to minimal
closed sets under better replies. We also prove that if the pure-strategy
profiles in a minimal cusber set have strictly higher payoffs than all out-
side pure-strategy profiles, then, provided that the minimal cusber set
is a product set and the sample is sufficiently large, the pure-strategy
profiles in this set will be played with probability one in the limit as the
experimentation probability tends to zero. Our results give clear pre-
dictions in 2x2 games. In Coordination Games, where one equilibrium
strictly Pareto dominates the other, imitation play selects the strictly
Pareto superior Nash equilibrium. If neither equilibria strictly Pareto
dominates the other, then both are stochastically stable. Finally, we
show that the speed of convergence for imitation play in many cases is
higher than in other known models.

The objective of this paper is to derive predictions for general finite
games in a world of truly boundedly rational individuals. The assump-
tion underlying the model, that individuals do not make decisions based
on the predictions of their opponents’ future strategies, but rather based

on which strategies have been successful in the past, is maybe most ap-
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pealing in the class of games where it is costly to obtain information
about the opponents. A high cost may be due to the size or the com-
plexity of the game or to institutional factors preventing the release of
information about the opponents. It would be particularly interesting
to test the implications of our model against empirical or experimental

evidence in this class of games.

7 Appendix

PrOOF OF LEMMA 5: For every strategy profile not included in any
minimal cusber set, there exists a finite better-reply path which ends

T-1
)

in some minimal cusber set. Let this path be z!, 22, ... 2!, where

x! is an arbitrary strategy profile that does not belong to any minimal
cusber set and 7 the first monomorphic state on the path belonging
to some minimal cusber set, V. By Lemma 2, it follows that the fol-

lowing inequalities hold for the stochastic potential of the corresponding

monomorphic states:

0 (331) > p (332) > ...>p (JJT’l) > p (a:T) . (5)

We will show that in fact, p (z7 1) > p (27). Note that p (z7 1) is
the minimum resistance over all trees rooted at the state h,r-1. Denote
(one of) the tree(s) that minimizes resistance by S (z”~). Find in
the tree & (fol) a directed edge from some vertex h, such that y is
in the minimal cusber set V, to some other vertex h, such that ¥ is
outside this minimal cusber set. It will be shown later that there is
only one such directed edge in the minimal resistance tree & (fol).
Delete in the tree & (277!) the directed edge h, — h, and add the
directed edge h,r-1 — h,r. As a result, we obtain a tree & (y) rooted
at the state h,. By Lemma 1, the resistance of the deleted edge is

greater than one, and the resistance of the added edge is one. Therefore,
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the total resistance of the new tree & (y) is less than the stochastic

potential p (fol). Moreover, by Lemma 4, the monomorphic state h,r
has the same stochastic potential as the monomorphic state h,,. Hence,
p (2771 > p(«7).

We will now consider the tree S (z71) and show that there is only
one directed edge from the monomorphic states which consists of a rep-
etition of a strategy profile in a minimal cusber set to a state which
consists of a repetition of a strategy profile outside the cusber set.
Suppose there is a finite number of such directed edges h,; — h.;,
j = 1,2,...,1, where y', ...,y are strategy profiles in the minimal cus-
ber set and 2z, ..., 2! strategy profiles outside the cusber set. It is clear
that there cannot be an infinite number of outgoing edges since the game
I' is finite. Recall that a tree rooted at vertex h,; is a set of [ X| —1

directed edges such that, from every vertex different from h,;, there is a

Y7o
unique directed path in the tree to h,;. The resistance of any directed
edge h,; — h.;, j =1,2,..., 1 is at least two. By Lemma 3, there exists a
finite better-reply path from vertex y' to vertex y? in the minimal cusber
set. Let y!, f1, ..., ¥, 4? be such a path.

Consider the vertex hyi. There are two mutually exclusive cases:

1.a) there exists a directed path from hy: to one of the vertices hyz2, ..., by

y
in the initial tree & (z71), or
1.b) there exists a directed path from A to hye.

In case 1.a) by deleting the directed edge h,» — h,: and adding the
directed edge h,», — hp to the tree & (fol), we obtain a new tree
31 (271) with lower stochastic potential than  (27!), because the
resistance of the directed edge y' — f! is one. This means that we are

done, since it contradicts the assumption of & (a:Tfl) being a minimal

resistance tree.
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In case 1.b), we will use the following procedure for vertex hi: delete
the initial directed edge from hy1 and add the directed edge hp — hye.
As above, there are two cases:

2.a) there exists a directed path from h 2 to one of the vertices hype, ..., hy,

Y
in the initial tree & (z71), or
2.b) there exists a directed path from hy2 to hy.

In case 2.a), we obtain a new tree 32 (xT_l) with lower stochas-

Tfl), because the resistance of the directed edge

tic potential than & (a:
hyi — hy2 is one. This means that we are done, since it contradicts the
assumption of & (a:T_l) being a minimal resistance tree.

In case 2.b), we repeat the procedure for vertices hy2, hys, ... The
better-reply path 3!, 1, ..., f¥,y? from y' to 3? is finite. Hence, after

k + 1 steps at most, we have constructed a tree &” (xT_l) rooted at the

state h,r—1 with lower stochastic potential than & (a:T_l). |

PrOOF OF THEOREM 4: Suppose V' C X is a minimal cusber set
which strictly Pareto dominates all pure-strategy profiles outside V. We

will prove Theorem 4 using two lemmata.

Lemma 6 The transition from any monomorphic state h, to a monomor-
phic state h, such that x € V' requires at most n mistakes, independently

of the sample size.

PrOOF: Assume that the process is in state h, and that the indi-
viduals in all player roles simultaneously mistakes, so that x is played
instead of z. Since, by assumption, m;(x) > m;(2) for all player roles i,
if the individuals in all player roles sample the most recent plays for the

next m — 1 periods, this will take the process to the state h,. B
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Lemma 7 There exist an s* > 1, such that for sample size s > s*, the
transition from a monomorphic state h, such that x € V to a monomor-

phic state h, such that z ¢ V' requires requires at least n + 1 mistakes.

PRrOOF: The transition from h, to a monomorphic state h, such that
z ¢ V can be made if individuals in one of the player roles, say ¢, make
(at least) s consecutive mistakes and play a strategy z; ¢ V; every time.
If the individuals in player role 7, thereafter sample from the most recent
plays for m — s periods, the Markov chain will end up in the state h,
where z = (z;,z_;) . Hence, if s > n, this kind of transition will require
more than n mistakes.

Alternatively, the transition from h, to a monomorphic state h, such
that z ¢ V' can be made if a single individual in one of the player roles,
say 7, makes a mistake and play z; and individuals in other player roles
thereafter (or before this) make sufficiently many mistakes to make the
average payoff of z; lower than that of z; in a sample of the most recent
plays. The number of mistakes required for this kind of transition will
be as low as possible if 7;(x) is as low as possible, m;(z) is as high as
possible, and the minimum expected payoff is achieved when i plays z;,
an individual in a different player role j plays ¢; ¢ V;, and all other
individuals drawn to play x_;.

Let 7 be the minimum payoff to any player role for any pure-strategy
profile in V, let = be the minimum payoff to any player role for any
pure-strategy profile outside V', and let @ be the mazimum payoff to
any player role for any pure-strategy profile outside V. By assumption,

7 > 7w > m. By the above logic, the transition from h, to h, will require
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at least n + 1 mistakes if

(s—n)t+(n—1)x

P > 7 (6)
=
S>n(7vr—_)+£—7’r 7)

T—T7

Note that the right-hand side in the last expression is greater than or

equal to n. Hence, if s > s* = ML n 7

T

, then the transition from a
monomorphic state h,, such that x € V, to a monomorphic state h,,

such that z ¢ V', requires more than n mistakes. B

Let h, be an arbitrary monomorphic state such that y ¢ V' and con-
sider a minimal resistance tree  (y) rooted at h,. Let h, be a monomor-
phic state such that x € V' and such that there is a directed edge from
h, to a state h,, with z ¢ V, in the tree 3 (y). Create a new tree S ()
rooted at h, by adding a directed edge from h, to h, and deleting the
directed edge from h, to h, in the tree  (y). By Lemma 7, the deleted
edge has a resistance greater than n provided that s > s*, and by Lemma
6, the added edge has a resistance of at most n. Hence, for s > s* the
total resistance of the new tree S (z) is less than that of & (y). Theorem
4 now follows by Lemma 4, according to which that all monomorphic

states of an a-set have equal stochastic potential. l

PROOF OF PROPOSITION 3: As in the proof of Corollary 3, without
loss of generality, assume that {(A4,a)} and {(B,b)} are the minimal
cusber sets of the game. By Theorem 3, it follows that monomorphic
states h(4,q) and h(pyp) are the only two candidates for the stochastically
stable states. Suppose that only one of these monomorphic states is
stochastically stable, say h(4q). Let 3(A,a) be a minimum resistance
tree with resistance p(A,a) rooted at h(aqy. In this tree, there is an

outgoing edge from the monomorphic state hp ).
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First, note that the resistance of this edge is at least two, such that
at least two mistakes are needed to move from the monomorphic state
h(py)- This follows since m1(B,b) > m(A,b) and m2(B,b) > ma(B, a).

Second, note that two mistakes are sufficient to move the process from
the monomorphic state (4 4) to the monomorphic state h(p ). Suppose
the process is in state h(4,). Since neither of the Nash equilibria is
strictly Pareto superior, either m(B,b) > m(A,a) and/or mo(B,b) >
m2(A, a). Without loss of generality, assume that the first of these in-
equalities holds. Then, there is a positive probability that the individuals
in both player roles simultaneously make mistakes at time t. There is
also a positive probability that the individuals in player role 1 draw the
fixed sample (:7*%! .. 2!) with corresponding payoffs (7:**!, .. )
and that the individuals in player role 2 sample from plays earlier than
2% from period ¢ + 1 to, and including, period ¢t + s — 1. With positive
probability individuals in player role 1 play B and individuals in player
role 2 play a in all of these periods. This implies that if the individuals
in both player roles sample from plays more recent than z! ! from pe-
riod t 4+ s to, and including, period ¢t + s — 1 4+ m, 1’s sample will only
contain strategy B and 2’s sample will always contain strategy b, and
possibly, strategy a. Furthermore, the average payoff of strategy b will
be mo(B,b) as compared to an average payoff of my(B, a) for strategy a,
when the latter strategy is included in the sample. Hence, with positive
probability the process will be in state h(pp) at time t +s — 1+ m.

Finally, create a new tree rooted at hpy by deleting the outgoing
edge from the monomorphic state h(gp) in the tree (A, a) and adding
an edge from h4q) to h(pp. The resistance of the deleted edge is at
least two and that of the added edge two. Hence, the total resistance

of the new tree is at most p(A, a), thereby contradicting the assumption

28



that only h(4 ) is stochastically stable. B
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