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Abstract

The timing option embedded in a futures contract allows the short
position to decide when to deliver the underlying asset during the last
month of the contract period. In this paper we derive, within a very gen-
eral incomplete market framework, an explicit model independent formula
for the futures price process in the presence of a timing option. We also
provide a characterization of the optimal delivery strategy, and we analyze
some concrete examples.

Key words: Futures contract, timing option, optimal stopping
∗Corresponding author. Support from the Tom Hedelius and Jan Wallander Foundation is

gratefully acknowledged. Both authors are grateful to B. Näslund, J. Kallsen, C. Kuehn, an
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1 Introduction

In standard textbook treatments, a futures contract is typically defined by the
properties of zero spot price and continuous (or discrete) resettlement, plus a
simple no arbitrage condition at the last delivery day. If the underlying price
process is denoted by Xt and the futures price process for delivery at T is
denoted by F (t, T ) this leads to the well known formula

F (t, T ) = EQ [XT | Ft] , 0 ≤ t ≤ T (1)

where Q denotes the (not necessarily unique) risk neutral martingale measure.
In practice, however, there are a number of complicating factors which are

ignored in the textbook treatment, and in particular it is typically the case
that a standard futures contract has several embedded option elements. The
most common of these options are the timing option, and the end-of-the-month
option, the quality option, and the wild card option. All these options are
options for the short end of the contract, and they work roughly as follows.

• The timing option is the option to deliver at any time during the last
month of the contract.

• The end of the month option is the option to deliver at any day during
the last week of the contract, despite the fact that the futures price for
the last week is fixed on the first day of that week and then held constant.

• The quality option is the option to choose, out of a prespecified basket of
assets, which asset to deliver.

• The wild card option is, for example for bond futures, the option to initiate
delivery between 2 p.m. and 8 p.m. in the afternoon during the delivery
month of the contract. The point here is that the futures price is settled
at 2 p.m. but the trade in the underlying bonds goes on until 8 p.m.

The purpose of the present paper is to study the timing option within a
very general framework, allowing for incomplete markets, and our goal is to
investigate how the general formula (1) has to be modified when we introduce a
timing option element. Our main result is given in Theorems 4.2 and 4.3 where
it is shown that, independently of any model assumptions, the futures price in
the presence of the timing option is given by the formula

F (t, T ) = inf
t≤τ≤T

EQ [Xτ | Ft] . (2)

where τ varies over the class of optional stopping times, and inf denotes the
essential infimum. This formula is of course very similar to the pricing formula
for an American option. Note, however, that (2) does not follow directly from
standard theory for American contracts, the reason being that the futures price
is not a price in the technical sense. The futures price process instead plays the
role of the cumulative dividend process for the futures contract, which in turn
can be viewed as a price-dividend pair, with spot price identically equal to zero.
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Furthermore we prove that the optimal delivery policy τ̂ (t), for a short con-
tract entered at t, is given by

τ̂ = inf {t ≥ 0; F (t, T ) = Xt} . (3)

We also study some special cases and show the following.

• If the underlying X is the price of a traded financial asset without divi-
dends, then it is optimal to deliver immediately, so τ̂ (t) = t and thus

F (t, T ) = Xt. (4)

• If the underlying X has a convenience yield which is greater than the short
rate, then the optimal delivery strategy is to wait until the last day. In
this case we thus have τ̂ (t) = T and

F (t, T ) = EQ [XT | Ft] , (5)

which we recognize from (1) as the classical formula for futures contracts
without a timing option.

Option elements of futures contract have also been studied earlier. The
quality option is discussed in detail in Gay and Manaster (1984), and the wild
card option is analyzed in Cohen (1995) and Gay and Manaster (1986). The
timing option is (among other topics) treated in Boyle (1989) but theoretical
results are only obtained for the special case when X is the price process of a
traded underlying asset. In this setting, and under the added assumption of a
constant short rate, the formula (4) is derived.

The organization of the paper is as follows. In Section 2 we set the scene
for the financial market. Note that we make no specific model assumptions at
all about market completeness or the nature of the underlying process, and our
setup allows for discrete as well as continuous time models. In Section 3 we
derive a fundamental equation, the solution of which will determine the futures
price process. We attack the fundamental equation by first studying the discrete
time case in Section 4.1, and prove the main formula (2). In Section 4.2 we prove
the parallel result in the technically more demanding continuous time case. We
finish the main paper by some concrete financial applications, and in particular
we clarify completely under which conditions the futures price process, including
an embedded timing option, coincides with the classical formula (1). At the
other end of the spectrum, we also investigate under which conditions immediate
delivery is optimal.

2 Setup

We consider a financial market living on a stochastic basis (Ω,F ,F, Q), where
the filtration F = {Ft}0≤t≤T satisfies the usual conditions. We allow for both
discrete and continuous time, so the contract period is either the interval [0, T ] or
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the set {0, 1, . . . , T} . To set the financial scene we need some basic assumptions,
so for the rest of the paper we assume that there exists a predictable short rate
process r, and a corresponding money account process B. In continuous time
B has the dynamics

dBt = rtBtdt. (6)

In the discrete time case, the short rate at time t will be denoted by rt+1 so the
bank account B has the dynamics

Bt+1 = (1 + rt+1) Bt. (7)

In this case the short rate is assumed to be predictable, i.e. rt is Ft−1-measurable
(rt is known already at t − 1) for all t, with the convention F−1 = F0.

The market is assumed to be free of arbitrage in the sense the measure Q
above is a martingale measure w.r.t the money account B for the given time
horizon. Note that we do not assume market completeness. Obviously; if the
market is incomplete, the martingale measure Q will not be unique, so in an
incomplete setting the pricing formulas derived below will depend upon the
particular martingale measure chosen. We discuss this in more detail in Section
5.

We will need a weak boundedness assumption on the short rate.

Assumption 2.1 For the rest of the paper we assume the following.

• In the continuous time case we assume that the interest rate process is
predictable, and that there exists a positive real number c such that

rt ≥ −c, (8)

with probability one, for all t.

• Defining the money account as usual by B by Bt = exp
(∫ t

0 rsds
)

we
assume that

EQ [BT ] < ∞. (9)

• In the discrete time case we assume the interest rate process is predictable,
and that there exists a positive real number c such that

1 + rn ≥ c, (10)

with probability one, for all n.

Remark 2.1 We note that the if we define C by

Ct = sup
t≤τ≤T

EQ [Bτ | Ft] (11)

where τ varies over the class of stopping times, then the inequality EQ [BT ] < ∞
easily implies

Ct < ∞ (12)

Q − a.s. for all t ∈ [0, T ].
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Within this framework we now want to consider a futures contract with an
embedded timing option.

Assumption 2.2 We assume the existence of an exogenously specified non-
negative adapted cadlag process X. The process X will henceforth be referred to
as the index process, and we assume that

EQ [Xt] < ∞, 0 ≤ t ≤ T (13)

The interpretation of this assumption is that the index process X is the
underlying process on which the futures contract is written.

For obvious reasons we want to include contracts like commodity futures,
index futures, futures with an embedded quality option, and also futures on a
non-financial index like a weather futures contract. For this reason we do not
assume that X is the price process of a traded financial asset in an idealized
frictionless market. Typical choices of X could thus be one of the following.

• Xt is the price at time t of a commodity, with a non trivial convenience
yield.

• Xt is the price at time t of a, possibly dividend paying, financial asset.

• Xt = min
{
S1

t , . . . , Sn
t

}
where S1

t , . . . , Sn
t are price processes of financial

assets (for example stocks or bonds). This setup would be natural if we
have an embedded quality option.

• Xt is a non financial process, like the temperature at some prespecified
location.

We now want to define a futures contract, with an embedded timing option,
on the underlying index process X over the time interval [0, T ]. If, for example,
we are considering a US interest rate future, this means that the interval [0, T ]
corresponds to the last month of the contract period. Note that we thus assume
that the timing option is valid for the entire interval [0, T ]. The analysis of the
futures price process for times prior to the timing option period, is trivial and
given by standard theory. If, for example, we let the timing option be active
only in the interval [T0, T ], then we immediately obtain

F (t, T ) = EQ [F (T0, T )| Ft] , 0 ≤ t ≤ T0, (14)

where F (T0, T ) is given by the theory developed in the present paper. We can
now give formal definition of the (continuous time) contract. See below for the
discrete time modification.

Definition 2.1 A futures contract on X with final delivery date T , including
an embedded timing option, on the interval [0, T ], with continuous resettlement,
is a financial contract satisfying the following clauses.
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• At each time t ∈ [0, T ] there exists on the market a futures price quo-
tation denoted by F (t, T ). Furthermore, for each fixed T , the process
t 7−→ F (t, T ) is a semimartingale w.r.t. the filtration F. Since T will
be fixed in the discussion below, we will often denote F (t, T ) by Ft.

• The holder of the short end of the futures contract can, at any time t ∈
[0, T ], decide whether to deliver or not. The decision whether to deliver at
t or not is allowed to be based upon the information contained in Ft.

• If the holder of short end decides to deliver at time t, she will pay the
amount Xt and receive the quoted futures price F (t, T ).

• If delivery has not been made prior to the final delivery date T , the holder
of the short end will pay XT and receive F (T, T ).

• During the entire interval [0, T ] there is continuous resettlement as for a
standard futures contract. More precisely; over the infinitesimal interval
[t, t + dt] the holder of the short end will pay the amount

dF (t, T ) = F (t + dt, T ) − F (t, T ).

• The spot price of the futures contract is always equal to zero, i.e. you can
at any time enter or leave the contract at zero cost.

• The cash flow for the holder of the long end is the negative of the cash
flow for the short end.

The important point to notice here is that the timing option is only an option
for the holder of the short end of the contract. For discrete time models, the
only difference is the resettlement clause which then says that if you hold a
short future between t and t + 1, you will pay the amount F (t + 1, T )− F (t, T )
at time t + 1.

Our main problem is the following.

Problem 2.1 Given an exogenous specification of the index process X, what
can be said about the existence and structure of the futures price process F (t, T )?

3 The Fundamental Pricing Equation

We now go on to reformulate Problem 2.1 in more precise mathematical terms,
and this will lead us to a fairly complicated infinite dimensional system of equa-
tions for the determination of the futures price process (if that object exists).
We focus on the continuous time case, the discrete time case being very similar.
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3.1 The Pricing Equation in Continuous Time

For the given final delivery date T , let us consider a fixed point in time t ≤ T
and discuss the (continuous time) futures contract from the point of view of
the short end of the contract. From the definition above, it is obvious that the
holder of the short end has to decide on a delivery strategy, and we formalize
such a strategy as a stopping time τ , with t ≤ τ ≤ T, Q − a.s. If the holder
of the short end uses the particular delivery strategy τ , then the arbitrage free
value of her cash flows is given by the expression

EQ

[
e
−
∫ τ

t
rsds (Fτ − Xτ ) −

∫ τ

t

e
−
∫ u

t
rsds

dFu

∣∣∣∣Ft

]
. (15)

The first term in the expectation corresponds to the cash flow for the actual
delivery, i.e. the short end delivers Xτ and receives the quoted futures price
Fτ , and the integral term corresponds to the cash flow of the continuous reset-
tlement. Since the timing option is an option for the holder of the short end,
she will try to choose the stopping time τ so as to maximize the arbitrage free
value. Thus, the value of the short end of the futures contract at time t is given
by

sup
t≤τ≤T

EQ

[
e
−
∫

τ

t
rsds (Fτ − Xτ ) −

∫ τ

t

e
−
∫

u

t
rsds

dFu

∣∣∣∣Ft

]
, (16)

where, for short sup denotes the essential supremum. We now recall that, by
definition, the spot price of the futures contract is always equal to zero, and
we have thus derived our fundamental pricing equation, which is in fact an
equilibrium condition for each t.

Proposition 3.1 The futures price process F , if it exists, will satisfy for each
t ∈ [0, T ], the fundamental pricing equation

sup
t≤τ≤T

EQ

[
e
−
∫

τ

t
rsds (Fτ − Xτ ) −

∫ τ

t

e
−
∫

u

t
rsds

dFu

∣∣∣∣Ft

]
= 0, (17)

where τ varies over the class of stopping times.

Some remarks are now in order.

Remark 3.1

• At first sight, equation (17) may look like a standard optimal stopping
problem, but it is in fact more complicated than that. Obviously: for
a given futures price process F , the left hand side of (17) represents a
standard optimal stopping problem, but the point here is that the futures
process F is not an a priori given object. Instead we have to find a process
F such that the optimal stopping problem defined by the left hand side
of (3) has the optimal value zero for each t ≤ T . Thus, our formalized
problem is as follows.
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• It is not at all obvious that there exists a solution process F to the fun-
damental equation 3.1, and it is even less obvious that a solution will be
unique. These questions will be treated below.

• It may seem that we are only considering the futures price process from
the perspective of the seller of the contract. However; the total cash flows
sum to zero, so if the fundamental pricing equation above is satisfied, the
(spot) value of the contract is zero also to the buyer (and if exercised
in a non optimal fashion, the value would be positive for the buyer and
negative for the seller).

The main problems to be studied are the following.

Problem 3.1 Consider an exogenously given index process X.

• Our primary problem is to find a process {Ft; 0 ≤ t ≤ T} such that (17)
is satisfied for all t ∈ [0, T ].

• If we manage to find a process F with the above properties, we would also
like to find, for each fixed t ∈ [0, T ], the optimal stopping time τ̂t realizing
the supremum in

sup
t≤τ≤T

EQ

[
e
−
∫

τ

t
rsds (Fτ − Xτ ) −

∫ τ

t

e
−
∫

u

t
rsds

dFu

∣∣∣∣Ft

]
. (18)

We also note that even if we manage to prove the existence of a solution process
F , there is no guarantee of the existence of an optimal stopping time τ̂t, since
in the general case we can (as usual) only be sure of the existence of ε-optimal
stopping times.

3.2 Some Preliminary Observations

A complete treatment of the pricing equation will be given in the next two
sections, but we may already at this stage draw some preliminary conclusions.

Lemma 3.1 The futures price process has to satisfy the condition

F (t, T ) ≤ Xt, ∀t ≤ T, (19)
F (T, T ) = XT . (20)

Proof. The economic reason for (19) is obvious. If, for some t, we have
F (t, T ) > Xt then we enter into a short position (at zero cost) and immediately
decide to deliver. We pay Xt and receive F (t, T ) thus making an arbitrage
profit, and immediately close the position (again at zero cost).

A more formal proof is obtained by noting that the fundamental equation
(17) implies that

EQ

[
e
−
∫ τ

t
rsds (Fτ − Xτ ) −

∫ τ

t

e
−
∫ u

t
rsds

dFu

∣∣∣∣Ft

]
≤ 0, (21)
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for all stopping times τ with t ≤ τ ≤ T . In particular, the (21) holds for τ = t
which gives us

EQ [Ft − Xt| Ft] ≤ 0, (22)

and since both F and X are adapted, the inequality (19) follows. The boundary
condition (20) is an immediate consequence of no arbitrage.

We finish this section by proving that for the very special case of zero short
rate, we can easily obtain an explicit formula for the futures price process. Note
that, for simplicity of notation, the symbol inf henceforth denotes the essential
infimum.

Proposition 3.2 If r ≡ 0, then

F (t, T ) = inf
t≤τ≤T

EQ [Xτ | Ft] . (23)

Proof. With zero short rate the fundamental equation reads as

sup
t≤τ≤T

EQ

[
(Fτ − Xτ ) −

∫ τ

t

dFu

∣∣∣∣Ft

]
= 0. (24)

Using the fact that
∫ τ

t dFu = Fτ − Ft we thus obtain

sup
t≤τ≤T

EQ [Ft − Xτ | Ft] = 0. (25)

Since F is adapted this implies

Ft = − sup
t≤τ≤T

EQ [−Xτ | Ft] = inf
t≤τ≤T

EQ [Xτ | Ft] . (26)

In the Section 4 we will prove that the formula (23) is in fact valid also in
the general case without the assumption of zero short rate.

3.3 The Pricing Equation in Discrete Time Case

By going through a completely parallel argument as above, it is easy to see that
in a discrete time model the fundamental equation (17) will have the form

sup
t≤τ≤T

EQ

[(
τ∏

n=t+1

1
1 + rn

)
(Fτ − Xτ ) −

τ∑

n=t+1

(
n∏

u=t+1

1
1 + ru

)
∆Fn

∣∣∣∣∣Ft

]
= 0,

(27)
where ∆Fn = Fn − Fn−1.

4 Determining the Futures Price Process

In this section we will solve the fundamental pricing equations (17) and (27),
thus obtaining an explicit representation for the futures price process. We start
with the discrete time case, since this is technically less complicated.
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4.1 The Discrete Time Case

We will not analyze equation (27) directly, but rather use a standard dynamic
programming argument as a way of attacking the problem.

To do this we consider the decision problem of the holder of the short end
of the futures contract. Suppose that at time n you have entered into the short
contract. Then you have the following two alternatives:

1. You can decide to deliver immediately, in which case you will receive the
amount

Fn − Xn. (28)

2. You can decide to wait until n + 1. This implies that at time n + 1 you
will obtain the amount Fn − Fn+1. The arbitrage free value, at n, of this
cash flow is given by the expression

EQ

[
Fn − Fn+1

1 + rn+1

∣∣∣∣Fn

]
=

1
1 + rn+1

EQ [Fn − Fn+1| Fn] , (29)

where we have used the fact that r is predictable. The value of your
contract, after having received the cash flow above, is by definition zero.

Obviously you would like to make the best possible decision, so the value at
time n of a short position is given by

max
[
(Fn − Xn) ,

1
1 + rn+1

EQ [Fn − Fn+1| Fn]
]

. (30)

On the other hand, the spot price of the futures contract is by definition always
equal to zero, so we conclude that

max
[
(Fn − Xn) ,

1
1 + rn+1

EQ [Fn − Fn+1| Fn]
]

= 0, (31)

for n = 1, . . . T − 1.
We now recall the following basic result from optimal stopping theory (see

Snell 1952).

Theorem 4.1 (Snell Envelope Theorem) With notations as above, define
the optimal value process V by

Vt = inf
t≤τ≤T

EQ [Xτ | Ft] (32)

where τ varies of the class of stopping times. Then V is characterized by the
property of being the largest submartingale dominated by X.

The process V above is referred to as the (lower) Snell Envelope of X with
horizon T , and we may now state and prove our main result in discrete time.
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Theorem 4.2 Given the index process X, and a final delivery date T , the fu-
tures price process F (t, T ) exists uniquely and coincides with the lower Snell
envelope of X with horizon T , i.e.

F (t, T ) = inf
t≤τ≤T

EQ [Xτ | Ft] , (33)

where τ varies over the set of stopping times. Furthermore, if the short position
is entered at time t, then the optimal delivery time is given by

τ̂ (t) = inf {k ≥ t; Fk = Xk} . (34)

Proof. We will show that there exists a unique futures price process F and
that it is in fact the largest submartingale dominated by X . The result then
follows directly from the Snell Envelope Theorem.

We start by noting that, since by Assumption 2.1 1 + rn > 0, we can write
(31) as

max
[
(Fn − Xn) , EQ [Fn − Fn+1| Fn]

]
= 0, (35)

and since F is adapted this implies

Fn = −max
[
−Xn, −EQ [Fn+1| Fn]

]
. (36)

This gives us the recursive system

Fn = min
[
Xn, EQ [Fn+1| Fn]

]
, n = 0, . . . , T − 1 (37)

FT = XT , (38)

where the boundary conditions follows directly from no arbitrage. This recursive
formula for F proves existence and uniqueness.

We now go on to prove that F is a submartingale dominated by X . From
(37) we immediately have

Fn ≤ EQ [Fn+1| Fn] ,

which proves the submartingale property, and we also have

Fn ≤ Xn,

which in fact was already proved in Lemma 3.1.
It remains to prove the maximality property of F and for this we use back-

wards induction. Assume thus that Z is a submartingale dominated by X . In
particular this implies that ZT ≤ XT , but since FT = XT we obtain ZT ≤ FT .
For the induction step, assume that Zn+1 ≤ Fn+1. We then want to prove that
this implies the inequality Zn ≤ Fn. To do this we observe that the submartin-
gale property of Z together with the induction assumption implies

Zn ≤ EQ [Zn+1| Fn] ≤ EQ [Fn+1| Fn]

By assumption we also have Zn ≤ Xn, so we have in fact

Zn ≤ min
[
Xn, EQ [Fn+1| Fn]

]
,

and from this inequality and (37) we obtain Zn ≤ Fn.
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4.2 The Continuous Time Case and Some Examples

We now go on to find a formula for the futures price process in continuous
time and, based on the discrete time results of the previous section, we of
course conjecture that also in continuous time we have the formula F (t, T ) =
inft≤τ≤T EQ [Xτ | Ft]. Happily enough, this also turns out to be correct, but a
technical problem is that in continuous time it is impossible to just mimic the
discrete time arguments above, since we can no longer use induction. Thus we
have to use other methods, and we will rely on some very nontrivial results from
continuous time optimal stopping theory. All these results can be found in the
highly readable Appendix D in Karatzas and Shreve (1998).
From now on, we assume the following further integrability condition on the
underlying process X :

EQ

[
sup

0≤t≤T
Xt

]
< ∞ (39)

Before proving our main result, we need the following technical result.

Lemma 4.1 Suppose that the index process Xt satisfies condition (39) and con-

sider its Snell Envelope F (t, T ) = inft≤τ≤T EQ [Xτ | Ft]. Let Ht = e
−
∫ t

0
rudu,

where rt satisfies the weak boundness Assumption 2.1. If τ ≤ T is a stopping
time such that the stopped submartingale F τ is a martingale, then the stochastic

integral
∫ t

0 e
−
∫ s

0
rudu

dF τ
s is a martingale.

Proof. We recall that by Assumption 2.2, the index process Xt is supposed to
be a nonnegative adapted càdlàg process. Hence if τ is a stopping time such that
the stopped submartingale F τ is a martingale, it is indeed a càdlàg martingale
and consequently we need only to verify that

EQ



(∫ T

0

H2
s d[F τ ]s

) 1
2

 < ∞ (40)

in order to guarantee that the stochastic integral
∫ t

0
e
−
∫ s

0
rudu

dF τ
s is a mar-

tingale by using the Burkholder-Davis-Gundy inequalities (see Revuz and Yor
(1994), p.151, and Protter (2004) p.193). Here, the process [F τ ]t is the quadratic
variation of F τ (for further details, see Protter (2004) p.66). Since Ht =

e
−
∫

t

0
rudu and rt is uniformly bounded from below (Assumption 2.1), we ob-

tain the following estimates

EQ



(∫ T

0

H2
s d[F τ ]s

) 1
2

 = EQ



(∫ T

0

e
−2
∫

s

0
rudu

d[F τ ]s

) 1
2



≤ EQ



(∫ T

0

e2csd[F τ ]s

) 1
2
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≤ ecT EQ
[
([F τ ]T )

1
2

]

Since the process F is given by the Snell Envelope of X , it is a nonnegative
submartingale dominated by X , hence we can use the Burkholder-Davis-Gundy
inequalities and get

EQ
[
([F τ ]T )

1
2

]
≤ kEQ

[
sup

0≤t≤T
F τ

t

]
≤ kEQ

[
sup

0≤t≤T
Ft

]
≤ kEQ

[
sup

0≤t≤T
Xt

]

where k is a suitable constant. Since X satisfies (39), the last term of the inequal-

ity is finite. Hence, we can conclude that the stochastic integral
∫ t

0 e
−
∫

s

0
rudu

dF τ
s

is a martingale.

We may now state our main result in continuous time.

Theorem 4.3 Under Assumption 2.1 and if (39) holds, there exists, for each
fixed T , a unique futures price process F (t, T ) solving the the fundamental equa-
tion (17). The futures price process is given by the expression

F (t, T ) = inf
t≤τ≤T

EQ [Xτ | Ft] . (41)

Furthermore, if X has continuous trajectories, then the optimal delivery time
τ̂(t), for the holder of a short position at time t is given by

τ̂ (t) = inf {u ≥ t; F (u, T ) = Xu} . (42)

Proof. We first show that if we define F by (41) then F solves the pricing
equation (17). Having proved this we will then go on to prove that if F solves
(17), then F must necessarily have the form (41).

We thus start by defining a process Ft as the lower Snell envelope of X , i.e.

Ft = inf
t≤τ≤T

EQ [Xτ | Ft] , (43)

and we want to show that for this choice of F , the fundamental pricing equation
(17) is satisfied. From the (continuous time version of) Snell Envelope Theorem,
we know that F is a submartingale. Thus (for fixed t) the stochastic differential

e
−
∫ u

t
rsds

dFu,

is a submartingale differential, and since F ≤ X we see that the inequality

EQ

[
e
−
∫ τ

t
rsds (Fτ − Xτ ) −

∫ τ

t

e
−
∫ u

t
rsds

dFu

∣∣∣∣Ft

]
≤ 0, (44)

will hold for every stopping time τ with t ≤ τ ≤ T . To show that F defined as
above satisfies (17) it is therefore enough to show that for some stopping time
τ we have

EQ

[
e
−
∫ τ

t
rsds (Fτ − Xτ ) −

∫ τ

t

e
−
∫ u

t
rsds

dFu

∣∣∣∣Ft

]
= 0. (45)
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For simplicity of exposition we now assume that, for each t, the infimum in
the optimal stopping problem

inf
t≤τ≤T

EQ [Xτ | Ft] , (46)

is realized by some (not necessarily unique) stopping time τ̂t. The proof of the
general case is more complicated and therefore relegated to the appendix. From
general theory (see Karatzas and Shreve (1998) p. 355, Theorem D9) we cite
the following facts.

1. With F defined by (43) we have

Fτ̂t = Xτ̂t . (47)

2. The stopped process F τ̂t defined by

F τ̂t
s = Fs∧τ̂t , (48)

where ∧ denotes the minimum, is a martingale on the interval [t, T ].

Choosing τ = τ̂t, equation (45) thus reduces to the equation

EQ

[∫ τ̂t

t

e
−
∫ u

t
rsds

dFu

∣∣∣∣∣Ft

]
= 0, (49)

which we can write as

EQ

[∫ T

t

e
−
∫

u

t
rsds

dF τ̂t
u

∣∣∣∣∣Ft

]
= 0, (50)

and since, by a small variation of Lemma 4.1, the process
∫ s

t
e
−
∫ u

t
rvdv

dF τ̂t
u is

a martingale, (50) is indeed satisfied. This proves existence.
In order to prove uniqueness let us assume that, for a fixed T , a process F

solves (17). We now want to prove that F is in fact the lower Snell envelope of
X , i.e. we have to prove that F is the largest submartingale dominated by X .

We first note that, after premultiplication with the exponential factor

e
−
∫ t

0
rsds

,

the fundamental equation (17) can be rewritten as
∫ t

0

e
−
∫ u

0
rsds

dFu = inf
t≤τ≤T

EQ

[∫ τ

0

e
−
∫ u

0
rsds

dFu + e
−
∫ τ

0
rsds (Xτ − Fτ )

∣∣∣∣Ft

]

(51)
Defining the process V by

Vt =
∫ t

0

e
−
∫ u

0
rsds

dFu, (52)

14



we thus see that V is the lower Snell envelope of the process Z, defined by

Zt =
∫ t

0

e
−
∫

u

0
rsds

dFu + e
−
∫

t

0
rsds (Xt − Ft) , (53)

i.e.
Vt = inf

t≤τ≤T
EQ [Zτ | Ft] , (54)

From the Snell Theorem it now follows that V is a submartingale, and since
the exponential integrand in (52) is positive, this implies that also F is a sub-
martingale. We have already proved in Proposition 3.1 that F ≤ X so it only
remains to prove maximality. To this end, let us assume that G is a submartin-
gale dominated by X . We now want to prove that Gt ≤ Ft for every t ≤ T .
To this end we choose a fixed but arbitrary t. For simplictiy of exposition we
now assume that, for a fixed t, there exists and optimal stopping time attaining
the infimum in (54), and the denote this stopping time by τ̄t. The proof in the
general case is found in the appendix. We obtain from (17)

EQ

[
e
−
∫ τ̄t

t
rsds (Fτ̄t − Xτ̄t) −

∫ τ̄t

t

e
−
∫ u

t
rsds

dFu

∣∣∣∣Ft

]
= 0 (55)

Since F ≤ X and F is a submartingale, this implies that

Fτ̄t = Xτ̄t , (56)

and that

EQ

[∫ τ̄t

t

e
−
∫ u

t
rsds

dFu

∣∣∣∣Ft

]
= 0, (57)

which in turn (after premultiplication by an exponential factor) implies that

EQ [Vτ̄t | Ft] = Vt. (58)

Since V is a submartingale, this implies that the stopped process V τ̄t is in fact
a martingale on the time interval [t, T ], which in turn implies that the stopped
process F τ̄t is a martingale on [t, T ]. In particular we then have

Ft = EQ [Fτ̄t | Ft] = EQ [Xτ̄t | Ft] , (59)

where we have used (56). On the other hand, from the assumptions on G we
have

Gt ≤ EQ [Gτ̄t | Ft] ≤ EQ [Xτ̄t | Ft] = Ft, (60)

which proves the maximality of F .
The second statement in the theorem formulation follows directly from The-

orem D.12 in Karatzas and Shreve (1998).

As a more or less trivial consequence, we immediately have the following
result for futures on underlying sub- and supermartingales.
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Proposition 4.1 If X is a submartingale under Q, then

F (t, T ) = Xt, (61)

and it is always optimal to deliver at once, i.e.

τ̂ (t) = t. (62)

If X is a supermartingale under Q, then

F (t, T ) = EQ [XT | Ft] , (63)

and it is always optimal to wait, i.e.

τ̂ (t) = T. (64)

Proof. Follows at once from the representation (41).

From this result we immediately have some simple financial implications.

Proposition 4.2 Assume that one of the following conditions hold

1. X is the price process of a traded financial asset without dividends, and
the short rate process r is nonnegative with probability one.

2. X is the price process of a traded asset with a continuous dividend yield
rate process δ such that δt ≤ rt for all t with probability one.

3. X is an exchange rate process (quoted as units of domestic currency per
unit of foreign currency) and the foreign short rate rf has the property
that rf

t ≤ rt for all t with probability one.

Then the futures price is given by

F (t, T ) = Xt, (65)

and it is always optimal to deliver at once, i.e.

τ̂ (t) = t. (66)

Proof. The Q dynamics of X are as follows in the three cases above

dXt = rtXtdt + dMt,

dXt = Xt [rt − δt] dt + dMt,

dXt = Xt

[
rt − rf

t

]
dt + dMt,

where M is the generic notation for a martingale. The assumptions guarantee,
in each case, that X is a Q-submartingale and we may thus apply Proposition
4.1.

With an almost identical proof we have the following parallel result, which
shows that under certain conditions the futures price process is not changed by
the introduction of a timing option.
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Proposition 4.3 Assume that one of the following conditions hold

1. X is the price process of an asset with a convenience yield rate process γ
such that γt ≥ rt for all t with probability one.

2. X is an exchange rate process (quoted as units of domestic currency per
unit of foreign currency) and the foreign short rate rf has the property
that rf

t ≥ rt for all t with probability one.

Then the futures price is given by

F (t, T ) = EQ [XT | Ft] , (67)

and it is always optimal to wait until T to deliver, i.e.

τ̂ (t) = T. (68)

5 Conclusions and Discussion

The main result of the present paper is given in Theorems 4.2 and 4.3 where we
provide the formula

F (t, T ) = inf
t≤τ≤T

EQ [Xτ | Ft] (69)

which gives us the arbitrage free futures price process in terms of the underlying
index X and the martingale measure Q. In Section 4.2 we also gave some
immediate implications of the general formula, but these results are of secondary
importance. We now have a number of comments on the main result (69).

• We see that the formula (69) for the futures price in the presence of a
timing option looks very much like the standard pricing formula for an
American option. Therefore, one may perhaps expect that (69) is a direct
consequence of the well known pricing formula for American contracts. As
far as we can understand, this is not the case. As noted above, the “futures
price process” F (t, T ) is not a price process at all, since its economic role
is that of a cumulative dividend process for the futures contract (which
always has spot price zero).

From a more technical point of view, we also see that the determination of
the F process is quite intricate, since F has to solve the infinite dimensional
fundamental equation (17) (which is in fact an equilibrium condition for
each t) or the corresponding discrete time equation (31).

• We assumed absence of arbitrage but we did not make any assumptions
concerning market completeness. In an incomplete market, the martingale
measure Q is not unique, so in this case formula (69) does not provide us
with a unique arbitrage free futures price process. In an incomplete set-
ting, the interpretation of Theorems 4.2 and 4.3 is then that, given absence
of arbitrage, the futures price process has to be given by formula (69) for
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some choice of a martingale measure Q. This is of course completely par-
allel to the standard risk neutral pricing formula which, in the incomplete
setting, gives us a price of a contingent claim which depends upon the
martingale measure chosen. Note however, that some of the results above
are independent of the choice of the martingale measure. In particular
this is true for Proposition 4.2.

A A Proof of Theorem 4.3 in the General Case

In this Appendix we provide the proof of Theorem 4.3 for the general case, i.e.
without assuming that the infima in (46) and (54) are attained.

We start with the existence proof and to this end we define the process F
(as before) by

Ft = inf
t≤τ≤T

EQ [Xτ | Ft] , (70)

and we have to show that F thus defined satisfies the fundamental pricing
equation

sup
t≤τ≤T

EQ

[
e
−
∫ τ

t
rsds (Fτ − Xτ ) −

∫ τ

t

e
−
∫ u

t
rsds

dFu

∣∣∣∣Ft

]
= 0. (71)

As in the simplified proof above it is easy to see that

EQ

[
e
−
∫

τ

t
rsds (Fτ − Xτ ) −

∫ τ

t

e
−
∫

u

t
rsds

dFu

∣∣∣∣Ft

]
≤ 0, (72)

for all stopping times τ with t ≤ τ ≤ T . Thus; to prove that F satisfies (71) it
is enough to prove that there exists a sequence of stopping times {τn}∞n=1 such
that

EQ

[
e
−
∫ τn

t
rsds (Fτn − Xτn) −

∫ τn

t

e
−
∫ u

t
rsds

dFu

∣∣∣∣Ft

]
≥ − 1

n
, (73)

for all n. To do this we consider a fixed t and define τn by

τn = inf {s ≥ t; Fs ≥ Xs (1 − 1/n)} . (74)

Like in the earlier proof we can rewrite the stochastic integral in (73) as

∫ τn

t

e
−
∫

u

t
rsds

dFu =
∫ T

t

e
−
∫

u

t
rsds

dF τn
u ,

and it can be shown (see Karatzas and Shreve 1998) that the stopped process
F τn is a martingale. Thus, by Lemma 4.1 we get that the stochastic differential

e
−
∫ u

t
rsds

dF τn
u
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is a martingale differential, and we obtain

EQ

[
e
−
∫

τn

t
rsds (Fτn − Xτn) −

∫ τn

t

e
−
∫

u

t
rsds

dFu

∣∣∣∣Ft

]

= EQ

[
e
−
∫ τn

t
rsds (Fτn − Xτn)

∣∣∣∣Ft

]
.

From the definition of τn we then have

EQ

[
e
−
∫

τn

t
rsds (Fτn − Xτn)

∣∣∣∣Ft

]
≥ EQ

[
e
−
∫

τn

t
rsds

([
1 − 1

n

]
Xτn − Xτn

)∣∣∣∣Ft

]

= − 1
n

EQ

[
e
−
∫ τn

t
rsds

Xτn

∣∣∣∣Ft

]

Furthermore we have

EQ

[
e
−
∫ τn

t
rsds

Xτn

∣∣∣∣Ft

]
≤ ec(T−t)EQ [Xτn | Ft] ≤

1
1 − 1/n

EQ [Fτn | Ft]

= ec(T−t) Ft

1 − 1/n
.

where we again have used the martingale property of the stopped process F τn .
We thus have

EQ

[
e
−
∫ τn

t
rsds (Fτn − Xτn) −

∫ τn

t

e
−
∫ u

t
rsds

dFu

∣∣∣∣Ft

]
≥ −ec(T−t) Ft

n(1 − 1/n)

which tends to zero as n → ∞.
We now turn to the uniquenesss proof and for this we consider again a fixed

t and define for each n the stopping time τn by

τn = inf
{

s ≥ t; Vs ≥ Zs −
1
n

}
. (75)

Since V τn is a martingale on [t, T ] and since V is given by (52) it now follows
that F τn is a martingale on the same interval. By definition of τn it follows that

e
−
∫

τn

t
rsds (Xτn − Fτn) ≤ 1/n, (76)

so we have
Xτn ≤ Fτn +

1
n
· Bτn

Bt
(77)

Now assume that G is a submartingale dominated by X . We then obtain

Gt ≤ EQ [Gτn | Ft] ≤ EQ [Xτn | Ft] (78)

≤ EQ [Fτn | Ft] +
1
n
· EQ

[
Bτn

Bt

∣∣∣∣Ft

]
(79)

= Ft +
1
n
· EQ

[
Bτn

Bt

∣∣∣∣Ft

]
≤ Ft +

1
n
· Ct

Bt
(80)

where C is given by (11). Letting n → ∞ gives us Gt ≤ Ft and we are done.
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