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1 Introduction

In the econometric analysis of panel data unobserved heterogeneity is typ-
ically handled by including fixed or random effects in the model. In the
fixed effects model the individual and time effects are assumed to be fixed
parameters to be estimated and in general correlated with the regressors.
In this case the differences across individuals and time can be captured by
differences in the constant term. In the random effects approach the individ-
ual and time effects are assumed to be stochastic and uncorrelated with the
regressors. The random effects formulation allows for the inclusion of time-
invariant or individual-invariant explanatory variables and for the number of
parameters to be reduced to only two, the mean and the variance. While
the choice of random effects has the advantage of providing many degrees of
freedom, it also complicates the treatment of two estimation problems, that
is heteroskedasticity and serial correlation. Mazodier and Trognon (1978)
generalized the one-way model with individual effects to the case where the
individual effects are heteroskedastic. An alternative heteroskedastic model
keeps the individual effects homoskedastic while allowing for heteroskedas-
ticity in idiosyncratic error terms or allows them both to be heteroskedastic,
see Randolph (1988).

This paper is concerned with the second problem, namely, serial corre-
lation. As in the heteroskedastic case serial correlation can be introduced
in two distinct ways. First, through serially correlated idiosyncratic errors
and secondly through serially correlated time effects. Serial correlation in
the idiosyncratic errors introduces a time series type of correlation at the
individual level whereas serial correlation in the time effects introduces the
empirically plausible phenomena that some of the factors driving the unob-
served time specific heterogeneity are serially correlated. Examples of such
factors include business cycles, oil price shocks and economic policies that
persist during several time periods. Lillard and Willis (1978), Baltagi and
Li (1991, 1994), King (1986), Magnus and Woodland (1988), Karlsson and
Skoglund (2000) and Skoglund and Karlsson (2001), among many others,
contain further discussion of serially correlated period effects and/or serially
correlated idiosyncratic errors.

The paper is organized as follows. In section 2 we present the model and
discuss its relation to models previously suggested in the literature. Section 3
is concerned with estimation and inference issues. A maximum likelihood es-
timator, feasible in the presence of a large individuals dimension, is derived
and the estimation problem is discussed. In this section we also consider
model selection procedures for determining the orders of serial correlation as
well as the significance of time and individual effects. Section 4 contains an



application of the proposed model and the associated model selection proce-
dures to the estimation of a production function for the Japanese chemical
industry. Section 5 concludes.

2 The model

Consider the panel data regression model
yit:Z;t(s—i—é‘it Zzl,,N,tzl,,T (1)

where é is a k x 1 vector of regression coefficients including the intercept and
in addition z;; may contain time invariant or individual invariant explanatory
variables. The error term, ¢; follows a two-way random effects model, see
Baltagi (1995, ch. 3),

Eit = My + A¢ + Vg (2)

where 1; ~ iid (0, ai) denotes the unobservable individual effect, A, denotes

the unobservable time effect and v;; is the idiosyncratic error term. Following
Revankar (1979), Karlsson and Skoglund (2000) introduce serial correlation
in the time effects via an AR(1),

At = P,\)\t—l + Uy, (3)

or MA(1),
At = U + Oruy 4

process for ;. In addition one can not rule out the possibility that the
idiosyncratic errors are serially correlated as well. In an asymptotic analysis
Skoglund and Karlsson (2001) introduce serial correlation in the time effects
and idiosyncratic errors via an AR(1) process for A, (3), and v;

Vit = PyVit—1 T €4t (4)

In practice serial correlation need however not be restricted to AR(1) processes,
or MA(1) processes for that matter. Viable alternatives include the AR(2)
or MA(2) or even the general ARMA(p, q) specification. Consequently we
adopt a general approach, allowing both the time effects and the idiosyncratic
errors to have an arbitrary serial correlation form.

The present model does away with an arbitrary restriction on the time
independence of period effects and idiosyncratic errors which is commonly
encountered in applications. But more importantly it does so in the frame-
work of the two-way model (1,2). This is in contrast to previous empirical



and theoretical work on random effects models with serial correlation which
focus on one-way models. That is, the one-way model with individual effects,

Eit = My + Vit (5)
and serially correlated vy, or the one-way model with time effects,
€it = A\t + Uy (6)

and serially correlated A\; and/or v;;. Lillard and Willis (1978) consider a first-
order autoregression in the one-way model with individual effects (5) whereas
Baltagi and Li (1991, 1994) consider AR(2), AR(4) or MA(q) processes as
well and Galbraith and Zinde-Walsh (1995) allow for general ARMA(p, q)
disturbances in a semi-parametric framework. King (1986) consider serially
correlated time effects and independent idiosyncratic errors in (6) whereas
Magnus and Woodland (1988) consider both serially correlated time effects
and serially correlated idiosyncratic errors.

The two-way model with serially correlated \; and v;; nests both of these
models since we have neither imposed the auxiliary assumption of no time
effects in (5) nor the auxiliary assumption of no individual effects in (6).
Indeed the existence of such effects should be part of a hypothesis to be
tested and not an assumption.

3 Estimation and model specification

3.1 Likelihood

In matrix form we can write the model (1,2) as

y = Zd+e
e = Zyp+72Xx+v
where ZH = (IN ®LT)a Z/\ = (LN ®IT)> ,LL, = (/‘Ll, """ 7/'LN)a )‘/ = ()‘h““a)‘T)
and ¢y is a vector of ones of dimension N.
Under the assumption that p,, A; and v;; are independent of each other

and the explanatory variables we obtain the covariance matrix of the com-
bined error term as

Y = E(ee) =Z,E(pw)Z, + Z\EAN)Z) + E(v)
= Iy ®Ir) + 02Ty 2 Ty) + o2(Iy 2 T,)

where Jp = ¢t/ a T x T matrix of ones and 03\11 » 18 the covariance matrix
of X and %W, is covariance matrix of v. Both ¢2®¥, and o?®¥, may be

4



the covariance matrix of any stationary and strictly invertible ARMA(p, q)
process.

Maximum likelihood estimation requires a specific distributional choice
and throughout we will maintain the assumption that pu; ~ N (0, ai), Uy ~
N (0,02) and e;; ~ N (0,02). However, maximum likelihood also requires
evaluation of the inverse and determinant of the N7 x NT matrix 3. Direct
inversion of X is clearly impractical even for panels of moderate size and the
usual spectral decomposition "tricks” employed in the panel data literature
are not directly applicable here. Our method of solution is to reduce the
amount of numerical computation necessary. As in Karlsson and Skoglund
(2000) and Skoglund and Karlsson (2001) this is accomplished by using
elementary results on inverses and determinants involving sums (Dhrymes
(1984, p. 39-40)). This yields,

Tl = AT ANy @Ip)[0 28 + NAY ey @ Ip) A} (7)
= Iyn®A* — (by @ AY)[0, 201+ NA* | L1y @ AY)
= Iy© A" —02(en @ A) [Ip + No2 8, A*] 7' 0, (Ly @ AY)

and
13| =AY [Ip + No, @, A% (8)

where EN = IN —jN, jN = JN/N, A* = (O'iJT + O'z\:[’v)il and JN = LNLIN
is a N x N matrix of ones.

The present form of the inverse and determinant of 3 has reduced the
amount of numerical computation to the 7' x T matrices A* and I +
No2W,A*. This is useful since in a typical panel the individuals dimen-
sion is large whereas the time dimension is small. In addition we can obtain
further simplification in some special cases of interest. The matrix A* is read-
ily recognized as the T-dimensional part of the inverse variance matrix of the
one-way model with individual effects and serially correlated v;;. Baltagi and
Li (1991), extending the Wansbeek and Kapteyn (1982, 1983) "trick”, show
how to obtain a spectral decomposition of this matrix in case of an AR(1),
AR(2) or AR(4) process for v; and Baltagi and Li (1994) contain an extension
to the MA(q) case. As pointed out in Baltagi and Li (1991) we can however
obtain a spectral decomposition as long as there exists a simple known matrix
C such that the transformation (Iy® C)v has mean zero and variance 021y
A leading special case is of course an AR(1) process for v; (4) where A* =
C’ (05233 + UQ_QE;) C with C the Prais-Winsten transformation matrix for
an AR(1) process, o7, = d*o, (1 — p,) 4 02 Ty = ) d?, o = (o, y)
and E} = Iy — T with @2 = ¢15=a? + (T — 1), a = /(1 +p,) /(1 — p,)-
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The references given above contain further details about the transformation
and an extension to more general time series processes.

Finding a spectral decomposition of the matrix I+ No2 ¥, A* is however
more difficult. In the special case of ¥, = ¥, we can use the method of
Baltagi and Li (1991, 1994) since

I; + No?W,A* = LA*

where L = (No?, + 02) ¥, + 02J7 is of the same form as the inverse of A*.
This, of course, includes the standard two-way model where ¥, = ¥, = I
and for which the inverse and determinant of ¥ reduces to
_ 1— 1= - 1 — 1=
>! = E —E;+—=J J —— E;+—J
N ® ((72 T+O_% T) +JInv® (O‘%—f-NO‘%\ T+O_2 T)

v 2

= = (O_Q)NT (7_3 —(N-1) 0712) —(T-1) U_Z -1
v o3 O'%—TO'I% o3

with o] = o2 + T, 03 = 0] + No3. In the case of serially correlated time
effects and/or Wy, # ¥, the inverse of Iy + No2 ¥, A* as well as its determi-
nant can be computed numerically. For the modest time series dimensions
common in panel data applications this is both speedy and accurate.

Using the results in (7) and (8) we can write the log-likelihood as

TN N -1
—% In }IT + NO'i\I’/\A*‘ - %s' (Iy® A% e
2
+%€/(LN % A") [Ir + No2W,A*] 7 B, (e © A)e

where 6 = (&',7) and = is the vector of covariance parameters including the
serial correlation parameters of \; and v;. When a spectral decomposition
of A* is available In|A*| simplifies accordingly. For example, in the AR(1)
case

In|A*|=—(T'—1)Ino? +In (1 - p)) —Ino

In practice iterative methods are used to obtain the maximum likelihood
estimate, say 0, and these methods require us to supply the first derivatives
of the log-likelihood as well. In our experience numerical derivatives per-
form poorly, especially if there is serial correlation in A\; and/or v;, leaving
analytical derivatives the preferred choice. The score vector for the mean
parameters, d is straightforward to obtain and following Hartley and Rao



(1967) or Hemmerle and Hartley (1973) the elements of the score vector for
the variance parameters, -y are obtained as
ol(0) 1

- - 71_ —
B, 5 tr(X s )+

i Yi

Variance estimates can be based on either a numerical approximation to the
hessian matrix or the information matrix. The elements of the information
matrix are computed as (see Harville (1977))

1

Vi7Yj = 5

()

9%, ox
0,

X 8_7»)]

IR

Note that if 02 = 0 in (9) it reduces to the log-likelihood of the one-way
model with individual effects and serially correlated v; whereas if ai =0,
A* =02 1 and (9) reduces to the log-likelihood of the one-way model with
serially correlated A\; and v;;. For estimation purposes there are therefore
no reason to employ strict inequality restrictions, (o2 > 0,02 > 0), weak
inequalities, (0% > 0,02 > 0), are sufficient.

3.2 Model selection

Model selection can be based on either hypothesis tests or model selection
criteria, e.g., the AIC criterion of Akaike (1974) and the BIC criterion of
Schwarz (1978), or possibly a mixture of the two approaches. This section is
concerned with the hypothesis tests approach and our focus is on hypothe-
sis tests on the variance parameters, v. More specifically, in the framework
of the model (1,2) we propose simple methods and a straightforward strat-
egy for determining the orders of serial correlation in the time effects and
idiosyncratic errors as well as the significance of individual and time effects.

3.2.1 Determining the orders of serial correlation in \; and v;

For obvious reasons a strategy for determining the orders of serial correla-
tion in both A\; and v; might be expected to encounter serious difficulties.
In particular, we may not know if the test for serial correlation in \; rejects
the null due to misspecification of serial correlation in v; and vice versa.
A first step towards resolving could be to try to establish the presence or
absence of a local robustness property, that the tests lack local asymptotic
power against serial correlation in the other component. Considered alone
such a local property would, however, be of rather limited value. This is
because in practice misspecifications are global in nature, typically rendering



the variance-covariance matrix estimator employed in the test-statistic in-
consistent. A much more useful situation would emerge if we could establish
that the test for serial correlation in A; or v;; that ignores the misspecification
is in some sense equivalent to the test that takes the serial correlation into
account and/or the test that employs a robust variance-covariance matrix
estimator. Indeed this turns out to be the case here. More specifically, we
have the following situation which we state for the LM (score) test although
we expect similar results to hold for the other classical tests (Wald and LR)
as well.

Property 1 Denote by &1, the LM test for serial correlation in ) that

takes into account the (global) serial correlation in vy and let ELMA be the
corresponding LM test that fails to take into account the serial correlation in
vie but employs a robust variance-covariance matrix estimator. Finally, de-
note by €75y, the LM test that fails to take into account the serial correlation
i vy and does mot employ a robust variance-covariance matriz estimator.
Using similar notation for the corresponding LM tests for serial correlation
in vy b.e. Epa s Epag, and &7y respectively we have

§ LMy — § LM,

\ L (VT
%0 and ‘gLMA_gLMA} 50 if (N% — 0

and,

= p * p . \/T
)gLMv - gLMv‘ — 0 and ‘ﬁLM,, — &, | = 0 4f <W> —0
where the different rates of convergence are due to the different probabilistic
orders of the serial correlation parameters of A\; and v; respectively.

A sketch of the proof of this property is given in appendix A. It is per-
haps worth pointing out that the local result alluded to above, i.e. lack of
local asymptotic power against serial correlation in the other component,
holds as well. In addition this result does not require conditions on the rel-
ative rate of convergence of N and T'. The present result is a global one.
It has reduced the problem of determining the orders of serial correlation in
both A\; and v; to a procedure employed for models with only one serially
correlated error component. That is, one can keep vy itd when testing for
serial correlation in \; and one can keep \; 7id when testing for serial cor-
relation in v;. This is so because the LM test for serial correlation in \; or
vy keeping v;; and \; iid respectively is asymptotically equivalent to the LM
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test taking the serial correlation into account and the LM test employing a
robust variance-covariance matrix estimator. The usefulness of this property
in practice depends entirely on the small-sample performance of the LM test
that ignores the misspecification of serial correlation. To evaluate the per-
formance we conducted a limited Monte-Carlo experiment with an AR(1)
process for \; and v; and with T" = 20, N = 70. The results where en-
couraging, we observed no significant difference between the test that takes
the serial correlation in the other component into account and the test that
ignores the serial correlation in the other component. The situation is thus
quite similar when testing for serial correlation in \; and v;. In both cases
we can ignore serial correlation in the other component. The only difference
of importance is the different asymptotics for the test-statistics. Parameters
involving A; are v/T' consistent and {7 ,, converges to a x? at the rate T

whereas parameters involving v;; are v NT consistent and &7, converges

to a x? at the rate vV NT. Due to the similarity of the testing situation we
discuss tests for serial correlation in general terms.

Testing ARMA (p,q) against ARMA(p+r,q) LM testing is quite
attractive when general ARMA(p, q) models are considered. Primarily be-
cause we do not need to estimate the alternative, but also because we can
be less specific about the alternative we are testing against. That is, the
well-known property that the LM test of the null of ARMA(p,q) against
ARMA(p + r,q) is identical to the LM test against ARMA(p,q+ r) holds
here as well. The drawback is that it is not clear which alternative to choose
when the null is rejected.

To discriminate between ARMA (p + r, q) and ARMA(p, ¢ + r) processes
with LM tests we need to consider non-nested hypotheses. For example, in
the case of deciding between AR(1) or MA(1) a test of the hypothesis that
the process is AR(1) amounts to testing the null hypothesis of AR(1) in the
ARMA(1,1) specification. Correspondingly, testing the null that the process
is MA(1) amounts to testing the null hypothesis of MA(1) in the ARMA(1,1)
specification. Karlsson and Skoglund (2000) consider non-nested LM tests
for discriminating between an AR(1) or MA(1) process for \; in an extensive
Monte-Carlo experiment. This procedure worked well for large sample sizes
but for small sample sizes (small 7') and/or small values of the AR or MA
parameters test results are frequently inconclusive. A decision can then be
based on information criteria or a comparison of the p-values of the tests.

Pure AR models In practice attention is frequently based on pure
AR models. In this case the order of serial correlation in \; or v; can be



determined with sequential hypothesis tests. That is, we test the following
nested sequence for A; (vy)

Hy : A\ ~iid
Hi : M~ AR(1)
Hy : M~ AR(2)

Hp : )\t ~ AR (p)

As is well-known tests of hypotheses in such a sequence of nested hypotheses
has a very interesting property. Asymptotically, under Hy, the test of Hy
against H; is independent of the test of H; against H,, both of these are
independent of the test of Hs against Hs and so on. This has the useful
implication that we can compute the overall asymptotic significance level
and that the test of Hy against H, is equal to the sum of the tests of H
against H; and H; against H,.

3.2.2 Testing the null hypothesis of no individual or time effects

Having decided on the orders of serial correlation we also want to test the null
hypothesis of the one-way model with time effects, Hy : ai = 0, and the null
hypothesis of the one-way model with individual effects, Hy : 02 = 0. Both
of these hypotheses involve a parameter on the boundary of the parameter
space. Tests that require estimation of the alternative when a parameter is
on the boundary will in general not have a x? distribution under the null.
The breakdown of conventional theory for these tests reflect the fact that
they involve the unrestricted maximum likelihood estimator for which the
continuity of the asymptotic distribution is violated if a parameter is allowed
to be on the boundary. In contrast, the LM test is not affected by the fact
that a parameter lies on the boundary, see Godfrey (1988, sec. 3.5.2) and
the references therein.

The null hypothesis of the one-way model with time effects is uncompli-
cated. On the other hand the null hypothesis of the one-way model with
individual effects is complicated if A, is serially correlated. This is so be-
cause under the null hypothesis the serial correlation parameter(s) of \; are
not identified, so even the LM test have a non-standard distribution. This

!The local asymptotic power results of Bera, Sosa-Escudero and Yoon (2001) in the
one-way model with individual effects indicate that it is important to specify the serial
correlation correctly when testing for random effects. However their results seem to apply
only for large IV, i.e. when holding T fix.
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"nuisance parameter” problem is treated in Davies (1977, 1987) and more re-
cently by Andrews and Ploberger (1994) and Hansen (1996). Hansen (1996)
suggests a bootstrap procedure to simulate the asymptotic distribution of
the LR test and Hansen (1999) contains an application to treshold effects in
the one-way model with fixed individual effects.

Similar to Hansen we consider a bootstrap procedure to obtain an esti-
mate of the asymptotic p-value. Andersson and Karlsson (1999) evaluates
several algorithms for bootstrapping random effects models in the context of
bootstrap tests on the regression parameters. They find little difference be-
tween non-parametric and parametric procedures, assuming normality, even
in the presence of non-normality. Since the parametric bootstrap is straight-
forward to implement we use a slight modification, taking account of serial
correlation in vy, of the parametric bootstrap of Andersson and Karlsson
(1999). See Efron and Tibshirani (1993) for a general discussion of the boot-
strap and Davidson and MacKinnon (1999) for bootstrap testing in particu-
lar.

The bootstrap procedure we suggest consists of the following steps:

1. Estimate under the null hypothesis of the one-way model with indi-
vidual effects to obtain an estimated Data Generating Process (DGP)
with parameters g, v, under the null hypothesis.

2. Generate bootstrap samples from the DGP. That is, generate the boot-
strap sample, €}, = pf + v}, with pf ~ N (O,Eio), vy, an ARMA(p, q)
process with innovation €}, ~ N (0, 330) and parameters from the null

model and create y}, = z,,00 + £};.
3. Calculate the test-statistic using the bootstrap sample.
4. Repeat steps 2 and 3 B times

5. Calculate the percentage of draws for which the simulated statistic
exceeds the actual. This gives the bootstrap estimate of the p-value.

The implementation of the above procedure with either LR or Wald tests
might be quite time consuming since they both require estimation of the
alternative. But more seriously, due to the breakdown of continuity in the
asymptotic distribution of the unrestricted estimator, one can suspect that
the bootstrap procedure suggested above does not yield a consistent estimate
of the asymptotic p-value with either of these tests, see Andrews (2000).
Hence, one should consider the LM test in step 3 above. However, under
the null hypothesis the score and information matrix depends on the serial
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correlation parameter(s) of A; and so the LM test is not computable in the
presence of these unknown nuisance parameters. As in Davies (1977, 1987)
we consider a supremum LM test, where the supremum term indicates that
we are taking the supremum with respect to the serial correlation parameters
of A\; as they vary over the parameter space. Denoting by = the parameter
space of the serial correlation parameters of \; the supremum LM test is

computed as
' al
UACLEN 10
ﬁ:o) (803 03=0> 10)

where Z74%% is obtained from the generalized inverse variance matrix evalu-
ated at the null hypothesis. The generalized inverse is needed here since the
information is singular under the null hypothesis. Computationally this cor-
responds to inverting the positive-definite submatrix of the information, ob-
tained by discarding the elements of information that belongs to the unidenti-
fied parameters. In addition by the standard (asymptotic) block-diagonality
between the mean and variance parameters it is sufficient to only consider
the block of the information matrix for the variance parameters.

ol
gsup LM — Slzlp 6_0'%

3.2.3 A model specification strategy

To summarize, the considerations above leads to the following sequence of
specification tests for two-way random effects models where both \; and v
are allowed to be serially correlated:

1. While keeping v;; iid, test for serial correlation and determine the order
of the ARMA process for \;.

2. While keeping A, iid, test for serial correlation and determine the order
of the ARMA process for v;;.

3. Conditionally on the chosen orders for A\; and v; test for the presence
of individual effects.

4. Conditionally on the chosen orders for A; and v; and the outcome of
the test for individual effects test for the presence of time effects.
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Table 1 Summary statistics

Variable Mean Std. deviation Minimum Maximum
Y 87653.00 124621.01 2750.00 R10887.00
K 70771.66 107797.26 1153.00 646335.00
L 12417.50 14123.84 732.00 90798.00

M 69362.31 103496.98 1812.00 663145.00

4 Application

4.1 The model and data

In this section we apply the proposed methods to the estimation of a pro-
duction function using a sample of 72 Japanese chemical industries observed
annually over the period 1968-1987. In the econometric analysis of produc-
tion functions one is, naturally, concerned with serial correlation. The data
contain information on output (Y') and inputs, labor (L), capital (K) and
material (M) used?. Summary statistics of the input and output quantities
are given in Table 1.

To approximate the unknown production function we consider the tran-
scendental logarithmic specification (Christensen, Jorgenson and Lau (1973))

k k k
1
lnyit:a—i— E ﬂj lanit—i-é E E gbsjlnXsitlanit—i—sit (11)
Jj=1

s=1 j=1

where ¢,; = ¢;,. This function is quadratic in the logarithms of the variables
and reduces to the familiar Cobb-Douglas case if ¢,; = 0 for all s, j.
Estimates of the returns to scale are obtained from the sums of the loga-
rithmic derivatives with respect to the inputs, X,,7 =1,..., k. The technol-
ogy exhibits constant returns to scale if the sum is unity and increasing and
decreasing returns to scale if the sum is above or below unity respectively.
By including time as a component of the input vector we can also obtain
estimates of the rate of technical change. The rate of technical change can
further be decomposed into neutral technical change (no interaction with the
inputs) and non-neutral technical change (interaction with the inputs).

2See Kumbakhar, Nakamura and Heshmati (2000) for a detailed description of the data.
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4.2 Specification of the error components

Table 2 gives results from the LM-tests for serial correlation. For comparison
Table 4 reports the AIC and BIC criteria for some of the estimated models®.
First we test for serial correlation in A\; while keeping v;; 7id. We reject the
null of no serial correlation in A\; at the 12% level which is not overwhelming
evidence in favor of serial correlation in A\;. The test is however consistent in
T alone and the simulation evidence of Karlsson and Skoglund (2000) show
that for small values of T" we can expect low power from this test. This
motivates us to consider an AR(1) or MA(1) process for \;. The LM test
of the null hypothesis of AR(1) against ARMA(1, 1) yields a p-value of 0.07
whereas the LM test of the null hypothesis of MA(1) against ARMA(1, 1)
yields a p-value of 0.63. The obtained p-values thus suggest that an MA(1)
process is appropriate. Next we consider tests for serial correlation in the
idiosyncratic errors, v; while keeping \; iid. Table 2 shows that we strongly
reject the null of iid vy, in favor of an AR(1) or MA(1) process. Unfortunately
we experienced convergence problems with the MA (1) model for v; and hence
the LM test of the null of MA(1) against ARMA(1, 1) could not be computed.
However the LM test of the null of AR(1) against ARMA(1, 1) is not rejected
at reasonable levels. Since the MA(1) process cannot match the moments
of an AR(1) process for high absolute values of the AR(1) coefficient the
convergence problems with the MA model is not too surprising in view of
the estimated AR(1) coefficient of approximately 0.75. Hence, we conclude
that an AR(1) process is sufficient to capture the serial correlation in v;*.
Having decided on the orders of serial correlation, that is A; is MA(1) and
vy is AR(1), we proceed to consider the significance of individual and time
effects. Table 3 shows that the LM-test of the null of no individual effects,
Hy: ai = 0, rejects the null at the 1% level and the bootstrap p-value of the
supremum LM-test of the null of no time effects, Hy : 02 = 0, indicates that
the time effects cannot be rejected at any significance level. The bootstrap

3 All the models are estimated with analytical derivatives using the Newton algorithm.
Variance constraints are imposed as 02 > 0 as well as 0% > 0 and/or 07, > 0. AR
parameters are restricted according to the stationarity condition whereas MA parameters
are not restricted. Instead estimates that do not satisfy the invertibility condition are
mapped back to the invertibility region. In case variance estimates are used they are
based on the information matrix.

4For comparison the LM test of the null hypothesis of iid \; against AR(1) with vy an
AR(1) yields a test statistic of 2.605 and the LM test of the null of iid v;; against AR(1)
with A, an AR(1) yields a test statistic of 540.4. The values of these test statistics are
very close to the corresponding values of the test statistics for the case when vy is iid and
A¢ is iid respectively. Similar results are obtained for the other tests in Table 2 as well,
showing that the simple procedure for determining serial correlation in both A\; and vy
works very well in practice.
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Table 2 LM tests of serial correlation

Null Alternative Statistic p-value

Vi, A did vy tid, Ay AR(1) 2.458 0.117
v did, N AR(1) vy did, A\, ARMA(1,1) 3184  0.074
v did, Ny MA(1) vy iid, \y ARMA(1,1) 0.225 0.635
Vi, A did vy AR(1), N\ did 540.5 0.000
ow AR(1), A did vy ARMA(L,1), A\, did 0977 0.323

Table 3 LM tests of no individual or time effects for the two-way model, \;
MA(1) and v;; AR(1)

Null Alternative Statistic p-value

ai =0 O'Z #0 7.932 0.004
ol=0 0240 5731¢ < 0.001°
%supremum LM test.

bootstrap p-value, B = 399.

p-value of the supremum LM-test is based on B = 399 bootstrap replicates.

To evaluate the size properties of the bootstrap test we conducted a small
Monte-Carlo experiment with the null model as the DGP. Figure 1 plots the
size discrepancy (estimated size minus nominal size) against nominal size
obtained from 200 Monte-Carlo replicates, using B = 99 for the bootstrap
p-values, together with 95% Kolmogornov-Smirnov ”confidence bands”. In-
spection of the Figure shows that the size properties of the supremum LM-test
are very good.

Overall, the specification tests suggest that the appropriate random ef-
fects specification is two-way with A, an MA(1) and v;; an AR(1) process.
From Table 4 this choice is supported by the AIC criterion whereas the BIC
criterion prefers the one-way model with serially uncorrelated time effects and
vy an AR(1). The BIC criterion, although consistent, is however well-known
to underestimate the true parametrization in finite samples.
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Table 4 Model selection criteria

Model AIC
One-way (¢, vit), Vig, Ay 1d —2.5181
One-way (¢, vit), v did, Ay AR (1) —2.5181
One-way (A, vit), v did, \y MA (1) —2.5201
One-way (A, vit), vir AR(1), \; iid —3.2902
One-way (¢, vit), vir, At AR(1) —3.2909
One-way (A, vit), v AR(1),\y MA(1) —3.2930
One-way (A, vit), vie AR(1),\s AR(2) —3.2911
One-way (A, vit), vy AR(2),\¢ AR(1) —3.2907
One-way (A, vit), vit, it AR(2) —3.2917
One-way (p;, vit), vy itd —2.6220
One-way (1, vit), vy AR(1) —2.9981
One-way (u;, vit), v AR(2) —3.0083
Two-way, v;, \¢ 12d —2.8198
Two-way, vy iid, \y AR(1) —2.8200
Two-way, vy iid, \y M A(1) —2.8220
Two-way, vy AR(1), \; iid —3.2936
Two-way, vy, Ay AR(1) —3.2939
Two-way, vy AR(1), Ay MA(1) —3.2960
Two-way,

Two-way,
Two-way,

v AR(1), \; AR(2) —3.2044
Vit AR(Q), >\t AR(l)
Vit >\t AR(2)

—3.2932
—3.2938

BIC

—2.4559
—2.4521
—2.4522
—3.2248
—3.2214
—3.2234
—3.2200
—3.2185
—3.2167

—2.5397
—2.9322
—2.9388

—2.7338
—2.7505
—2.7524
—3.2240
—3.2207
—3.2227
—3.2175
—3.2163
—3.2133
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Figure 1 Size discrepancy of the supremum LM test

4.3 Elasticities and returns to scale

Table 5 gives the overall mean of the input elasticities and returns to scale
and Figure 2a-2d plots the elasticities and returns to scale over time. The
elasticity of output with respect to capital, reflecting percent changes in out-
put due to one percent change in capital, is 0.086. It is interpreted as one
percent change in capital will result in 0.086% change in value added for
given, labor, material and technology. The corresponding labor and material
elasticities are 0.155 and 0.754 respectively. All three elasticities are statisti-
cally significant at the 1% level and are of expected (positive) sign. The sum
of input elasticities is 0.995, indicating on average constant returns to scale.
Looking at the temporal patterns of input elasticities (Figure 2) we find that
the elasticity of capital and labor are declining over time, indicating develop-
ment of labor and capital input saving technologies. The fluctuations in the
elasticity of capital in the beginning of the sample might be a consequence
of the oil crisis of 1968 and 1973, resulting in increased capital intensity to
introduce material (oil) saving technologies. The changes in capital are re-
flected in the development of the elasticity of material. The material input is
constantly increasing over time, reflecting increasing share of cost associated
with the raw oil input in the chemical industry. The returns to scale changes
abruptly from increasing to decreasing returns to scale in the beginning of the
sample but is quite stable after the oil crisis. Although Figure 2d provides a
dramatic picture we should keep in mind that the fluctuations are contained
in a narrow band and the returns to scale is never significantly different from
unity.
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Figure 2 Elasticities, returns to scale and technical change
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Table 5 Elasticities, returns to scale and technical change

Variable Elasticity Standard err. t-stat

K 0.0861 0.0084 10.250
L 0.1552 0.0121 12.826
M 0.7537 0.0089 84.685
RTS 0.9951 0.0049 203.08
TC 0.0092 0.0017 5.4117

4.4 Technical change

The last row of Table 5 gives the overall mean of total technical change and
Figure 2e and 2f plots non-neutral and total technical change over time. The
average rate of technical change is 0.9% per annum with contributions from
the neutral and non-neutral components being —0.01% and 0.1% respectively.
The time patterns of non-neutral and total technical change reflect changes
in technology due to the oil crises, indicating substitution among inputs.
As a consequence of the affine neutral component we do not observe major
changes or any technical regress during the post oil crises period.

5 Conclusions

The purpose of this paper has been to provide a framework for specification
and estimation of two-way random effects models with serial correlation in
general form for both the time effects and idiosyncratic errors.

In addition to providing a straightforward maximum likelihood estimator
we have considered a model selection strategy for determining the orders of
serial correlation as well as the significance of time and individual effects.

By relying on large sample theory results it has been possible to reduce
the potential complexity of determining the order of serial correlation in
both time effects and idiosyncratic errors to a standard procedure suitable
for two-way models with only one serially correlated error component.

Conditional on the appropriate orders of serial correlation we considered
an LM test of the null of no individual effects as well as an LM test of the
null of no time effects. The LM test of the null of no time effects typically
have non-standard distribution and we have suggested a simple bootstrap
procedure to obtain an estimate of the p-value of the test.
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An application to the estimation of a production function for Japanese
chemical firms has illustrated the proposed methods.

Acknowledgement We thank Professor Shinichiro Nakamura for pro-
viding us with the data set and Almas Heshmati for helpful comments.
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A Proof of property 1

This appendix contains a sketch of the proof of property 1. To avoid un-
neccesary complication and to be able to cut down on details by referring
to the results of Skoglund and Karlsson (2001) we concentrate on the AR(1)
case for both \; and v;; (with serial correlation parameter p, for A; and serial
correlation parameter p,, for v;).

To introduce some notation let [ (7,0, ) denote the data generating process,
where 7= (02,02, 02) and r is interior to a compact subset of (—1,1)°. Now
let I(7,p,0) be the model under consideration. Then r represents a mis-
specification of the serial correlation in vy or A;,. That is, » = p, if there
is misspecification of serial correlation in v; and r = p, if there is misspec-
ification of serial correlation in \; where, of course, p = p, if r = p, and
vice versa. We are interested in the properties of the LM test under the
null hypothesis, Hy : p = 0, and for this purpose it is useful to consider the
behavior of the score vector evaluated under the null hypothesis.

By a mean-value expansion of the score vector of the (joint) log-likelihood,
L (T, p,r) we have

() o (20, ) o (2 ) e e e

where v = (7,p,7),7 = (7,0,0),v, = (7,0,7) ,% a mean value and F is
an appropriate scaling matrix (see Skoglund and Karlsson (2001) for de-
tails). To introduce some notation for the information matrix we write

E [— (gﬂy’gm ) } 7 () in partitioned form as,
ITT ITp ITT’
Z()=|Zpr Zpp Zpw
IT‘T I’r‘p I’r"r‘
and solve for 573 %Z)h) in the expansion above, where s is an index ob-

tained from the scaling matrix, F. After some manipulation we can then
write

1 (Bl(y) L (Bl(7) a1 (OU)
s 2( Bp ‘7>— 2 (0—/)’70 +ZL,Z,, F T‘% + Lorrre (12)

where ¢ is also an index obtained from the scaling matrix, F, is the sub-
scaling matrix for 7 and Z,, ; denotes the matrix Z,, —IpTIT_TlLr. For exam-
ple, if r = p, and p = p, then we obtain s =T, ¢ = vV NT from the matrix

5By theorem 2 of Skoglund and Karlsson (2000) we may ignore the mean parameters
6 for simplicity.
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F and (12) becomes

1 (9l) B

VT \ Opy !

L ol(v) 0] /
\/T ( ap/\ |’Yo> +ZPATZTT FT 87' |’Yo +ZpApv77—p'U NT

whereas if = py, p = p, we obtain s = NT, ¢ = /T and,

L (%)
VNT \ 9p, "
_ 1 (9y) g1 (91Y)
- \/W( ap |’Yo> +vaTZTTFT 87' |'Yo +vaPA,Tp)\\/T

In contrast, the LM test with no misspecification (r = 0) is based on the
score vector

To investigate if the score equations (12) and (13) are in some sense equivalent
it therefore suffices to consider the behavior of the term, Z, , -p,v NT and

the term, Z, ,, - pxV'T. By using the limit results of Skoglund and Karlsson
(2001) it is straightforward to show that Z,, , - and Z, , - shrink towards

zero at the rate N73. Hence, Z,,, -p,V NT shrinks to zero if (%) — 0 and

Ly pyr pV/T shrinks to zero if (N—*/g) — 0. By using similar reasoning, and

v

essentially the same limits as above, one can show that the score equation
(13) is for large N equivalent to the score equation that takes into account
the serial correlation. Now, considering the quadratic form of the LM test,
we are done if we can show that the information matrix equality holds for
the relevant block of the variance matrix employed in the LM test. A first
step in the proof of this would be to show that the limit of the negative of
the expected hessian matrix (suitably normalized of course) is block-diagonal
between the parameters (02,02, p,) and the parameters (02, py) as N — oco.
This is accomplished by theorem 2 of Skoglund and Karlsson (2001). In
addition theorem 2 of Skoglund and Karlsson (2001) shows that for large
N the information of the parameters (o2,02,p,) does not depend on the
parameters (02, p,) and vice versa. This is in fact the key to the result since,
for example, misspecification of serial correlation in v;; does not change the
probabilistic order of the variance of the score and hence not the large N limit
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of the variance of the score for the block of time-specific parameters, (2, p, ).
Hence, rendering the information matrix equality valid for this block. We
omit the details of this result since it is mainly algebraic, using the limit
results of Skoglund and Karlsson (2001). Combining what we have obtained
so far gives the results in property 1.
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