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1 Introduction

Recently the literature of time series analysis has been developing models in which stochastic

shocks can have transitory as well as permanent effects. These models close the gap between

stationary autoregressive models, in which all shocks are transitory, and models like the random

walk in which all shocks are permanent. Example of these models are: the stochastic unit root

process by Granger and Swanson (1997), which is an AR(1) process with the autoregressive

parameter varying stochastically around one; the autoregressive conditional root by Rahbek and

Shephard (2002), in which the autoregressive parameter changes between one and stationarity

following a deterministic function of the past observations; the stochastic permanent break

model by Engle and Smith (1999) in which the permanence of a given shock is stochastic and

depends on its magnitude, and finally, Gonzalo and Mart́ınez (2003) introduce a threshold

integrated moving average model in which large shocks are permanent whereas small ones are

transitory.

In the present paper we introduce the Smooth Permanent Surge [SPS] model. The model

is a generalization of the stochastic permanent break model by Engle and Smith (1999). The

permanent effect of an innovation is stochastic and depends on a deterministic function of past

shocks. In the SPS model, small shocks have transitory effects and large shocks may have

permanent effects. The model can be seen as an alternative both to the stochastic break model

and to the threshold integrated moving average model.

We present three tests in the smooth permanent surge framework. The first is a test for

linearity in moving average models. This test follows Brännäs, De Gooijer, and Teräsvirta

(1998). The second test is a test of SPS against a random walk and the third is a test against

the stochastic permanent break model by Engle and Smith (1999). The performance of these

tests in small samples is evaluated by Monte Carlo experiments. Finally, in other to compare

our model with the stochastic permanent break model, we apply our method to the same data

set and economic problem as the one used in Engle and Smith (1999). That is, we investigate

whether stock prices of two companies that belong to the same market move together or not.

The outline of the paper is the following. In the second section the smooth permanent surge

model is introduced and conditions for invertibility of the model are given. The third section

describes the proposed tests and explains their implementation. Section 4 presents the results

of the Monte Carlo investigation. The application to the stock prices is presented in section 5.

Section 6 concludes.
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2 Smooth Permanent Surge model

The Stochastic Permanent Break [STOPBREAK] process of Engle and Smith (1999) is defined

through the following equations:

yt = mt + εt, t = 0, 1, . . . , T (1)

where εt is a stationary martingale difference sequence with respect to Ft−1 where {Ft} denotes

an increasing σ-algebra adapted to yt. Furthermore, mt is a time-varying conditional mean

given by

mt = mt−1 + qt−1εt−1 (2)

where qt−1 is a function of ε bounded by zero and one.

In order to characterize the dynamic properties of the STOPBREAK process it is useful to

measure the effect that a given innovation will have on future values of yt. One such measure

is the permanent effect of an innovation defined by Engle and Smith (1999) as follows:

λt
d
= lim

k→∞
∂f(yt, k)

∂ε
(3)

where f(yt, k) ≡ E(yt+k|Ft), εt = yt−E(yt|Ft−1). The permanent effect of an innovation in the

STOPBREAK model is,

λt =qt +
∂q

∂ε
|ε

=qt(1 + ηq,t) (4)

where ηq,t ≡ (∂q/∂ε |ε )(εt/qt).

From (4) it is seen that in the STOPBREAK model the long-run effect of an innovation

is random and varies over time. The sign and magnitude of the effect depend on the specific

functional form of qt. For instance, if qt is positive and has positive first derivatives with respect

to |ε|, λt > 0 for all t, and consequently all shocks have permanent effects.

Further understanding of the role of qt in STOPBREAK models can be gained by writing

(1) and (2) as an integrated nonlinear moving average model:

∆yt = εt −$t−1εt−1 (5)

where $t−1 = 1 − qt−1. When qt−1 = 1 for all t, it follows that $t−1 = 0, which implies that

all shocks have permanent effects. On the contrary, when qt−1 = 0 for all t, $t−1 = 1 and all

innovations will have a transitory effect on yt.

Different specifications for $t−1 have been proposed in the literature. Engle and Smith
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(1999) define $t−1 = 1− qt−1 with

qt−1 = ε2
t−1/(γ + ε2

t−1). (6)

In this specification, large positive and negative shocks have large (in absolute value) per-

manent effects while small shocks have small effects. The main drawback of this specification

is that only zero shocks (εt−1 = 0) have transitory effects. To eliminate this drawback, Gon-

zalo and Mart́ınez (2003) proposed the Shock-Exciting Threshold Integrated Moving Average

[STIMA] model in which $t−1 is an indicator function such that $t−1 = θ2 for |εt−1| ≤ κ and

$t−1 = θ1 otherwise. Hence, if θ2 ≤ 1 small shocks have only transitory effects. The main

disadvantage of this model is that due to the discontinuity of the likelihood function, statistical

inference is nonstandard, and conducting inference is computationally expensive. Moreover,

the STIMA model implies that shocks of either sign greater that |κ| will have large permanent

effects.

In this paper, $t−1 is defined as

$t−1 = θ1 + θ2g(ε; γ, c) (7)

where g(εt, γ, c) is the following logistic function [see Jansen and Teräsvirta (1996)]:

g(εt; γ, c) = (1 + exp(−γ(εt − c1)(εt − c2)))
−1 (8)

with γ > 0 and c1 ≤ c2. The model defined by (5), (7) and (8) is called Smooth Permanent

Surge [SPS] model .

The definition of $t−1 in the SPS model has similarities with both the STOPBREAK and

the TIMA models. Figure 1 plots the transition function (8) for different values of γ. For

comparison we also include (6). As can be seen, the transition function (8) has a U -shape form

similar to the Logistic function (6). However, transition function (8) has a broader base. In

fact, for relatively large values of γ, the transition function (8) practically takes value zero for

all εt−1 > c1 and εt−1 < c2, c1 < c2.

Under some parameter restrictions the behaviour of $t−1 in the SPS model approximates

the functional form of $t−1 in the STOPBREAK one. For instance, when c1 = c2 = 0, in (8),

the SPS model approximates the STOPBREAK model quite well. Figure 2 shows the transition

function (8) with c1 = c2 = 0 together with the function used by Engle and Smith (1999). As

can be seen, both transition functions are rather similar for |ε| > 0 and attain their minimum

at ε = 0. A difference between them is that the minimum value in the Logistic function (6)

equals zero whereas it equals 1/2 in the transition function (8). Consequently, if in addition

to having c1 = c2 = 0 in (8) we have that θ2 = −1 and θ2 = 2 in (7) the SPS model is an

approximation to the STOPBREAK model.
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Figure 1: Transition functions for different γ values
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The graph shows different transition functions as a function of εt−1. The
thick line is the graph of the transition function (6) used by Engle and Smith
(1999) with γ = 0.1. The other lines are the plots of the transition function
(8) for different value of γ. c1 = −0.5 and c2 = 0.5.

Figure 2: Transition function used in the SPS together with the Logistic function used by Engle
and Smith (1999)
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The graph shows the logistic function used by Engle and Smith (1999) to-
gether with the transition function (8) when γ = 10, c1 = c2 = 0. The dashed
line is the graph of the transition function used by Engle and Smith (1999)
when γ = 0.1. The thick back line represents the transition function (8)
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The SPS model can also approximate the STIMA model. In fact, the STIMA specification

can be seen as a limiting case of an unrestricted SPS model. For instance, when γ → ∞ and

c1 = −c2 and c2 = κ > 0 in (8), the SPS model is identical to a STIMA model. This feature of

the SPS model makes it possible to describe nonlinearities that the STIMA model also captures.

An advantage of the present model over STIMA is that the case c1 6= −c2 is included. This

feature allows asymmetries between the effects of large positive and negative innovations.

2.1 Invertibility

Since the SPS process is a moving average model, the estimation of parameters has to be

carried out recursively. In fact, in order to estimate the model one has to be able to estimate

the innovation process given the observed data and the generating formula. This is only possible

if the model is invertible. Following the definition of invertibility by Granger and Andersen

(1978), Engle and Smith (1999) established the invertibility conditions of STOPBREAK models

in the following theorem:

Theorem 1 The nonlinear moving average process in equation (5) is invertible if E(|1− qt(1+

ηqt)|Ft−1) ≤ zt < 1, where ηqt = (εt/qt)(∂q/∂ε) | εt
and {zt} is a deterministic sequence defined

such that limT→∞
∏T

t=1 zt = 0

Proof. See Engle and Smith (1999).

Thus, for invertibility it is required that the average total effect of innovation has to be less

than one. Applying Theorem 1 to the SPS model implies that the model is invertible if

E

[∣∣∣∣$t−1 +
∂$t−1

∂εt−1

εt−1

∣∣∣∣ |Ft−1

]
< 1. (9)

The invertibility condition has the form,

E

[∣∣∣∣$t−1 +
∂$t−1

∂εt−1

εt−1

∣∣∣∣ |Ft−1

]
≤ Et−1|θ1 + θ2g(.)|

+Et−1|θ2γ(1− g(.))g(.)εt−1[(εt−1 − c1) + (εt−1 − c2)]| (10)

The first term on the right-hand side of (10) is less than one if |θ1 + θ2| < 1. The second term

is not necessarily zero since its value depends on γ and consequently large values of γ might

affect invertibility. Fortunately, when γ is large g(.) tends to a step function taking values zero

and one. Hence, for large γ the second term on the right-hand side of (10) is practically zero

and equals zeros for γ →∞.
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3 Inference in Smooth Permanent Surge models

This section presents the statistical properties of the SPS model defined by (5), (7) and (8).

The random variable of interest is ∆yt and not yt, which means that the inference is based on

the stationary variable ∆yt.

3.1 Hypothesis testing

In this subsection we present three tests in the SPS framework. The first test is a test of

linearity in (5). It is based on Brännäs, De Gooijer, and Teräsvirta (1998). The second test

is a test of the random walk hypothesis. The final test is a test of the SPS model against the

STOPBREAK alternative.

3.1.1 Testing linearity in the SPS model

Testing linearity in (5) is equivalent to testing the hypothesis $t−1 = θ∗ for all t. Given that

transition function (8) is constant when γ = 0, the linearity test can be carried out by the

null hypothesis H0 : γ = 0. However, the standard testing procedures are not valid because θ2,

c1 and c2 are not identified parameters under the null hypothesis. Brännäs, De Gooijer, and

Teräsvirta (1998) circumvent this identification problem following Luukkonen, Saikkonen, and

Teräsvirta (1988) and Granger and Teräsvirta (1993). They replace the transition function (8)

in (7) with its first-order Taylor expansion around γ = 0. After doing that and merging terms

it turns out that the null hypothesis H0 : γ = 0 in (5) is equivalent to H1
0 : θ̃2 = θ̃3 = 0 in the

following auxiliary regression:

∆yt = θ̃1εt−1 + θ̃2ε
2
t−1 + θ̃3ε

3
t−1 + e∗t (11)

where e∗t = εt + εt−1R(γ, c; εt−1). R is the remainder in the Taylor expansion. Note that under

H0 e∗t = εt so the asymptotic theory is not affected by this approximation.

The LM test statistic is a convenient statistic for testing H1
0 since it only requires the

estimation of a MA(1) process. The resulting LM-type test can be carried out in three steps

as follows:

1. Estimate the MA(1) model

∆yt = εt + θ̃1εt−1

and compute the residuals ε̂t, t = 1, . . . , T , and the sum of squared residuals SSR0.

2. Regress ε̂t on ( ∂εt

∂θ̃1
, ∂εt

∂θ̃2
, ∂εt

∂θ̃3
) |H1

0
and compute the sum of squares residuals SSR1. From

(11) it is seen that the first derivatives of the residuals εt with respect to θ̃j, j = 1, 2, 3,
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under the null hypothesis are of the form

∂εt−1

∂θ̃j

= ε̂t−1 + ˆ̃θ1
∂εt−1

∂θ̃j

and thus have to be computed recursively.

3. The test statistic is,

LM = T
(SSR0 − SSR1)

SSR0

(12)

and has an asymptotic χ2 distribution with two degrees of freedom under the linearity

hypothesis and the assumption Eε6
t < ∞.

3.1.2 Testing SPS against random walk

The random walk hypothesis is an interesting one to test, because the behaviour of yt in the SPS

model resembles the behaviour of realizations of the random walk process, and distinguishing

between the two is important in applications. In fact, the SPS model can be defined as in (5)

which is a unit root process with a specific moving average component.

The random walk hypothesis in (5) implies H0
0 : $t−1 = 0 for all t. This null hypothesis is

then equivalent to testing H1
0 : θ1 = θ2 = 0 in (7). The testing problem is again a nonstandard

one, because the parameters γ, c are not identified under the null hypothesis. To circumvent the

identification problem we follow Davies (1977,1987) and first derive the LM test of θ1 = θ2 = 0

in (5) assuming γ and c known. Based in the results in Andrews and Ploberger (1994), the

identification problem is solved by applying ExpLM or AveLM tests.

The LM statistic for any given (γ, c) has the form:

LM(γ, c) =
1

σ̂2
û′X1(γ, c)(X1 (γ, c)′X1(γ, c))

−1
X1(γ, c)′û (13)

where X1(γ, c) = [û−1
... G(û−1, γ, c)¯ û−1] , û are the vector of residuals under the null and and

û−1 its first lag, respectively.

The computation of ExpLM and AveLM tests can be based on a dense grid over γ and c.

The grid should include possibly large positive values of γ and values of c defined within the

range of û.

In this paper we do not derive the asymptotic distribution of the test because it is possible

to use the small sample distribution. We follow Dufour (1995) and Dufour and Khalaf (2001)

and approximate the small sample distribution using Monte Carlo testing techniques. The

advantage of this approach is that the test is exact in the sense that it has size-corrected critical

regions. The main requirement of the MC test is that the statistic can be simulated under the

null hypothesis. Moreover, the test is provably exact when the null distribution is free from
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nuisance parameters. Statistic (13) has this property because when H0 : θ1 = θ2 = 0 is valid, we

have ∆yt = εt, and consequently all that is needed for simulating ∆yt is the distribution of εt.

Hence, the null distribution of the ExpLM and AveLM tests only depends on the distribution

of the errors.

Following Dufour (1995) the small sample distribution of ExpLM and AveLM test can be

obtained by simulation as follows:

1. Compute ExpLM or AveLM test from the original sample and call the statistic S0.

2. Generate the LM test (13) by replacing û/σ̂ in (13) with ûs = us where us is a draw

from the assumed error distribution. Compute the test statistic Sj from the simulated

sample. Notice that for simulating the LM-test statistic under H0, no knowledge of any

parameters is needed.

The number of replications N is typically small but it has to be such that α(N + 1) is

an integer for a given nominal size α. For example, for α = 0.05, N = 19 is enough for

correcting the size. Greater values of N increase the power of the test.

3. Compute the Monte Carlo p-value (PMC) as

PMC =
NĜN(x) + 1

N + 1
(14)

where ĜN(S0) = 1
N

∑N
j=1 I[0,∞)(Sj − S0) and IA(z) = 1 for z ∈ A and 0 otherwise.

The random walk hypothesis can also be tested with the SupLM test. The computation of the

SupLM test is difficult because (13) is a highly erratic function of (γ, c). Despite this feature of

the objective function it can be computed using a suitable global optimization procedure such

as simulated annealing [See Brooks and Morgan (1995) and Goffe, Ferrier, and Rogers (1994)

for details]. The advantage of this algorithm compared to numerical optimization algorithms

based on derivatives of the objective function, is that it escapes local optima. The results

in González and Teräsvirta (2004) indicate, however, that the ExpLM and AveLM tests have

higher power than the SupLM and that they require fewer computations.

3.1.3 Testing STOPBREAK hypothesis within SPS

Even though the STOPBREAK model is not nested in the SPS process, there is a parametriza-

tion within the SPS that resembles the characterization of permanent effects in the STOP-

BREAK process. In the latter model the permanent effect of an innovation λt is a random

variable defined within [0,2). However, the authors point out the following: the intuition sug-

gests that the majority of the probability mass for λt would lie in the [0,1] interval. This suggest
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that even though the STOPBREAK model is invertible for λt < 2 in practice unity serves as

upper bound for λt.

Using the fact that λt is defined on the [0,1] interval and the fact that transition function

(8) approximates the Logistic function by (6) when c1 = c2 = 0 one can write an approximate

STOPBREAK process as follows:

∆yt =εt−1 −$t−1εt−1

$t−1 =− 1 + 2g(εt−1, γ) (15)

g(εt−1, γ) =
(
1 + exp(−γε2

t−1)
)−1

.

In (15), the permanent effect of an innovation λt equals

λt = −1 + 2g(εt−1, γ) + 2(1− g(εt−1, γ))g(εt−1, γ)γεt−1 (16)

The permanent effect of an innovation in (15) lies in the interval [0,1]. In fact, when ε = 0,

λt = 0 and when |ε| → ∞ we have that g(.) = 1 and λt = 1. This means that zero shocks have

transitory effects whereas large shocks have permanent effects.

The second term on the right-hand side of (16) depends on γ. This might imply that for

any ε, large values of γ are associated with a large permanent effect. However, when γ → ∞,

this second term is always zero because the transition function then becomes a step function

taking only values zero and one.

This characterization of the STOPBREAK process within the SPS model allows us to

formulate the STOPBREAK null hypothesis as H0 : c1 = c2 = 0; θ1 = −1; θ2 = 2 in (5) with

(7). This hypothesis is not testable because the elements of the score for c1 and c2 under the

null are the same. However, reformulating the transition function (8) as in (15) yields

g(ε, γ, c) = (1 + exp(−γ(εt−1 − c)2)−1. (17)

Using this formulation it is possible to test the equivalent null hypothesis H0 : c = 0,

θ1 = −1, θ2 = 2.

Since only γ has to be estimated under the null hypothesis, the LM test is computationally

convenient. The test can be obtained in three steps as follows:

1. Estimate (5) under the null hypothesis, compute the residuals û and the sum of square

residuals SSR0.

2. Estimate the auxiliary regression

ût = x′tb + error
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and compute the sum of squared residuals SSR1. Where, xt = ( ∂εt

∂θ1
, ∂εt

∂θ2
, ∂εt

∂c
, ∂εt

∂γ
)′.

3. Compute the value of the LM statistic

LM = T
(SSR0 − SSR1)

SSR0

Since the parameter estimates in the SPS model are asymptotically normally distributed,

the LM test statistic has an asymptotic χ2 distribution with three degrees of freedom

under the null hypothesis.

The first step in this procedure requires nonlinear estimation of γ. Consequently, the esti-

mated residuals and ∂εt/∂γ are not necessarily orthogonal, which can affect the size of test. To

circumvent this problem Eitrheim and Teräsvirta (1996) ortogonalized the estimated residuals

under H0 with respect to ∂εt/∂γ before computing SSR1 in step two. The second step in the

above algorithm can thus be replaced by the following two steps:

2a. Regress ût on ∂εt

∂γ
and compute the residuals ûo

t and SSR0.

2b. Estimate the auxiliary regression

ûo
t = x′tb + error

and compute the sum of squared residuals SSR1.

3.2 Estimating SPS models

Invertibility is required for the estimation of the SPS model, and the parameter vector ϕ =

(θ1, θ2, γ, c1, c2, σ
2)′ can be estimated by maximum likelihood. The invertibility condition en-

sures that the likelihood function is well-defined since εt can be obtained recursively from any

initial condition. For practical purposes, we assume that ε0 = 0.

The log likelihood function for an SPS model (5) is,

L(y, ϕ1, σ
2) = −T

2
log(2πσ2)− 1

2σ2

T∑
i=1

ε2
t (18)

where εt = ∆yt + $t−1εt−1 and $t−1 is defined in (7) and (8).
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The score vector is given by

∂L

∂β
=− 1

σ2

T∑
t=1

εtwt

∂L

∂σ2
=

1

σ3

T∑
t=1

(ε2
t − σ2)

where β = (θ1, θ2, γ, c)′ and

wt = bt−1εt−1 +

(
θ2

∂gt−1(γ, c)

∂ε
εt−1 + $t−1

)
wt−1

and bt−1 =
(
1, gt−1(γ, c), θ2

∂gt−1(γ,c)
∂γ

, θ2
∂gt−1(γ,c)

∂c1
, θ2

∂gt−1(γ,c)
∂c2

)′
.

Furthermore, gt−1(γ, c) = g(εt−1; γ, c) and

∂gt−1

∂γ
= [1− gt−1(γ, c)] gt−1(γ, c)(εt−1 − c1)(εt−1 − c2)

∂gt−1

∂c1

=− [1− g(εt−1)] gt−1(γ, c)γ(εt−1 − c2)

∂gt−1

∂c2

=− [1− gt−1(γ, c)] gt−1(γ, c)γ(εt−1 − c1)

∂gt−1

∂ε
= [1− gt−1(γ, c)] gt−1(γ, c)γ [(εt−1 − c1) + (εt−1 − c2)] .

The recursion for computing the likelihood and the score can be started from zero. This

starting-value should not have any effect on the results.

The following theorem establishes the consistency and asymptotic normality of the maxi-

mum likelihood estimator of ϕ.

Theorem 2 Suppose that yt is generated by an invertible SPS model, where {εt,Ft} is a

strictly stationary α-mixing martingale sequence. Then the maximum likelihood estimator ϕ̂ ≡
argmaxΨLT (yT , ϕ) is consistent under the following assumptions: (i) E|εt|2p ≤ M < ∞ for some

p > 1, (ii) the parameter space Ψ is a compact subset of R5, and (iii) ϕ0 = argmaxΨELT (yT , ϕ)

is unique. Moreover, if in addition of (ii) and (iii) the α-mixing coefficients on εt are of size

p/(1− p) and E|εt|4p ≤ M < ∞, then

√
T (ϕ̂− ϕ0)

d−→ N(0, V −1
0 ) (19)

Proof. The proof of the theorem closely follows Engle and Smith (1999) and can be found in

the Appendix A.

Even though the parameter estimates are asymptotically normal this result must be applied

with caution. In particular, one must be aware of the identification problem involved in testing
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several null hypotheses. For instance, the standard t-test for θ2 and γ creates a situation

in which the model contains nuisance parameters not identified under the null hypothesis.

Consequently, the standard asymptotic distribution of this test is not applicable. For this

reason, we recommend that the final estimated model be considered together with the results

of the linearity tests.

The second factor that might affect the usefulness of the asymptotic distribution theory

is that for very large values of γ the final estimated Hessian may be ill-conditioned. In this

situation it is only possible to obtain standard errors for θ1 and θ2 by using the corresponding

block of the final estimated Hessian.

4 Small-sample properties of tests

In this section we investigate the empirical size and power of our tests by simulation. The

section is divided in three subsections. The first one is devoted to the linearity test, the

second subsection contains results on the small-sample properties of the test of the random

walk hypothesis. The final subsection is concerned with the test of the SPS process against the

STOPBREAK model. All results are based on 5000 Monte Carlo replications. The data for

each experiment is generated using the following SPS model:

∆yt =εt + $t−1εt−1

$t−1 =θ1 + θ2g(εt−1, γ, c) (20)

g(εt−1, γ, c) =

(
1 + exp(−γ(εt−1 − c1)(εt−1 − c2))

)−1

.

4.1 Small-sample properties of the linearity test

In order to investigate the size of the linearity test the data is generated using equation (20)

with θ2 = γ = c1 = c2 = 0. Since only θ1 is likely to affect the size of the test we consider

the test for θ1 = 0.1, 0.2, . . . , 0.9. The sample size is 100. The errors εt are independently

normally distributed with mean zero and variance one. The results for the nominal size 0.05

are presented in Table 1.

It is seen that the size properties of the test are generally very good in the sense that the

empirical size is close to the nominal size. The size deteriorates somewhat for values of θ1 close

to one. A likely explanation is that for θ1 near one the null model is close to being noninvertible.

In order to investigate the power of the test we generate data from equation (20) with

θ1 = 0.5 and different values for θ2 and γ. We set θ1 = 0.5 because the empirical size was very

close to its nominal size at this value of θ1. Additionally, we use 10 different values for θ2 and
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Table 1: Empirical size of the linearity test
θ1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Size 0.048 0.049 0.049 0.056 0.050 0.054 0.060 0.060 0.085

The table contains the empirical size of the linearity test at 5% nominal level. The
sample size is n = 100.

Figure 3: Empirical power of the linearity test at nominal significance level 0.05 as a function
of θ2 and γ.
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The graph contains the empirical power of the linearity test for different
values of γ and θ2. Each line corresponds to one value of γ. The sample size
equals 100 and θ1 = 0.5.

for each value of θ2 we compute the power of the test for: γ, γ = 2, 10 and 100. Figure 3 shows

the empirical power of the test as a function of θ2. Each curve in the graph corresponds to one

value of γ. As can be seen, the power increases with θ2. Moreover, for each θ2 the power is

higher for larger values of γ. By comparing the estimated powers for γ = 10 and γ = 100 in

Figure 3, it is seen that both curves are close to each other for all θ2. This might suggest that

the increment in power associated with γ decreases with the value of γ.

4.2 Small sample properties of the test of SPS against random walk

In order to obtain the empirical size of the test we simulate data from (20) with θ1 = θ2 = 0.

εt are again drawn from a standard normal distribution. We set the nominal size to equal 0.05

and consequently only use 19 Monte Carlo replications for computing the Monte Carlo p-value.

The sample size is 50. In order to compute ExpLM and AveLM test we conduct a grid search

on γ and c. The grid for γ includes 100 evenly space values within 2 and 1000 and the grid for

c includes 50 different values for c1 and c2. Since c1 and c2 are exchangeable in the likelihood,

we only consider values of c2 such that c2 ≥ c1. Thus, in computing the ExpLM and AveLM

test we evaluate the LM statistic (13) (100× (50+1)×50)/2 times for both the original sample

and the simulated samples. The result is that the empirical size of both tests, the ExpLM and
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AveLM, equals 0.0466 which is very close to the nominal size.

For computing the power of the test we simulate data from 18 different variants of model

(20). In particular, we let θ1 and θ2 take values 0.1 and 0.3. Additionally, we also consider

two values for γ; γ = 2 and 10. Since the power of the Monte Carlo tests depends on the

number of Monte Carlo samples, N, we use N = 19 and N = 59 in computing the MC-p-value.

The results are summarized in Table 2. They indicate that both the ExpLM and the AveLM

Table 2: Empirical power of the test of random walk hypothesis against SPS at the significance
level 0.05

N=19
γ θ1 θ2 ExpLM AveLM γ θ1 θ2 ExpLM AveLM

0.1 0.126 0.126 0.1 0.128 0.128
2 0.1 0.3 0.301 0.301 10 0.1 0.3 0.322 0.322

0.5 0.542 0.542 0.5 0.575 0.575
0.1 0.429 0.429 0.1 0.432 0.432

2 0.3 0.3 0.626 0.626 10 0.3 0.3 0.636 0.636
0.5 0.774 0.774 0.5 0.786 0.786
0.1 0.729 0.729 0.1 0.730 0.730

2 0.5 0.3 0.817 0.817 10 0.5 0.3 0.819 0.819
0.5 0.877 0.877 0.5 0.881 0.881

N=59
γ θ1 θ2 ExpLM AveLM γ θ1 θ2 ExpLM AveLM

0.1 0.137 0.137 0.1 0.141 0.141
2 0.1 0.3 0.325 0.325 10 0.1 0.3 0.343 0.343

0.5 0.597 0.597 0.5 0.627 0.627
0.1 0.475 0.475 0.1 0.478 0.478

2 0.3 0.3 0.678 0.678 10 0.3 0.3 0.689 0.689
0.5 0.833 0.833 0.5 0.844 0.844
0.1 0.789 0.789 0.1 0.788 0.788

2 0.5 0.3 0.873 0.873 10 0.5 0.3 0.875 0.875
0.5 0.921 0.921 0.5 0.924 0.924

The table contains the empirical power of the test of SPS against random walk.
The power is computed for the 5% nominal level. The sample size is n = 50. Two
different number of Monte Carlo samples were used in computing the Monte Carlo
p-values, N = 19 and N = 59.

tests have equal power in small samples. As expected, the power of the test increases with

the number of Monte Carlo samples used to compute PMC . The power differences when N is

varied are not large. For instance, when γ = 2, θ1 = 0.1 and θ2 = 0.3 the power of the test

with N = 19 equals 0.30 whereas for N = 59 it is 0.32. The power seems to be independent

of γ and positively related with θ1 and θ2. Finally, considering θ1 and θ2 the results indicate

that the power of the test depends more on θ1 than on θ2. For instance, with γ = 2, θ2 = 0.1

an increment of θ1 from 0.1 to 0.3 increases the power in 2.46%, whereas the same exercise for

θ1 = 0.1 with θ2 changing from 0.1 to 0.3 only increases the power in 1.37%.

These results indicate that when the null hypothesis is rejected it is useful to test whether

θ2 equals zero. This null hypothesis can be tested using the linearity test proposed in section
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3.1 or as suggested in González and Teräsvirta (2004).

4.3 Small sample properties of the test of SPS against the STOP-

BREAK model

To compute the size of the test against the STOPBREAK we generate data from (20) with

θ1 = −1 and θ2 = 2, c1 = c2 = 0. Since the only free parameter under H0 is γ we use three

different values for it: γ = 2, 10 and 30. We also consider two sample sizes n = 100 and n = 200.

Table 3 with four columns contains the results for the Monte Carlo experiment. The first and

Table 3: Empirical size of the test STOPBREAK against SPS at significance level 0.05

Sample Size γ Empirical size Failures
2 0.0454 5

100 5 0.0918 238
30 - >1000

Sample Size γ Empirical size Failures
2 0.0528 0

200 5 0.0814 59
30 - >1000

second columns of the table indicate the sample size and the value of γ, respectively. The third

column contains the estimated size of the test and the last column indicates the number of

discarded draws in the Monte Carlo experiment. These draws are samples for which the test

was not available because the covariance matrix of the score was not invertible. The size of the

test is good for small values of γ but deteriorates when γ increases. Moreover, the empirical

size of the test cannot be computed for γ = 30. There are two explanations for this outcome.

First, when γ → ∞ the Hessian becomes noninvertible because the transition function under

the null equals one for all εt different from zero. Second, large values of γ in (15) push the

model under the null hypothesis towards the boundary of the invertibility condition, because

the transition function in (9) always equals one.

In summary, the results of the Monte Carlo experiment suggest that the test is only available

for small values of γ because the model is not identified under the null hypothesis and because

it may not be invertible at large values of γ. The identification problem is not only present

in the STOPBREAK approximation to SPS. It is also present in the original version of the

STOPBREAK model. In fact, when γ in the (6) is close to zero, the logistic function takes

value one for practically all εt 6= 0 and the STOPBREAK model collapses to a random walk.

The results of this Monte Carlo experiment support ”second-order logistic” function (8) as an

alternative parametrization to the simple logistic transition function used by Engle and Smith

(1999).
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Given the size results we only consider the power of the test for γ = 2 and we generate data

from equation (20) with the following other parameter values: c1 = −0.1, c2 = 0.1, θ1 = −0.8

and θ2 = 1.8. We estimate the power of the test for two sample sizes T = 100 and T = 200.

The results in Table 4. show that the test has good power against the alternative and that

Table 4: Empirical power of the test of SPS against STOPBREAK at significance level 0.05.

Sample Size Empirical Power Sample Size Empirical Power
100 0.226 200 0.404

The table contains the empirical power of the SPS against STOPBREAK. The
power is computed for a 0.05 nominal level

the power increases with the sample size. However, due to the fact that the size of the test

deteriorates with the value of γ and that the test is not likely to be available at large values γ,

we recommend caution when using it in applications.

5 Application

In this section we illustrate the use of the proposed test statistics and the SPS methodology.

The application is borrowed from Engle and Smith (1999). We investigate whether the stock

prices of companies that belong to the same market have the tendency to move together. In

theory, such prices should move together if they follow the industry behaviour, and they might

deviate from each other only temporarily and depending on industry-specific shocks. This

theory therefore implies that the ratio of these stock prices should not follow a random walk.

We apply the SPS model to daily price series for Texaco, Mobil, IBM, Microsoft, General

Motors, Ford, Coca-Cola and Pepsi. In all cases, stock prices are measured as the closing price

of stocks listed in the US market. The observations cover a period from January 1988 to March

2004 and were obtained from Reuters 3000 Xtra.

The random walk test was computed using a grid search over γ and c. We include 100

different values for γ evenly spaced between 2 and 1000 and 25 values for c1 and c2 defined

between -2.5 and 2.5. The Monte Carlo p-value was computed using 59 samples from a standard

normal distribution. In order to compare our results with those of Engle and Smith (1999)

we computed the random walk test for two different samples. The first sample comprises

observations from January 1988 through December 1995, which is the sample used in Engle

and Smith (1999), whereas the second sample contains observations from January 1988 to

March 2004. The results are reported in Table 5. The table is divided into two panels, one

for each sample. Each panel presents the results of the standard LM test and its robustified

version, LMR. The LMR is robustified against heteroskedasticity by using the HAC estimator

of the variance-covariance matrix. We prefer the results of the LMR because the time series are
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highly heteroskcedastic. From the first panel of Table 5 it can be seen that the random walk

hypothesis is not rejected at 5% significance level for the period 1988-1995 for the stock price

ratios IBM/MSFT and Texaco/Mobil whereas it is rejected for Cola-Cola/Pepsi and General

Motors/Ford. Using the complete sample size the results change. In fact, the random walk

hypothesis is only rejected for the price ratio General Motors/Ford.

These results have to be interpreted with caution because the null hypothesis of random

walk is the joint hypothesis θ1 = θ2 = 0 in (5). Thus it is possible that when the null hypothesis

is not rejected the data follows a linear MA(1) process and not necessarily a random walk. It

is therefore important to complement the results of the random walk test with those of the

linearity test. These results can be found in Table 6. As before, the table is divided into two

Table 5: Random Walk test results
(1988:1-1995:12) (1988:1-2004:3)

Ratio Ordinary Robust Ordinary Robust
IBM/MSFT 1.4(0.383) 0.7(0.733) 7.1(0.017) 1.9(0.167)
GM/FORD 6.7(0.034) 4.5(0.017) 33.1(0.017) 20.9(0.017)
COLA/PEPSI 5.1(0.017) 4.5(0.017) 4.4(0.033) 2.1(0.183)
Texaco/Mobil 6.6(0.017) 1.1(0.500) 6.0(0.017) 2.7(0.120)

Note: The table reports the results based on ExpLM test. P-values in parenthe-
sis. The Monte Carlo p-values were computed using 59 samples from the normal
distribution.

panels. The left-hand panel contains the results for the period 1988-1995 whereas the results for

the complete sample are reported in the right-hand panel. Linearity is generally not rejected,

the only exception being the Texaco/Mobil ratio in the sample 1988-1995.

Taking into account the results of both tests, the random walk and the linearity test it is seen

that, the stock price ratios Coca-Cola/Pepsi and General Motors/Ford can be characterized by

a linear stationary MA(1) while the ratio IBM/MSFT seems to follow a random walk. No

evidence in favour of smooth permanent surge is found in any of the stock price ratios. There

is no need to fit an SPS model to these price ratio series.

Table 6: Linearity test results

(1988:1-1995:12) (1988:1-2004:3)
Ratio LM LMR LM LMR

IBM/MSFT 13.2(0.001) 5.8(0.344) 17.3(0.001) 2.1(0.344)
GM/FORD 1.4(0.484) 1.1(0.581) 0.3(0.838) 0.7(0.716)
COLA/PEPSI 0.1(0.975) 0.1(0.981) 10.0(0.001) 3.6(0.166)
Texaco/Mobil 19.1(0.001) 6.9(0.037) 10.2(0.001) 1.2(0.540)

Note: The column label LMR contains the results of the robust LM test. The tests
are robustified using the standard HAC estimator for the variance.
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6 Conclusions

In this paper we have introduced the Smooth Permanent Surge mode which generalizes the

STOPBREAK model by Engle and Smith (1999). The new parametrization overcomes a diffi-

culty inherent in STOPBREAK model, namely, that all shocks to the model have permanent

effect. In SPS models there is the possibility for shocks to have transitory effects.

The SPS model is also an alternative to STIMA models because, it allows for asymmetries

in the long-run effect of the shocks. The continuity of the likelihood function permits the use

of standard asymptotic theory when carrying out inference on the model parameters.

We describe three tests of the SPS model that can be used in the modelling process. The

first test is a test of non linearity, the second test is a test of SPS against random walk and

the final test is a test of SPS against STOPREAK process. The results of the Monte Carlo

experiment indicate that the first two tests have good properties in small samples while the

last test seems to be of little practical use.
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A Proof of theorem 2

This appendix contains the proof of Theorem 2 stating consistency and asymptotic normality

of the maximum likelihood estimators of the parameters of the SPS model. The log-likelihood

function is

LT =
T∑

t=1

qt(y
t, ϕ) (1)

where qt(y
t, ϕ) = −1

2
ln(σ2)− 1

2σ2 (∆yt + $t−1εt−1)
2 and ϕ = (θ1, θ2, γ, c1, c2, σ

2)′. Furthermore,

$t−1 and g(εt−1, γ, c1, c2) are defined in (7) and (8), respectively.

A.1 Consistency

Repeated substitution of εt−1 reveals that qt(yt, ϕ) is a function of the increasing sequence

yi, i = 1, . . . , t, and consequently it is a heterogenous sequence of yt. In order to prove consis-

tency we show that conditions (M.1) - (M.3) of Theorem 4.3 in Wooldridge (1994) are satisfied.

To invoke theorem 4.3 in Wooldridge (1994) we need to show that {qt(εt, ϕ) : t = 1, . . . } satisfies

the uniform law of large numbers on Ψ and that qt(y
t, ϕ) is measurable for any ϕ ∈ Ψ. For the

uniform law of large numbers to hold we need to verify the following conditions:

1. For each ϕ̃ ∈ ϕ, {qt(y
t, ϕ̃) : t = 1, 2, . . . } satisfies the weak law of large numbers.

2. There exists a function ht(y
t) ≥ 0 such that

(a) For all ϕ1,ϕ2 ∈ Ψ, |qt(y
t, ϕ1)− qt(y

t, ϕ2)| ≤ h(yt) ‖ ϕ1 − ϕ2 ‖
(b) {h(yt)} satisfies the weak law of large numbers.

The strategy to prove condition 1 is the following. First we will show that for any ϕ̃ ∈ ϕ, ε̃ is

L2-NED, which by Theorem 17.9 in Davidson (1994) implies that ε̃2 is L1-NED . We conclude

from Theorem 17.5 in Davidson (1994) that {ε̃2 − σ̃2} is an L1-mixingale. Finally, if ε̃2 is

uniformly integrable, it follows from Andrews’s (1988) weak law of large numbers that

1

T

T∑
t=1

qt(ε̃t, ϕ̃)
p→ E

1

T

T∑
t=1

qt(ε̃t, ϕ̃)

for any ϕ̃ ∈ Ψ.

For any ϕ̃ we have that ε̃t = ∆yt + θ̃t−1ε̃t−1 where θ̃t−1 = θ̃1 + θ̃2g(εt−1, γ̃, c̃). Recursive

substitution of ε̃t shows that ε̃t = ft(εt, εt−1, εt−2, . . . ) which is a continuous function of a mixing

sequence which is not necessarily mixing. However, ε̃ is L2-NED. To see this we follow Example

17.4 in Davidson (1994) and approximate ft with a Taylor expansion about zero with respect
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to εt−j for j > m, where m is a fixed real number. This yields,

f̃t = f̃m
t +

t∑
j=m+1

(
∂ft

∂εt−j

)∗
εt−j

where ∗ denotes the evaluation of the derivatives at points in the interval [0, εt−j]. Note that fm
t

is a measurable approximation of E
[
f̃t|F t+m

t−m

]
. Consequently, from Theorem 10.12 in Davidson

(1994) we have

∥∥∥ε̃t − E
[
f̃t|F t+m

t−m

]∥∥∥
2
≤ ‖ε̃t − fm

t ‖2 .

which implies

∥∥∥ε̃t − E
[
f̃t|F t

t−m

]∥∥∥
2
≤

∥∥∥∥∥
t∑

j=m+1

(
∂f̃t

∂εt−j

)∗

εt−j

∥∥∥∥∥
2

Differentiating f̃t w.r.t εt−j yields,

∂f̃t

∂εt−j

=
∂∆yt

∂εt−j

+

(
θ̃t−1 +

∂θ̃t−1

∂ε̃t−j

ε̃t−1

)
∂ε̃t−1

∂εt−j

= k̃t−1k̃t−2 . . . k̃t−j+1
∂∆yt−j+1

∂εt−j

+ k̃t−1k̃t−2 . . . k̃t−j
∂∆yt−j

∂εt−j

= k̃t−1k̃t−2 . . . k̃t−j+1

(
$t−1 +

∂θt−j

∂εt−1

εt−1

)
+ k̃t−1k̃t−2 . . . k̃t−j

where k̃t−1 =
(
θ̃t−1 + ∂θ̃t−1

∂ε̃t−1
ε̃t−1

)
. Under invertibility |k̃t−i| ≤ |k̄| < 1 and consequently

∣∣∣∣∣
∂f̃t

∂εt−j

∣∣∣∣∣ ≤ 2k̄j

which implies

∥∥∥ε̃t − E
[
f̃t|F t

t−m

]∥∥∥
2
≤

t∑
j=m+1

∣∣∣∣∣

(
∂f̃t

∂εt−j

)∗∣∣∣∣∣ ‖εt−j‖2

< 2
∞∑

j=m+1

k̄j ‖εt−j‖2 = vmdt

where vm = 2
∑∞

j=t+m k̄j and dt = ‖ε‖2. Consequently, {ε̃t} is L2-NED. It follows from Theorem

17.9 in Davidson (1994) that {ε̃2
t} = {ε̃tε̃t} is L1-NED and from Theorem 17.5 in Davidson

(1994), that {ε̃2
t} is L1-mixing.
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For Andrews’s (1988) weak law of large numbers to apply we need E|ε̃t|2p ≤ M < ∞ for

p > 1. This result follows from

‖ε̃t‖2p = ‖∆yt + θ̃t−1ε̃t−1‖2p

≤ ‖∆yt‖2p + ‖θ̃t−1ε̃t−1‖2p

≤ ‖∆yt‖2p + k̄‖ε̃t−1‖2p

hence Eε̃t
2p ≤

(
1

1−k̄
‖∆yt‖2p

)2p

. Note that ‖∆yt‖2p exists since ‖εt‖ ≤ M < ∞. It follows from

Andrews’s (1988) weak law of large numbers that

1

T

T∑
t=1

qt(y
t, ϕ̃) → E

1

T

T∑
t=1

qt(y
t, ϕ̃)

for any ϕ̃ ∈ Ψ.

In other to prove that Condition 2 also holds for SPS models we have to find a dominant

function h(yt) such that,

1. For all ϕ1, ϕ2 ∈ Ψ, |qt(y
t, ϕ1)− qt(y

t, ϕ2)| ≤ h(yt) ‖ ϕ1 − ϕ2 ‖.

2. {h(yt)} satisfies the weak law of large numbers.

The mean value approximation to the likelihood function around ϕ2 is,

qt(y
t, ϕ)− qt(y

t, ϕ2) =
∂qt(y

t, ϕ̃)

∂ϕ

′
(ϕ− ϕ2)

where ϕ̃ indicates that the derivative is evaluated at a point between ϕ and ϕ2. Evaluating the

mean value approximation at ϕ1 and using the triangle inequality we obtain

∣∣qt(y
t, ϕ1)− qt(y

t, ϕ2)
∣∣ ≤

〈
∂qt(y

t, ϕ̃)

∂ϕ′

〉
‖ϕ1 − ϕ2‖

where 〈x〉 denotes the Euclidean norm of the vector x.

We have that,

〈
∂qt(y

t, ϕ)

∂ϕ

〉
=

[
σ̃−4ε̃2

t w̃
2
1t + σ̃−4ε̃2

t w̃
2
2t + σ̃−4ε̃2

t w̃
2
3t (2)

+σ̃−4ε̃2
t w̃

2
4t + σ̃−4ε̃2

t w̃
2
5t + σ̃−6(ε̃2

t − σ̃2
t )

2

]1/2

≤ σ̃−2|ε̃tw̃1t|+ σ̃−2|ε̃tw̃2t|+ σ̃−2|ε̃tw̃3t|
+σ̃−2|ε̃tw̃4t|+ σ̃−2|ε̃tw̃5t|+ σ̃−3|(ε̃2

t − σ̃2
t )|
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where w̃it for i = 1, . . . , 5, are the derivatives of ε̃t with respect to ϕ:

w̃1t =
∂ε̃t

∂θ1

= ε̃t−1 + k̃t−1w̃1t−1

w̃2t =
∂ε̃t

∂θ2

= g̃t−1(γ̃, c̃) + k̃t−1w̃2t−1

w̃3t =
∂ε̃t

∂γ
= θ̃2

∂g̃t−1(γ̃, c̃)

∂γ
εt−1 + k̃t−1w̃3t−1

w̃4t =
∂ε̃t

∂c1

= θ̃2
∂g̃t−1(γ̃, c̃)

∂c1

εt−1 + k̃t−1w̃4t−1

w̃5t =
∂ε̃t

∂c2

= θ̃2
∂g̃t−1(γ̃, c̃)

∂c2

εt−1 + k̃t−1w̃5t−1

where c̃ = (c1, c2)
′ and g̃t−1(.) = g(ε̃t−1, γ̃, c̃).

Consider

|ε̃t| ≤ |∆yt|+ k̄|εt−1|

≤
t∑

i=1

k̄i−1|∆yt−i| ≤ (1− k̄)
t∑

i−1

k̄i−1|εt−i|

and similarly,

|w̃1t| ≤ |ε̃t|+ k̄|w̃1t−1|

≤
t∑

i=1

k̄i−1|ε̃t−i| ≤
t∑

i=1

k̄i−1

t−i∑
j=1

k̄j−1|εt−i−j|

|w̃2t| ≤ |g̃t−1(γ̃, c̃)|+ k̄|w̃2t−1|

≤
t∑

i=1

k̄i−1|g̃t−1(γ̃, c̃)| ≤
t∑

i=1

k̄i−1

|w̃3t| ≤
∣∣∣∣θ̃2

∂g̃t−1(γ̃, c̃

∂γ

∣∣∣∣ + k̄|w̃3t−1|

≤
t∑

i=1

k̄i−1

∣∣∣∣θ̃2
∂g̃t−i(γ̃, c̃)

∂γ

∣∣∣∣

≤ K1

t∑
i=1

k̄i−1

∣∣∣∣
∂g̃t−i(γ̃, c̃)

∂γ

∣∣∣∣ < K(γ̃, c̃)
t∑

i=1

k̄i−1 (3)
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The last equality in (3) holds since |∂g̃t−i(γ̃,c̃)
∂γ

| < K(γ̃, c̃) < ∞. Similarly, |w̃4t| ≤ K2(γ̃, c̃)
∑t

i=1 k̄i−1

and |w̃5t| ≤ K3(γ̃, c̃)
∑t

i=1 k̄i−1 with Ki(γ̃, c̃) < ∞ for i = 1, 2, 3. Thus (2) becomes

〈∂qt(y
t, ϕ)

∂ϕ
〉 ≤ 1

σ̃2

(
t∑

i=1

k̄i−1

t−i∑
j=1

k̄i−1|εt−i−j|+ K1(γ̃, c̃)
t∑

i=1

k̄i−1

+ K2(γ̃, c̃)
t∑

i=1

k̄i−1 + K3(γ̃, c̃)
t∑

i=1

k̄i−1

)(
t∑

i=1

k̄i−1|εt−i|
)

+
1

σ̃3

( t∑
i=1

k̄i−1|εt−i|
)2

≤ h(yt)

(4)

where h(yt) ≡ supϕ∈ϕ〈∂qt(yt,ϕ)
∂ϕ

〉. Thus, h(yt) ≡ A
(∑t

i=1 k̄i−1
∑t−i

j=1 k̄i−1|εt−i−j|+ B
)
×∑t

i=1 k̄i−1|εt−i|+(∑t
i=1 k̄i−1|εt−i|

)2
where A and B are finite constants. It turns out that h(yt) is a function of

bt =
∑t

i=1 k̄i−1|εt−i| which is L2-NED in εt. To see this note that

‖bt − E(bt|F t+m
t−m )‖2 =

∥∥∥∥∥
t∑

i=m+1

k̄i−1|εt−i|
∥∥∥∥∥

2

≤
t∑

i=m+1

k̄i−1‖εt−i‖2

<

∞∑
i=m+1

k̄i−1‖εt−i‖2 = vmdt (5)

From (5) it follows that bt is L2-NED with constants dt = ‖εt‖2 and vm =
∑∞

i=m+1 k̄i−1. It

follows from Theorem 17.9 in Davidson (1994) that b2
t is L1-NED. Moreover, since ‖εt‖2p < ∞,

b2
t is uniformly integrable. It follows that h(yt), which is a function of b2

t , obeys a uniform

weak law of large numbers. Consequently, q(yt, ϕ) satisfies the conditions of Theorem 4.3 in

Wooldridge (1994) and we have that ϕ
p→ ϕ0.
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A.2 Asymptotic normality of the maximum likelihood estimator

Using the mean value expansion, the maximum likelihood estimator can be approximated as

follows,

√
T (ϕ̂− ϕ0) = −

(
∂2LT (yT , ϕ̃)

∂ϕ∂ϕ′

)−1
1√
T

T∑
t=1

∂q(yT , ϕ0)

∂ϕ

= −H−1
0

1√
T

T∑
t=1

∂q(yT , ϕ0)

∂ϕ

+

[
H−1

0 −
(

∂2LT (yT , ϕ̃)

∂ϕ∂ϕ′

)−1
]

1√
T

T∑
t=1

∂q(yT , ϕ0)

∂ϕ

= −H−1
0

1√
T

T∑
t=1

∂q(yT , ϕ0)

∂ϕ
+ op(1)

The last equality holds if the sample Hessian evaluated at ϕ̃ converges in probability to the

population Hessian. To verify this, we need to show that the hessian obeys the uniform law of

large numbers.

Writing the parameter vector as ϕ = (ϕ1, σ
2)′ with ϕ1 = (θ1, θ2, γ, c1, c2)

′ the average Hessian

can be written as

−∂LT (yT , ϕ̃)

∂ϕ∂ϕ′
=

[
H̃1 H̃3

H̃ ′
3 H̃2

]

with

H̃1 =
1

T

T∑
t=1

h1t =
1

T σ̃2

T∑
t=1

(
w̃tw̃

′
t + ε̃t

∂w̃t

∂ϕ1

)

H̃3 =
1

T

T∑
t=1

h3t =
1

T σ̃2

T∑
t=1

w̃tε̃t

H̃2 =
1

T

T∑
t=1

h2t =
1

T σ̃2

T∑
t=1

(
3

ε̃2
t

σ̃2
− 1

)

where w̃t = ( ∂ε̃t

∂θ1
, ∂ε̃t

∂θ2
, ∂ε̃t

∂γ
, ∂ε̃t

∂c1
, ∂ε̃t

∂c2
)′.

As in the proof of consistency, we show that H̃1 ,H̃2, H̃3 obey the uniform law of large

numbers. For this purpose, we shall show that the following conditions hold,

1. For each ϕ̃ ∈ Ψ, {h̃it : t = 1, 2, . . . } for i = 1, 2, 3, satisfies the weak law of large numbers.

2. For each element h̃
(j)
it of H̃i for i = 1, 2, 3 there exists a function r(yt) ≥ 0 such that

(a) For all ϕ1, ϕ2 ∈ Ψ, |h(j)
it (ϕ1)− h

(j)
it (ϕ2)| ≤ r(yt)‖ϕ1 − ϕ2‖

(b) {r(yt)} satisfies the weak law of large numbers.
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In order to show that condition 1 is satisfied we follow a similar strategy to the one used in

the consistency proof. That is, first we show that w̃t and ∂w̃t

∂ϕ1
are L2-NED in εt. This implies that

the summands hit are L1-NED in εt. It follows from Theorem 17.5 in Davidson (1994) that they

are L1-mixingales. Finally, the assumption ‖εt‖4p ≤ M < ∞ guarantees uniform integrability.

Consequently, Hi for i = 1, 2, 3, satisfy Andrews’s (1988) weak law of large numbers.

In order to show that the summands in Hi for i = 1, 2, 3 are L1-NED in εt we show that w̃it

for i = 1, . . . , 5 are L2-NED. In particular, we show that,

‖w̃1t − E[w1t|F t+m
t−m ]‖2 ≤

∞∑
j=m+1

∥∥∥∥
(

∂w̃1t

∂εt−j

)∗
εt−j

∥∥∥∥
2

we have that

∣∣∣∣
∂w̃1t

∂εt−j

∣∣∣∣ ≤ k̄

∣∣∣∣
∂w̃1t−1

∂εt−j

∣∣∣∣ +

(
1 +

∣∣∣∣∣
∂k̃t−1

∂ε̃t−1

∣∣∣∣∣ |w̃1t−1|
) ∣∣∣∣

∂ε̃t−1

∂εt−j

∣∣∣∣

≤
j∑

i=1

k̄i−1

(
1 +

∣∣∣∣∣
∂k̃t−i

∂ε̃t−i

∣∣∣∣∣ |w̃1t−i|
)∣∣∣∣

∂ε̃t−i

∂εt−j

∣∣∣∣

≤ k̄j−1

j∑
i=1

(
1 +

∣∣∣∣∣
∂k̃t−i

∂ε̃t−i

∣∣∣∣∣ |w̃1t−i|
)

where,

∣∣∣∣∣
∂k̃t−i

∂ε̃t−i

∣∣∣∣∣ ≤
∣∣∣∣∣(1 + ε̃t−i)

∂θ̃t−i

∂ε̃t−i

+
∂2θ̃t−i

∂2ε̃t−i

∣∣∣∣∣

≤
∣∣∣∣(1 + ε̃t−i)θ̃2

∂g̃t−i

∂ε̃t−i

+ θ̃2
∂2g̃t−i

∂2ε̃t−i

∣∣∣∣
≤ K1 + K2|ε̃t−i| (6)

In (6), K1 and K2 are finite constants. The last inequality in (6) follows from the fact that

|∂gt−i

∂εt−i
| and |∂2gt−1

∂2εt−i
| are bounded functions of |εt−i|. Moreover, from the proof of consistency we

have, |w̃t| ≤
∑t

i=1 k̄i−1|ε̃t−i|. Thus,

‖w̃1t − E[w̃1t|F t+m
t−m ]‖ ≤

t∑
j=m+1

k̄j−1

[
j∑

i=1

(K1 + K2‖ε̃t−i‖2)

t−j∑
i=1

k̄i−1‖ε̃t−j−i‖2

]
‖εt−j‖2

< K

∞∑
j=m+1

jk̄j−1 ‖εt−j‖2 = vmdt

with vm = K
∑∞

j=m+1 jk̄j−1 and dt = ‖εt‖2. That is, w̃1t is L2-NED on εt. The results for

w̃it, i = 2, . . . , 5 follow from similar derivations. Consequently, w̃it for i = 1, . . . , 5 are L2-NED
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on εt.

We shall show that ∂w̃t/∂ϕ1 are L2-NED. The distinct elements of ∂w̃t/∂ϕ1 are

∂w̃1t

∂ϕi

= k̃t−1
∂w̃1t−1

∂ϕi

+ w̃it−1 +
∂k̃t−1

∂ϕi

w̃1t−1,

for i = 1, . . . , 5.

∂w̃2t

∂ϕi

= k̃t−1
∂w̃2t−1

∂ϕi

+
∂g̃t−1

∂ϕi

+
∂k̃t−1

∂ϕi

w̃2t−1,

for i = 2, . . . , 5.

∂w̃ht

∂ϕi

= k̃t−1
∂w̃ht−1

∂ϕi

+
∂k̃t−1

∂ϕi

w̃ht−1 + θ̃2
∂2g̃t−1

∂γ∂ϕi

ε̃t−1 + θ̃2
∂2g̃t−1

∂γ∂ϕi

w̃it−1,

for i ≥ h = 3, 4, 5, where

∂k̃t−1

∂ϕi

=
∂θ̃t−1

∂ϕi

+
∂2θ̃t−1

∂ε̃t−1∂ϕi

ε̃t−1 +
∂θ̃t−1

∂ε̃t−1

w̃it−1

By proceeding in a manner analogous to that for wit, i = 1, . . . , 5 above, we can show that

the elements of ∂w̃t/∂ϕ1 are L2-NED on εt. Thus, the summands of H1 are L1-NED on εt.

Moreover, since w̃t, ∂w̃t/∂ϕ1, ε̃t have more that two finite moments, we can invoke the weak

law of large numbers for L1-mixingale processes. Thus H̃1
p→ E(H̃1) for all ϕ̃ ∈ Ψ.

Finally, we have to show that there exists a function r(yt) such that

|h(i,j)
1t (ϕ1)− h

(i,j)
1t (ϕ2)| ≤ r(yt)〈ϕ1 − ϕ2〉

where h
(i,j)
1t (ϕ1) denotes the (i, j)-th element of H̃1 evaluated at ϕ1. As before, r(yt) is such

that supϕ∈Ψ

〈
∂h1it(ϕ∗)

∂ϕ

〉
≤ r(yt).

We have that 〈
∂h̃

(i,j)
1t (ϕ̃)

∂ϕ

〉
≤

6∑
s=1

∣∣∣∣
∂h̃

(i,j)
1t (ϕ̃)

∂ϕs

∣∣∣∣

The elements |(∂h̃
(i,j)
1t /∂ϕs)| are not bounded functions of {ε̃t}, but, supϕ∈Ψ |∂h̃

(i,j)
1t /∂ϕs| is

function of the L1-NED process {b2
t}. It follows that H1

p→ E(H1) uniformly in Ψ.

Consider

H̃2 =
1

T σ̃2

T∑
t=1

w̃tε̃t.

From the proof of consistency we have that {w̃t} and ε̃t are L2-NED on {εt}. From this

it follows that {w̃tε̃t} is L1-NED on {εt} and satisfies the weak law of large number for L1-

mixingale processes. It is also possible to show that there exists a dominant function r(yt)
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independent of ϕ that satisfies the weak law of large numbers. That is, H2
p→ E(H2) uniformly

on Ψ. Finally, H3
p→ E(H3) uniformly on Ψ since {ε̃2} obeys a weak law of large numbers and

‖εt‖4p ≤ M < ∞.

Since
(
∂2LT (yT , ϕ̃)/∂ϕ∂ϕ′

) p→ E

[
∂2LT (yT , ϕ̃)/∂ϕ∂ϕ′

]
uniformly on Ψ, and

(
∂2LT (yT , ϕ̃)/∂ϕ∂ϕ′

)

is a continuous function of ϕ and ϕ̂
p→ ϕ0 it follows that,

√
T (ϕ̂− ϕ0) = −H−1

0

1√
T

T∑
t=1

∂q(yT , ϕ0)

∂ϕ
+ op(1)

where

H0 = −E

[
∂2Lt(y

T , ϕ0)

∂ϕϕ′

]
=

[
1

Tσ2
0

∑T
t=1 Ewtw

′
t 0

0 2
σ2
0

]

Now consider

λ′H−1/2
0

1√
T

T∑
t=1

∂q(yT , ϕ0)

∂ϕ
= λ′H−1/2

0

1√
T


 − 1

σ2
0

√
T

∑T
t=1 wtεt

1
σ3
0

√
T

∑T
t=1(ε

2
t − σ2

0)




= λ′H−1/2
0

1√
T

T∑
t=1

Zt

with λ′λ = 1. Using the same argument as Engle and Smith (1999), we have that

H
−1/2
0 T−1/2∂LT (yT , ϕ)

∂ϕ
|ϕ=ϕ0

d→ N(0, 1).
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