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1. Introduction 
 

Modern theories of irreversibility, uncertainty and investment suggest a negative link 

between risk and capital accumulation (e.g. Dixit and Pindyck, 1994). As noted 

already by Bernanke (1983), investment irreversibility and uncertainty represent 

important sources of business cycle fluctuations. With irreversible investments and 

uncertainty, a volatile business framework would be bad for both investment and 

economic growth (Ramey and Ramey, 1995; Serven, 1996). In a macroeconomic 

context, it introduces an argument for policies to secure a stable business 

framework.1 We propose an econometric framework for to test the relevance of 

uncertainty and asymmetry in investment behaviour. Our empirical application is 

based on data from the oil and gas industry, but the general mechanisms of our 

model have an explanatory potential also for other types of investment, other 

industries – and even on a macroeconomic level.  

 

As the oil price surge towards new record heights, economists and policy-makers are 

not only occupied with the macroeconomic impact of the high oil price (e.g., 

Jimenez-Rodriguez and Sanchez, 2005), but also with the sustainability of the 

current price level (e.g., Krugman, 2008). At the core of this discussion is the muted 

response in oil investment and supply to the sharp oil price increase. Concerns have 

been raised among consumer interests about the security of supply. The “Peak Oil”2 

debate is growing increasingly popular, the IEA warns of investment shortage (IEA, 

2005), and politicians adjust their strategic energy policies to reduce the dependency 

on oil. Studying the interaction between oil companies and financial markets, 

Osmundsen et al (2006a, b) note that oil investment fell sharply after the 1998 oil 

price shock. On the other hand, oil investment was more sluggish in adjusting to the 

subsequent oil price increase. The present study offers and exploration of theoretical 

                                                 
1 Based on micro-econometric studies of investment dynamics under uncertainty, Bloom et al. (2007) 
also argue that irreversible investment introduces a link between uncertainty and the speed of policy 
transmission, with slower policy response in the private sector when uncertainty is high. 
2 The idea stems from the geophysical approach initiated by Hubbert (1962), who argued that oil 
production can be described in terms of logistic growth, with subsequent bell-shaped trajectories for 
reserves and production. Today “Peak Oil” refers to the popular discussion of when world oil production 
will actually peak. 
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and econometric explanations for the conjectured one-sidedness of oil investment to 

changes in financial, geological and policy variables. 

 

Our contribution is twofold. First, we propose an econometric approach to test the 

predictions of modern theories of investment, in a model specification including 

asymmetric dynamics and various uncertainty indicators. We demonstrate how an 

error-correction model framework may be adjusted to capture relevant perspectives 

of uncertainty and asymmetry – in accordance with modern investment theory. 

Second, we establish an empirical role for both oil price volatility and underground 

risk in oil and gas exploration investment. In this context, we also demonstrate an 

empirical asymmetry in the relation between exploration activity on one hand, and 

the oil price and other explanatory variables on the other. OPEC’s claimed interest in 

price stability may therefore be questioned, as price fluctuations and uncertainty will 

dampen the growth in non-OPEC oil and gas reserves, according to our findings. 

 

In terms of specific results, we find that the level of oil exploration efforts is 

negatively linked to oil price volatility and underground risk. These findings are 

supportive of the theoretical literature of irreversible investments (cf. Dixit and 

Pindyck, 1994), whereby a negative link between investment and uncertainty is 

established. Our results also offer empirical insights concerning the “bad news 

principle” from the literature on irreversible investments (Bernanke, 1983). More 

specifically, the estimated exploration response to a drop in the oil price is 

significant, whereas the corresponding response to an oil price increase is negligible. 

We also find asymmetric short-term effects of other explanatory variables. 

Compared to a symmetric specification, the magnitude of the estimated coefficients 

increases, and the statistical quality improves. The suggested specification of 

investment behaviour can be useful in other petroleum regions, as well as in other 

empirical studies of producer and investment behaviour.  

 

The paper is organized as follows. Section 2 offers a brief survey of previous studies 

of investment, asymmetry and uncertainty, as well as a review of empirical studies of 
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oil and gas exploration. A simple econometric model is specified in Section 3, our 

data set is presented in Section 4, estimation procedures and results are presented and 

discussed in Section 5, before concluding remarks are offered in Section 5. 

 

 

2. Previous research 

 

The role of asymmetry and uncertainty in investment behaviour is typically linked to 

contemporary extensions of the standard neoclassical model of investment. These 

modern variants of investment theory are highly relevant for oil and gas investment 

in general, and for exploration spending in particular. Before we present an 

econometric framework to test for some of the key predictions of modern investment 

theory, we offer an overview of recent research, together with a discussion of its 

assumptions result, as well as its relevance to oil and gas investment.  

 

2.1 Investment and uncertainty 

The role of uncertainty in fixed capital investment has drawn interest from theorists 

and empirical researchers for decades. A traditional view stems from the properties 

of the neoclassical production technology. Early theoretical contributions (e.g., Oi 

1961; Hartman 1972; Abel 1983) stress the implications of convexity of the profit 

function, implying that any price variation may be exploited for optimization. 

Accordingly, any increase in uncertainty will raise the marginal valuation of 

investment, yielding a positive link between capital-accumulation and uncertainty. 

We refer to this mechanism as the opportunity effect of increased uncertainty. 

 

Academic interest in theories of investment behaviour was spurred by theoretical 

work in the early 1980s, when Cukierman (1980), Bernanke (1983), McDonald and 

Siegel (1986) studied the implications of irreversibility and waiting options for 

investment decision-making. Common for these contributions was the idea that 

investment could not be reversed. This irreversibility provided the firms with a real 

option to defer investment. Any increase in the uncertainty around future 
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profitability will increase the value of this waiting option. Accordingly, this strand of 

literature suggests that investment will respond negatively to increased uncertainty. 

We will refer to this idea as the risk effect of increased uncertainty. 

 

The idea of irreversible investment is truly relevant to oil and gas exploration. Huge 

capital commitments, long investment lags and field-specific sequences of 

investment decisions involve a series of waiting options. The irrevocable character of 

investment expenditure is especially salient for exploration activities; Once a well is 

spudded, there is no way back. Moreover, theory does not provide clear-cut answers 

for the role of uncertainty in investment behaviour. Consequently, empirical studies 

are required to clarify the issue. 

 

2.2 Irreversibility and asymmetry 

Theoretical models of irreversible investment suggest that the costs of adjustment are 

asymmetric, although a stable empirical consensus is yet to be established through 

the required variety of econometric studies. Dixit and Pindyck (1994) illustrate that 

irreversible investment imply an asymmetry in the adjustment cost structure, due to 

the option value of delay. These models typically introduce threshold values of 

expected project profitability, determining regions whereby companies shift their 

behaviour between investment, inaction and disinvestments. Moreover, these trigger 

values of profitability are typically not symmetric around zero, due to the option 

value implied by irreversibility of investment. Bernanke (1983) was one of the first 

studies to stress the asymmetry implications of irreversibility in the popular “bad 

news principle of irreversible investments – that of possible future outcomes, only 

the unfavourable ones have a bearing on the current propensity to undertake a 

project” (Bernanke 1983, p. 91).  

 

The bad news principle reflects the fact that the decision to invest is made in such a 

way as to expose the company to good outcomes and reduce exposure to bad 

outcomes. An appealing application can be made to oil and gas investment. For 

exploration activities, this theory would imply that news about oil price increases is 
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irrelevant for the value of the option to wait. On the other hand, news about oil price 

reductions will increase the value of this option, and put a restriction on current 

exploration efforts. This is one of the hypotheses we will test in our econometric 

model. Specifically, we allow for temporary asymmetry in our explanatory variables, 

to test if the short-term response to an exogenous shock is dominated by the bad 

news effect. 

 

2.3 Risk aversion and agency issues 

Risk aversion is another channel for a negative influence from uncertainty on capital 

formation. The traditional neo-classical approach assumes risk-neutral investors and 

perfect markets. Theories of irreversible investments also assume risk-neutral 

decision-makers. Under such circumstances, risk aversion should also not affect 

corporate investment policies. This view is challenged by recent contributions within 

behavioural corporate finance (BCF).3 Cadsby and Maynes (1998) review several 

experimental studies where risk preferences are misaligned between managers and 

shareholders, causing investment behaviour characterised by inertia and potentially 

also myopic loss aversion. On the other hand, agency theory has also invited studies 

of overconfident managers (e.g., Malmendier and Tate 2005), who systematically 

overestimate the expected returns to investment.  

 

Increasing financial market pressures and frequent evaluation of financial results 

may also give rise to myopic loss-aversion among managers in the oil and gas 

industry (Benartzi and Thaler, 1995). Osmundsen et al. (2006b) argue that pressures 

on the oil and gas industry from financial markets caused a redirection of investment 

spending in the late 1990s, from long-term reserve and production growth to projects 

that could increase earnings in the short term. With evidence that managers take 

action to avoid negative earnings surprises (Matsumoto 2002), the BCF literature is 

therefore supportive of both asymmetric adjustment dynamics and a role for 

uncertainty in corporate investment policies. Again, however, the ultimate impact of 

uncertainty on investment is an empirical question. 

                                                 
3 See Baker et al. (2005) for a recent survey of the BCF literature. 
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2.4 Empirical studies of investment and uncertainty 

Following path-breaking theoretical studies of irreversible investments in the early 

1980s, applications for natural resources emerged promptly (e.g., Brennan and 

Schwartz 1986). These studies were concerned with valuation of development 

options (e.g., Ekern, 1988; Paddock, Siegel and Smith, 1988).  

 

In one of the first comprehensive econometric studies, Leahy and Whited (1996) 

establish a negative link between investment and various uncertainty measures in a 

panel of US manufacturing firms. According to a survey by Carruth et al. (2000), 

subsequent studies confirm a quite robust negative link between investment and 

uncertainty, with somewhat more clear-cut results for studies of micro data than for 

aggregate data. The availability of modern panel data techniques has also stimulated 

a variety of new empirical studies, and most of these are supportive of a negative 

impact of uncertainty on investment. See Bond et al. (2005) for a recent overview.  

 

The theoretical literature on real options and uncertainty suggests that asymmetric 

adjustment should be incorporated in empirical studies of investment, but very few 

empirical studies have done so.4 An exception is Price (1996), who finds evidence of 

asymmetric responses to uncertainty for UK manufacturing investment. A few 

econometric studies have addressed oil and gas field development in the context of 

irreversible investments, but the empirical findings are mixed for the influence of 

uncertainty. In a study of UK oil and gas fields, Favero, Pesaran and Sharma (1992) 

conclude that uncertainty plays an important role for the appraisal lag, whereas Hurn 

and Wright (1994) find no statistical significance of oil price variability in their 

investment equations for oil and gas fields in the same region. We are not aware of 

empirical studies of oil exploration that explicitly incorporate irreversibility and 

uncertainty. 

 

 

                                                 
4 Econometric applications of asymmetric theory are more common in studies of price transmissions in 
commodity markets. A number of studies are, surveyed by Meyer and von Cramon-Taubadel (2004), and 
even more recently by Grasso and Manera (2006). 
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2.5 Empirical studies of oil and gas exploration 

There is an extensive empirical literature on the economics of oil and gas 

exploration, dating back to the early 1960s. A pioneering reference is Fisher (1964), 

who estimates drilling rates, success rates and discovery rates on US regional data 

1946-1955. A series of subsequent studies are based on revisions and updates of the 

Fisher framework, and is surveyed by Dahl and Duggan (1997). In the early 1990s, a 

few studies were also published based on data from the United Kingdom Continental 

Shelf (e.g., Pesaran 1990; Favero and Pesaran 1994). 

 

The validity of dynamic optimisation and intertemporal model specifications for 

exploration behaviour has been questioned in recent years (e.g., Farzin 2001). 

Several late empirical studies have returned to a simplified period-by-period 

optimisation framework (Iledare 1995; Iledare and Pulsipher 1999). Ringlund et al. 

(2007) also apply this behavioural assumption in a comparative assessment of oil rig 

activity in a panel of non-OPEC countries. At the same time, their econometric 

specification is truly dynamic. Our approach will follow a similar line of thought. 

Contributions from the last ten years are scanty, and exploration behaviour in the 

aftermath of the oil price drop in 1998 has therefore not been researched thoroughly. 

 

 

3. Econometric model specification 

 

The key differentiating factor of the production technology among oil and gas 

companies is the reserve concept, which represents a crucial input in the production 

process. Oil and gas companies have to invest in risky exploration activities, to 

sustain production over the longer term. Before the decision to develop the field is 

taken, exploration acreage must be acquired, exploration wells have to be drilled, and 

appraisal activities must be undertaken. Oil and gas producers maximise profits not 

only from production activities, but also from reserve generation. The outcome from 

this optimisation problem is an optimal plan for reserve additions (cf. Mohn and 

Osmundsen 2007). Reserve additions from exploration (Ht) may be seen as a 
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combined result of actual drilling activity (Yt) and drilling efficiency (Zt): 

ttt ZYH ⋅= , where Zt represents average contribution of new reserves per exploration 

well.5 The focus of our study is on drilling efforts, and for the remainder of the paper 

we therefore focus our attention on the Yt variable as the reserve-generating factor.  

Following Iledare (1995) and Mohn and Osmundsen (2007), we apply a supply 

function approach to reserve generation, stating exploration drilling (Yjt) as: 

 

 .jti T

i
ijtjjt eXKY εγβ +∏=        [1] 

 

Footscript j is introduced to indicate variation across the three regions of our data 

set,6 K is a constant term, and α, βi and γ represent coefficients to be estimated. Pt is 

the oil price. The set of explanatory variables (Xijt) includes the oil price, state 

variables of policy and geology, and two indicators of underground and oil price 

uncertainty. All explanatory variables are described in closer detail in section IV. We 

also include a time trend (T), along with an error term εjt. Taking logarithms on both 

sides of Equation [4], we arrive at a log-linear, econometric specification: 

 

  .jt
i

ijtijjt Txky εγβ +++= ∑      [2] 

 

Small-caps indicate natural logarithms and the coefficients resemble those of 

Equation [4]. The persistent equilibrium of our model is represented by Equation [2], 

which should be seen as a long-term, fundamental relation between exploration 

activity and the explanatory variables.  

 

                                                 
5 More precisely, drilling efficiency is the product of the success ratio and average discovery size. 
6 Our data set contains regional-specific information for discoveries and licensed exploration acreage, 
whereas our proxy for the marginal value of new resources is the same across the three regions. We allow 
for regional variation in the constant term. At the same time, our model implicitly excludes any variation 
in economic effects across regions, as the coefficients are assumed to be the same for the three regions 
involved. In practice, a quite stable group of oil and gas companies have had comparable access to the 
three regions of our data set over the sample period. We therefore assume that the underlying economic 
behaviour represented by our data set does not vary across regions. 
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The next step is to nest our long-term relationship in a dynamic modelling 

framework. Our data set is a panel for 3 regions on the Norwegian Continental Shelf 

over 40 years. The time series properties are therefore important, and our 

specification must be adjusted accordingly. With non-stationary variables in 

Equation [5], direct estimation of the parameters will produce inefficient coefficient 

estimates, and neglect the dynamics of the data-generating process. On the other 

hand, if the variables in our equilibrium relation [2] are integrated of degree 1 (I(1)), 

their difference will be stationary (I(0)). Generally speaking, if a stationary trend is 

produced by a linear combination of non-stationary variables, their coefficients 

define a co-integrating vector (Engle and Granger 1987; Hendry and Juselius 2000). 

Assuming that such a vector is defined by our Equation [2], the following 

equilibrium-correction specification is appropriate: 

 

,110 tj
i

ijtijt
i

ijtijjt ucTxbyxaay ++++Δ+=Δ ∑∑ −−λ   [3] 

 

where ujt is an error term with the usual white noise characteristics. Equation [3] 

implicitly describes a gradual correction towards a long-term equilibrium relation, as 

defined by Equation [2]. This equilibrium-correction process is continuously 

disturbed by shocks. The ai coefficients capture the short-term response to these 

shocks, whereas any persistence is closely related to the bi and ci coefficients. λ is 

the equilibrium-correction coefficient, describing the speed of adjustment towards 

the long-term structural equilibrium. Following Bårdsen (1989), the underlying long-

term parameters of [2] can be derived directly from [6] as: 

 

.,
λ

γ
λ

β cbi
i −==       [4] 

 

Standard estimation procedures may now be applied on [6] to obtain unbiased and 

efficient estimates for short-term dynamics and the long-term structure of our model. 

Casual observation suggests that oil and gas companies have been fast to cut back on 

their exploration expenditures when oil prices have fallen. On the other hand, the 



 10

exploration response to increased oil prices has typically been sluggish. This kind of 

asymmetric response may also apply to other explanatory variables. Awards of new 

exploration acreage may have effects on exploration activity that differ from the 

effects of license expiry. The short-term stimulus to exploration drilling from a major 

discovery is probably different from the effect of gradual resource decline through 

production. As recommended by Bloom (2000), we restrict the asymmetry to the 

short-term response in our model.7 To test for short-term asymmetry in the 

explanatory variables, each of these variables is split in two new variables: 

 

  .
00
0

,
00
0

⎩
⎨
⎧

≥Δ
<ΔΔ

=Δ
⎩
⎨
⎧

<Δ
≥ΔΔ

=Δ −+

t

tt
t

t

tt
t xif

xifx
x

xif
xifx

x   [5] 

 

With a corresponding redefinition of Δσt, Equation [6] is modified to: 

 

.110 tk
i

ijtt
i

ijti
i

ijtijt ucTbxyxaxaay ++++Δ+Δ+=Δ ∑∑∑ −−
−−++ λ  [6] 

 

For the oil price, this formulation allows us to estimate one short-term effect from an 

oil price increase (ap
+), and another for a drop in the oil price (ap

-). Symmetric 

investment response to oil price changes implies H0: ap
+  = ap

-. Rejection of the null 

is supportive of asymmetric investment behaviour in the short term. For the oil price, 

a significant estimate for ai
- will indicate the presence of a bad news effect 

(Bernanke, 1983) for variable i.8 If theory suggests the presence of asymmetry, 

corresponding tests can be designed for all relevant variables. The reduction of 

Equation [6] to a symmetric specification requires equality among all sign-specific 

short-term effects (H0: ai
+ = ai

- − i ).  
                                                 
7 In preliminary estimations, we also tested for corresponding asymmetries in the structural relationship. 
However, the estimated asymmetric coefficients varied only marginally for positive and negative changes 
for the respective structural parameters, both in terms of magnitude and statistical significance. We 
interpret this as additional support for our specific approach, as long-term asymmetries would be at odds 
with both theory (Bloom 2000) and with desired stationarity properties of the residual in our long-term 
equilibrium relation [2]. 
8 Following Grasso and Manera (2007), we have also tested the symmetry of the error-correction 
mechanism (λ). However, in our preliminary two-step estimation procedures, we found no significant 
difference in the speed of adjustment following positive vs. negative shocks. 
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4. Data 

 

The key regulatory instrument for exploration and production on the NCS is the 

production license, providing an exclusive right for exploration and production of oil 

and gas within a specified area, usually referred to as a block. Production licences on 

the NCS are awarded through licensing rounds, and licensees retain ownership for 

the produced petroleum. A specific number of blocks is announced by government, 

and the companies prepare applications based on published criteria. The Ministry of 

Petroleum and Energy (MPE) decides on a partnership structure for each license, and 

an operator is appointed to take responsibility for the day-to-day activities under the 

terms of the license. Typically, a production license is awarded for an initial 

exploration period that can last up to 10 years. However, specified obligations 

regarding surveying and/or exploration drilling must be met during the license 

period. At completion of this kind of obligations, licensees generally retain up to half 

the area covered by the licence for a specified period, in general 30 years.  Our data 

set contains information on drilling activities, discoveries and exploration acreage for 

three Norwegian offshore regions over the period 1966-2004 (cf. Figure 1). We are 

not aware of previous econometric exploration studies that have covered such a long 

time span. Summary statistics for key variables are presented in Table 1.  

 

 

 

Insert Table 1 approximately here 

 

 

 

Insert Figure 1 approximately here 
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Our dependent variable (Yjt) is the annual number of exploration wells, or the sum of 

wildcat wells and appraisal wells.9 The first explanatory variable is the oil price (Pt), 

as illustrated by the left-hand panel of Figure 1.10 Our choice is a real USD-

denomination of Brent blend, the standard reference for North Sea crude oil.11
 

 

Our second explanatory variable is a proxy for the pool of recoverable oil and gas 

reserves (Rjt), defined as cumulated discoveries net of production. Changes in this 

variable from one year to another will represent signals of exploration success, with 

potential feedback to subsequent exploration activities. Over the longer term, the 

evolution of this reserve variable should capture the gradual depletion of the NCS as 

a petroleum province. In the right-hand panel of Figure 1, we see how historical 

discoveries have contributed to the accumulation recoverable oil and gas reserves on 

the Norwegian Continental Shelf. Strong resource growth was provided by huge 

discoveries during the 1970s and 1980s, but over the last 15 years, the total reserve 

base has stagnated, due to falling drilling activity and poor exploration results. At the 

same time, the pool of reserves is gradually depleted by solid production rates. These 

are typical symptoms of a maturing oil and gas province. 

 

                                                 
9 According to the Norwegian Petroleum Directorate (2007), a wildcat well is an exploration well drilled 
to find out whether petroleum exists in a prospect, whereas an appraisal well is a well drilled to 
determine the extent and size of a petroleum deposit that has already been discovered by a wildcat well. 
Mohn and Osmundsen (2007) present specific models for each well type for the symmetric case. The 
focus of this study is on asymmetry and uncertainty issues, and for that purpose we have retained the 
activity measure that provides the best statistical fit. 
10 Following Iledare (1995), we have also tested the properties a variety of more sophisticated unit cash-
flow variables, as well as the adaptive expectations hypothesis for the oil price. These variables are 
typically put together in relations like: mvrt

e = pt
e(1-ct)(1-τt), where mvrt

e is a proxy for the expected 
marginal value of reserves, pt

e is the expected oil price, ct is a unit cost variable and τt is a unit tax. 
However, none of the measures that incorporate price expectations, unit costs and tax payments were 
able to outperform the simple oil price variable in our model. The same was true for variety of 
representations of the adaptive expectations hypothesis. Consequently, we stay with our plain 
formulation. 
11 USD denomination is an intuitive choice, as contracts and companies on the Norwegian Continental 
Shelf are largely focused on USD values. Statistical inference was another criterion for the selection. We 
have looked at the explanatory power of various model versions, and how different oil price variables 
interfered with the quality of the other coefficient estimates of the model. Based on these considerations, 
the real USD denomination was selected for our preferred versions of the model. 
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The total area of open exploration acreage (Ejt) is our proxy for available exploration 

opportunities on the NCS. 12 Ahead of the initial opening of the NCS for exploration 

activities back in 1965, 42,000 km2 were awarded in the 1st licensing round – limited 

to the North Sea (cf. Figure 1). A number of licenses were handed back to the 

Government in the mid 1970s, reducing the inventory of available acreage. As The 

Norwegian Sea and the Barents Sea were opened for oil and gas exploration in 1980, 

new licensing rounds added new frontier acreage. Over the last few years, licensing 

policies have been adjusted to spur exploration activity, and large areas became 

available both in mature and frontier areas in 2003 and 2004.13 

 

Carruth et al (2000) survey the variety of approaches to risk in empirical investment 

studies. For the oil and gas industry, the most important variable for earnings and 

company valuations is the oil price. As our primary indicator of cross-industry 

uncertainty, we therefore focus on oil price volatility based on historical data.14 

Based on monthly price data for the brent blend quality for the full 40-year period, 

we calculate annual standard errors of the monthly changes (Δpkt, k = 1, 2 . . 12): 

 

( ) ,)(
12
1 12

1

2∑
=

Δ−Δ=
k

ktktt pEpσ      [7] 

 

where the average monthly change in each year is used as a proxy for E(Δpkt). This is 

according to financial market practice, and in line with previous studies (e.g., 

Paddock et al. 1988, Hurn and Wright 1994).  

                                                 
12 With uniform exploration acreage and non-dynamic technology, exploration acreage and resource 
growth may be seen as two sides of the same coin. In practice, however, the quality of licensed acreage 
depends on state, place and time (due to policy concerns, technological progress, and learning-by-doing). 
Our approach follows Mohn and Osmundsen (2007), whereby resource growth is an indicator of 
exploration success. Following this line of thought, licensed acreage should be seen as an input to the 
production function of exploration, or as a state variable of the oil companies’ opportunity set. 
13 When companies play a decisive role in the licensing process, acreage awards and drilling decisions 
are determined (almost) simultaneously, thereby questioning the exogeneity properties of the acreage 
variable. However, we regard that this is no threat with the level of company influence in the NCS 
licensing system (Ministry of Petroleum and Energy 2006). In addition, the acreage variable is lagged by 
one year in the econometric model, and exogeneity properties should therefore be ensured. 
14 An alternative is to apply an estimate from an ARCH specification of oil price volatility. However, the 
quality of such measures depends crucially on the validity of that empirical model (Engle, 1983). 
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As pointed out by Chungcharoen and Fuller (1999), there are two major geological 

uncertainties that play a key role in the exploration process: the field size and the 

number of possible fields. Our combined measure of underground risk incorporates 

both of these aspects. 15 We have no details on geological qualities, and have to rely 

on more aggregate indicators than Hurn and Wright (1994), who use a range of field-

specific characteristics as proxies for underground risk. Drawing on Stauffer (2002), 

we look at observed derivatives of these characteristics. First, high (low) exploration 

risk means low (high) discovery rates. Second, to compensate for high exploration 

risk, the expected reward in terms of discovery size will have to be high, to trigger 

the required exploration investments (Walls and Dyer 1996). Thus, exploration risk 

is a positive function of average discovery size, and negatively related to the success 

rate.16 Combining these measures, an aggregate proxy for exploration risk (Gjt) is the 

ratio of average discovery size (Mjt) to the average discovery rate (Sjt).17 

Consequently, an increase in our indicator of underground risk Gjt could be caused 

either by falling discovery rates or by increasing average discovery size. Recalling 

that gjt = ln Gjt, we capture underground risk by the following explanatory variable: 

 

.ln ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

jt

jt
jt S

M
g       [8] 

 

As argued by Quirk and Ruthroff (2006), a maturing petroleum province – typically 

characterised by increasing discovery rates and decreasing discovery sizes – will 

experience a reduction in exploration risk.  

 

 

                                                 
15 See Suslick and Schiozer (2004) for a survey of literature related to risk analysis in petroleum 
exploration and production.  
16 These assumptions are reasonable for the Norwegian Continental Shelf, but not necessarily for all 
other oil and gas provinces. As pointed out by one of the referees, historical evidence from other parts of 
the world suggests that lower quality prospects with relatively high extraction costs have been associated 
with larger discoveries. This would complicate the relation between average discovery size, success rates 
and exploration risk. 
17 Average discovery size (Mjt) is defined as the total annual reserve addition (Hjt) divided by the annual 
number of discoveries (Djt): Mjt =  Hjt/Djt. The average discovery rate (Sjt) is calculated as the annual 
number of discoveries (Djt) divided by the annual number of exploration wells (Yjt): Sjt =  Djt/Yjt. 
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5. Estimation, testing and results 

 

A requirement for the validity of the equilibrium-correction specification is that our 

structural equilibrium is indeed characterized by co-integration. Our data set is a 

panel – consisting of three time series over 40 years. A consensus is yet to be 

reached on how to test for co-integration in heterogeneous panel data. Procedures 

have been developed for balanced panels (e.g., Levin and Lin, 1993; Banerjee, 

1999), but challenges remain unsettled for our type of data set, due to varying 

starting points and several gaps. We therefore test the stationarity properties of all 

our variables separately for each of the three regions, applying the augmented 

Dickey-Fuller test.18 Results are presented in Appendix 1. We are unable to reject the 

null of non-stationarity for 27 out of 28 time series from the level specification of the 

model, including estimated residuals for Equation [5]. This suggests that the 

variables of our model are indeed co-integrated. With one exception, the null of non-

stationarity is rejected on a 99 per cent significance level for all the change variables 

of our model. We take these results as support for our modelling approach. 

 

When Phillips Petroleum discovered the first huge oil field (Ekofisk) on the NCS 

back in 1969, estimates for recoverable oil and gas reserves on the Norwegian 

Continental Shelf were multiplied 15 times from one year to another. With the log of 

cumulative discoveries as one of our explanatory variables, the Ekofisk discovery 

creates a disturbing outlier in our data set. We have therefore introduced a dummy 

variable (dt
r) that takes the value 0 for years before 1970, and 1 for all years after 

1970. The lagged change in this variable (Δdt
r
-1 : . . 0, 0, 0, 1, 0, 0, 0, . .), takes a 

                                                 
18 Dickey and Fuller (1981) introduced a popular procedure to test that a variable follows a unit-root 
process.  The null hypothesis is that the variable is contains a unit root, with a stationary data-generating 
process as the alternative. With the augmented Dickey-Fuller test, a regression is run of the differenced 
variable on its lagged level, as well as its lagged differences (sometimes also with a time trend): 

 
 

tjtj
j

tt vxxx +∑++=Δ −− 2110 γγγ  .  

 
A significant negative parameter estimate for γ1 will be supportive of stationarity in Δxt, implying that the 
variable expressed in levels (xt) is integrated of degree 1 (I(1)). The Dickey-Fuller test accounts for serial 
correlation by use of additional lags of the first-difference variable.  
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highly significant parameter estimated in our models, and it also improves the quality 

both on other parameter estimates and general model diagnostics. 

 

Following the econometric model specification in Equations [6] and [9], we now 

regress the change in drilling activity (Δyt), against changes and lagged levels of the 

explanatory variables, including the oil price (Δpt, Δpt
+

 , Δpt
-
 , pt-1), cumulated 

discoveries net of production (Δrjt-1, Δrjt-1
+

 , Δrjt-1
-
 , rjt-2),19 open exploration acreage 

(Δejt-1, Δejt-1
+

 , Δejt-1
-
 , ejt-2), oil price volatility (Δσt , σt-1), and underground risk (Δgjt-1 

, gjt-2). Regional variation is available for all variables except the oil price (pt) and oil 

price volatility (σt). A time trend (t) was included in preliminary estimations, but 

turned out with insignificant parameter estimates for all model versions, and is 

therefore skipped in the table of results. Note that theory does not suggest 

asymmetries for the uncertainty variables. Based on preliminary estimation, 

symmetry could not be rejected for our uncertainty indicators. Consequently, our 

preferred models imply a balanced response to changes in uncertainty, both in the 

short run and in the long run. 

 

Underground risk (gjt-1) and open exploration acreage (ejt) not have statistically 

significant persistent effects in any of the preferred models, and the corresponding 

lines of the table are therefore left out. All estimations are performed with fixed-

effects procedures, whereby regional dummy variables are included and suppressed 

through normalization around sample unit means.20  

 

For each of the four model variants, our estimation strategy follows a general-to-

specific approach. We have tested for a variety of lag specifications, and the 

variables of our preferred models are those that that could defend a position based on 

statistical inference and general model diagnostics. Variables that have been 

eliminated in our general-to-specific approach are marked with a hyphen (–) in Table 
                                                 
19 Observe that this variable is equivalent to the inventory of recoverable oil and gas reserves. 
20 Our approach is a dynamic econometric model for a panel data set, with large T and small N. Modern 
estimation procedures for dynamic panel data models often involve the GMM estimators introduced by 
Arellano and Bond (1991). However, as pointed out by Bond (2002), fixed-effects least squares estimates 
are consistent in the case of large T panels. 
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2. Overall results for the preferred models are presented in Table 2. We apply robust 

standard errors due to strong evidence of heteroskedasticity, as indicated by the 

Breusch-Pagan (BP) test statistics.21  

 

 

Insert Table 2 approximately here 

 

 

Column 1 presents the traditional model, with no asymmetric effects, and no 

uncertainty indicators. Column 2 introduces asymmetric short-term effects for the oil 

price (Δpt
+

 , Δpt
-), resource accumulation (Δrjt

+
 , Δrjt

-) and acreage evolution (Δejt
+

 , 

Δejt
-). Uncertainty indicators are added to the traditional, symmetric model in 

Column 3, whereas Column 4 integrates the uncertainty indicators in a model with 

asymmetric short-term effects. 

 

Underground risk (gjt-1) and open exploration acreage (ejt) do not have persistent 

effects in any of the preferred models, and the corresponding lines of the table are 

therefore left out. The basic symmetric model captures 50 per cent of the variation in 

our data set, or 43 per cent for adjusted R2. Allowing for asymmetry improves the 

explanatory power by 5 percentage points (4 percentage points for adjusted R2), as 

illustrated in Column 2 of Table 1. In a fully specified version of this asymmetric 

model, a joint test for equality across our asymmetric parameters (H0: ai
+ = ai

- 

∀  i = p, r, e) is clearly rejected (p = 0.04). In specific tests for each of the variables, 

symmetry is rejected for the oil price (H0: ap
+ = ap

- ; p-value = 0.06) and for the 

resource variable (H0: ar
+ = ar

- ; p-value = 0.04). For the acreage variable, we are not 

able to reject symmetry in the fully specified model. Still, an implication of our 

results is that the reduction of Model 2 to the symmetric Model 1 is not justified on 

statistical grounds. 

 

                                                 
21 Estimated standard errors are based on the so-called Huber-White or Sandwich variance estimator 
(Huber, 1967; White, 1984). 
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Including the uncertainty parameters in the basic symmetric model increases the 

explanatory power to 56 per cent, and another two percentage points are added when 

we allow for asymmetric effects. Tests for joint significance are highly significant, 

with a p-value below 0.001 for all four models. The retained variables are largely 

significant in statistical terms, and they all take plausible signs and values. Table 1 

also provides further support for cointegration, as the equilibrium-correction 

coefficient takes the correct sign, and is highly significant in all models. The implicit 

speed of adjustment is rapid, with equilibrium-correction coefficients around 0.8.  

 

The estimated models contain statistically significant economic effects, but their 

magnitude is rather small. The influence from oil price variation on drilling activity 

is not very robust in statistical terms. Oil price elasticities range from 0.20 to 0.63, 

suggesting that exploration drilling on the NCS is less responsive to oil price 

variation than found in previous studies of oil and gas provinces elsewhere in the 

world. Compared to Dahl and Duggan’s (1997) survey of oil price elasticities in US 

exploration studies, this suggests that the exploration response to price changes is 

lower in a regulated, high-tax environment like the Norwegian than for USA. In a 

recent study of exploration activity on the UKCS, Kemp and Kasim (2006) also find 

the oil price influence on exploration efforts to be modest. Ringlund et al. (2004) 

estimate error-correction models for rig activity in six global regions. Their results 

indicate that oil price elasticities of oil and gas exploration vary inversely with the 

degree of regulation. 

 

With short-term elasticities of 0.31-0.49, our results also illustrate how new acreage 

awards (Δejt-1 > 0) stimulate exploration drilling in the short term. On the other hand, 

there is no persistence in the stimulus from new acreage awards. Exploration success 

(Δrjt-1 > 0) has an invigorating effect on subsequent exploration drilling, as lagged 

resource growth (Δrjt-1) takes a significant elasticity close to unity. 

 

As illustrated by the transition from Column 1 to Column 3 in Table 1, the 

introduction of uncertainty indicators provides an improved econometric explanation 
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of our data. The explanatory power increases by 6 percentage points to 56 per cent, 

and the F-test for joint significance of model parameters also increases slightly. 

Moreover, this model version implies a negative short-term effect on exploration 

activities from changes in both oil price volatility (Δσt) and underground risk (Δgjt-1). 

Our results suggest a negative relation between exploration efforts and uncertainty. 

One interpretation is that the opportunity effect of increased uncertainty (Oi, 1961; 

Hartman, 1972; Abel, 1983) is dominated by the risk effect (Cukierman, 1980; 

Bernanke, 1983; Dixit and Pindyck, 1994) even in the short run. At the same time, 

the long-term effects of these uncertainty indicators are negligible. Even though its 

parameter is insignificant, we retain oil price volatility in the structural part of the 

Uncertainty model (Column 3), besides underground risk, whose parameter is 

significant. The reason is that the inclusion improves on other parameter estimates, 

as well as the overall quality of the model. We see these results as modestly 

supportive of a role for uncertainty in of oil and gas exploration activity. 

 

Our setup can also be applied to test for the existence of asymmetric short-term 

effects, as described in the review of theory above. The bad news principle reflects 

the fact that the decision to invest is made in such a way as to expose the company to 

good outcomes and reduce exposure to bad outcomes. The implication is a different 

investment response to oil price decline than to oil price decline. For this purpose, 

we introduce asymmetric short-term effects according to the formal representation in 

Equations [5]-[6].  

 

The combination of asymmetry and uncertainty effects is presented in Table 1, 

Column 4. An eye-catching result is that oil price increases do not stimulate 

exploration drilling in the short term. On the other hand, a drop in the oil price of 1 

per cent will cause an instantaneous drop in exploration activity of 0.63 per cent. 

These results indicate that it takes more to convince the oil and gas companies that 

an oil price change is persistent when the oil price increases than when the oil price 

falls. We take this as evidence of a bad news effect on exploration activity from 

short-term oil price fluctuations. Empirical studies of the interaction between 
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companies and financial markets (e.g., Osmundsen et al. 2006a, b) also suggest that 

increasing pressures for strict capital discipline among oil and gas companies have 

reduced their willingness to invest for long-term reserves and production growth. 

 

Our preferred model also includes asymmetric effects for exploration success 

(Δrjt-1 > 0). Significant discoveries may serve as door-openers or initial footholds in 

frontier exploration areas, they may trigger learning-by-doing effects, they may 

confirm/reject specific exploration plays, and they may lower the entrance costs for 

neighbouring prospects. As an oil and gas province matures, depletion mechanisms 

may reduce future discovery prospects. In our model, this mechanism is captured by 

the level variable rjt, and also by the coefficient on negative changes in our reserve 

variable (Δrjt-1 < 0), which becomes relevant only in the phase where resource 

growth from new discoveries is dominated by annual production. 

 

Finally, the combined model in Table 1, Column 4 suggests that new licensing 

rounds (Δejt-1 > 0) have a significant, but modest temporary effect. On the other 

hand, exploration activity is not negatively affected when exploration acreage is 

reduced (Δejt-1 < 0), i.e. when licenses are handed back to the government on expiry. 

The magnitude of this effect is modest, but its sign and impact is according to 

expectations. Additions of new exploration acreage provide a temporary stimulus to 

exploration drilling. But the validity of the opposite effect is more doubtful. 

 

Observe also that the small short-term effect of oil price volatility slips when we 

allow for asymmetric short-term effects in the oil price. This suggests an interaction 

between our asymmetric specification of the oil price and oil price volatility. Oil 

price volatility is still highly relevant, as our estimated model implies a negative link 

between oil price volatility and accumulated exploration efforts. The role for our 

indicator of underground risk is also maintained in the combined model, confirming 

the short-term negative influence from uncertainty on exploration spending. Our 

uncertainty indicators do not justify a role in the structural part of the model, and we 
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therefore conclude that the role of uncertainty is largely related to the short-term 

dynamics of exploration spending. 

 

 

Insert Figure 2 approximately here 

 

 

The left-hand panel of Figure 2 compares post-sample estimates for the traditional 

symmetric model (Model 1) against the asymmetric specification with uncertainty 

variables (Model 4). As we can see, Model 4 captures the volatility of observed 

drilling activity slightly better than Model 1. The recent decline in exploration 

activity is also better explained by the asymmetric model than by the symmetric 

specification. The main reason for this difference is that the asymmetric effect of oil 

price changes allows for a more abrupt negative impulse from the 1998 oil price 

shock, whereas the effect of the subsequent oil price increase is sluggish. This is also 

illustrated in the right-hand panel of Figure 2, where the marginal impulse response 

of oil price changes is depicted. As we can see, a 10 per cent drop in the oil price 

produces an instantaneous drop in exploration activity of 6.3 per cent, before a 

gradual correction towards the persistent effect of 1.9 per cent is introduced. On the 

other hand, an oil price increase has no immediate effect, but only a gradual 

adjustment towards the long-term effect, initiated with a one-year lag. 

 

The estimated error-correction models establish a negative link between uncertainty 

and exploration activity. Even if the oil price volatility variable does not take a 

significant coefficient, an inverse relationship between oil price variability and 

accumulated exploration efforts is secured by the asymmetric short-term oil price 

elasticity. For underground risk, the link is explicitly supported by the negative and 

significant coefficient for our underground risk indicator.  
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6. Conclusions and caveats 

 

A rich empirical literature on exploration economics developed in the three decades 

after Fisher (1964) opened the field. Unfortunately, the flow of new contributions 

has dwindled over the last 15 years, whereas general theory of investment behaviour 

has progressed extensively. At the same time, the market environment for oil and gas 

has grown increasingly dynamic, with massive industrial restructuring, record-high 

oil prices, weak exploration results, and widespread security-of-supply concerns. 

Understanding the economics of oil and gas exploration is therefore more important 

than ever.  

 

Modern economic theory suggests a role for uncertainty and asymmetry issues in 

investment behaviour. A key result from the literature on irreversible investment is 

that an increase in uncertainty will cause a reduction in investment, due to an 

increase in the option value of delay. This view has replaced the traditional 

neoclassical approach, whereby the convexity of the profit function implies a 

“desirability of price instability” (Oi 1961). Traditional neo-classical models are 

symmetric in terms of price response. On the other hand, modern theories of 

irreversible investment do suggest asymmetries in the investment response to 

changes in economic variables. This kind of behaviour is also supported by recent 

developments of agency theory and behavioural finance. We provide a formal 

framework of estimation of these mechanisms, as well as testing procedures for the 

role of asymmetry and uncertainty in oil and gas exploration activities. 

 

Our econometric model of exploration efforts provides an appealing augmentation of 

previous empirical studies of oil and gas exploration. In a formalized statistical 

framework, we establish an empirical role for both oil price volatility and 

underground risk. We also demonstrate that the response in exploration behaviour to 

changes in explanatory variables depends on the sign of these changes. Our 

asymmetric specification outperforms the symmetric model in statistical terms. The 



 23

explanatory power improves, the magnitude of the estimated coefficients increase, 

and the coefficients of the asymmetric model are more precisely estimated.  

 

According to our results, oil and gas exploration efforts adjust instantaneously to a 

drop in the oil price, whereas the reaction to an oil price increase is sluggish. One 

possible interpretation is that falling oil prices effectively coordinates the oil industry 

on a low exploration level, and that this coordination prevails for some time also 

when the oil price picks up again. Our results also imply that the impulse to 

exploration efforts from resource depletion is quite different than for major new 

discoveries, although both these changes relate to cumulated oil and gas resources in 

the same way. New licensing rounds provide a stimulus to exploration drilling in the 

short term, whereas the same effect is not applicable for reductions in exploration 

acreage due to license expiry. 

 

Our results have a wide range of applications. First, they provide a potential 

improvement to empirical analyses of oil and gas exploration in terms of both 

understanding and prediction. Second, our specification may be useful to empirical 

studies of producer and investment behaviour in other regions – and industries.  

 

Finally, there are interesting policy implications to be made. Specifically, our model 

lends support to the argument that oil-importing countries would benefit from a 

stable oil price level. As the immediate reduction in exploration efforts when the oil 

price falls outweigh the sluggish exploration increases when the oil price picks up 

again, accumulated exploration efforts are at their highest at stable oil prices. Active 

management of the US Strategic Petroleum Reserve may therefore be justified on 

grounds of increasing total exploration efforts over time. On the other hand, we also 

offer arguments for stabilisation of exploration efforts in oil-producing countries. If 

temporary oil price drops are allowed to suppress exploration activity, the revival is 

sluggish. Accordingly, our models provide a case for sequential licensing policies 

and counter-cyclical policy measures in oil exploration. 
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On a more general note, modern theories of irreversibility, uncertainty and 

investment suggest a negative link between risk and capital accumulation. In a 

macroeconomic context, this raises additional policy concerns for stability, as a 

volatile business framework would be bad for growth under these circumstances. 

Our proposed model framework may be applied to test the relevance of these 

hypotheses on other types of investment, other industries – and even on a 

macroeconomic level. 

 

This study is limited to efforts of exploration. To capture the full picture of 

exploration economics, we would have to include equations for exploration 

efficiency along with our exploration effort equation, preferably in a simultaneous 

setting. An econometric model of the exploration process should acknowledge the 

simultaneous interaction between efforts and efficiency, and reveal responses from 

economic, geological and technological variables in the short term as well as in the 

long term. More work is also required to identify processes of depletion and 

technological progress. Unfortunately, such a detailed and refined approach would 

exhaust the limits of our data set, and therefore has to be left for future research. 

 

Another topic for further research would be to formulate a dynamic theory of 

exploration behaviour to support our empirical model more rigorously. Such a theory 

should preferably also include the trade-off between various types of investment 

among the oil and gas companies, as well as explicit transmission mechanism for 

uncertainty and asymmetric adjustment costs. 
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Appendix 1: Tests for Stationarity  
Augmented Dickey-Fuller (ADF) test ratios computed in Stata. 

 

Level variables (cf. Equation [5]) 
 

 Total NCS North Sea Norwegian Sea Barents Sea 

 ykt -1.87 -2.44 -2.63    -4.26** 

 pt -1.98 -1.98 -1.98 -1.98 

 rkt -2.19 -2.58 -2.02 -1.84 

 ekt -2.65 -2.12 -3.12 -2.46 

 σt -3.13 -3.13 -3.13 -3.13 

 gkt -3.11 -2.95 -2.58 -2.71 

tε̂      -2.75***     -3.14***     -4.49***    -2.37** 
 

H0: Non-stationarity.  
*)      H0 rejected at 90, **) 95 and  ***) 99 per cent confidence level, respectively. 

 

 

Change variables (cf. Equation [6]) 
 

 Total NCS North Sea Norwegian Sea Barents Sea 

Δ ykt -6.90*** -6.10***   -5.90*** -4.99*** 

Δ pt -5.96*** -5.96***   -5.96*** -5.96*** 

Δ rkt -5.03*** -4.97*** -2.79*   -5.97*** 

Δ ekt -5.69*** -5.36***   -4.29*** -4.93*** 

Δ σt -10.12*** -10.12***   -10.12*** -9,09*** 

Δ gkt -9.62*** -9.60***   -8.06*** -9.37*** 
 

H0: Non-stationarity.  
*)      H0 rejected at 90, **) 95 and  ***) 99 per cent confidence level, respectively. 
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Table 1. Descriptive statistics for data sample 
 

 Obs. Mean St. dev. Min. Max. 

Yjt 84 12.857 10.270 0.0000 40 

Pt 40 31.201 19.180 8.8000 81.200 

Rjt 120 1470.7 1988.9 0.0000 5891.6 

Ejt 120 13134 12913 0.0000 47985 

Gjt 120 204.00 414.04 0.0000 2955.9 

σt 40 7.7375 7.1269 0.0232 36.300 
 

Source: Norwegian Petroleum Directorate (Ykt, Rkt, Ekt, Gkt), ReutersEcowin (Pt, �t). 
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Sources: Oil price: ReutersEcoWin (http://www.ecowin.com). All other numbers: Norwegian Petroleum Directorate. 
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Table 2. Estimated error-correction models of exploration drilling 
 

 Traditional 
Model 

Asymmetric (A) 
Model 

Uncertainty (U) 
Model A&U Model 

 Estimated coefficients a) 
Intercept   0.51* 

(0.07) 
0.44 
(0.18) 

   0.48** 
 (0.03) 

0.31 
(0.13) 

Δ pt 0.20 
(0.18)    0.26* 

(0.10)  

Δ pt
+  –  – 

Δ pt
-   0.54* 

(0.06)     0.63** 
(0.03) 

Δ rkt-1      0.88*** 
(0.00)     0.90*** 

(0.00)  

Δ rkt-1
+           0.93*** 

(0.00)      0.97*** 
(0.00) 

Δ rkt-1
-  –     7.60** 

(0.02) 

Δ dt
r
-1 

   -1.90*** 
(0.00) 

   -1.97*** 
(0.00) 

  -1.97*** 
(0.00) 

   -2.30*** 
(0.00) 

Δ ekt-1    0.31* 
 (0.10)   0.33* 

(0.07) 
 

Δ ekt-1
+    0.44* 

(0.08)     0.49** 
(0.03) 

Δ ekt-1
-  –  – 

Δ σt     -0.01** 
(0.05) – 

Δ gkt-1      -0.04** 
(0.02) 

   -0.04*** 
(0.01) 

ykt-1 (λ)    -0.84*** 
(0.00) 

  -0.83*** 
(0.00) 

   -0.74*** 
(0.00) 

   -0.76*** 
 (0.00) 

pt-1     0.21** 
(0.03) 

0.16* 
(0.10) 

  0.16* 
(0.10) 

  0.15* 
 (0.09) 

rkt-2   0.10* 
(0.09) 

  0.15** 
(0.03) 

  0.13* 
(0.10) 

   0.18** 
 (0.05) 

σt-1   -0.01 
(0.27) – 

 Model diagnostics 
R2   0.50   0.55   0.56   0.58 
R2 (adj.)   0.43   0.47   0.46   0.50 
F(k, n-k) 14.52 14.13 15.17 10.41 
BP (LM)b      5.06**       7.65***     3.86**     10.01*** 
Obs. (#) 70 70 70 70 

Derived structural coefficients (cf. Equation [5]) 

pt    0.25** 
(0.03) 

0.19 
(0.12) 

  0.21*  
(0.09) 

  0.20* 
 (0.10) 

rt-1   0.12* 
 (0.06) 

   0.18** 
(0.02) 

  0.18* 
 (0.08) 

   0.24** 
(0.03) 

σt-1   -0.01 
 (0.28)  

*)   Significant at 90, **) 95 and  ***) 99 per cent confidence level, respectively. 
a)   p-values in brackets. 
b)   Breusch-Pagan LM test for heteroscedasticity (H0: Homoscedasticity). 



 31

Figure 2. Post-sample prediction and marginal effects 

Post-sample prediction
Number of NCS exploration wells

0

25

50

75

1965 1971 1977 1983 1989 1995 2001

Observed drilling efforts
Symmetric model (Model 1)
Asymmetric model (Model 3)

Asymmetric effect: oil price change
Deviation from reference (%)

-8

-6

-4

-2

0

2

4

6

8

0 2 4 6 8 10

Oil price increase (10
%)

 Oil price drop (10 %)

 


