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JUDGMENT AGGREGATORS AND BOOLEAN ALGEBRA
HOMOMORPHISMS

FREDERIK HERZBERG

ABSTRACT. The theory of Boolean algebras can be fruitfully applied to judgment
aggregation: Assuming universality, systematicity and a sufficiently rich agenda, there
is a correspondence between (i) non-trivial deductively closed judgment aggregators
and (ii) Boolean algebra homomorphisms defined on the power-set algebra of the
electorate. Furthermore, there is a correspondence between (i) consistent complete
judgment aggregators and (ii)2-valued Boolean algebra homomorphisms defined on the
power-set algebra of the electorate.

Since the shell of such a homomorphism equals the set of winning coalitions and
since (ultra)filters are shells of (2-valued) Boolean algebra homomorphisms, we suggest
an explanation for the effectiveness of the (ultra)filter method in social choice theory.

From the (ultra)filter property of the set of winning coalitions, one obtains two general
impossibility theorems for judgment aggregation on finite electorates, even without the
Pareto principle.
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1. INTRODUCTION

The purpose of the present paper is three-fold: (i) To show that universal systematic
judgment aggregation can be studied by means of Boolean algebras. (ii) To show
that the concept of an (ultra)filter arises naturally when describing systematic judgment
aggregators through Boolean algebras, and thus to explain the effectiveness of the
(ultra)filter methodology in abstract aggregation theory. (iii) To give concise algebraic
proofs of dictatorial and oligarchic impossibility theorems in judgment aggregation. The
thrust of this paper is the second aspect which suggests a new perspective on the (ultra)filter
method.

The use of filters and ultrafilters has been firmly established in the theory of preference
aggregation. Fishburn [7] was the first to apply the ultrafilter concept to prove a possibility
theorem for preference aggregation on infinite electorates, and Kirman and Sondermann
[11] employed the ultrafilter concept to prove that Arrow’s rationality axioms1 imply
dictatorship for finite electorates. Slightly later, Hansson [10] and Brown [2] realized that
the concept of a filter can be used to characterize oligarchies.2 This so-called (ultra)filter
methodology can be summarized as follows: In order to prove impossibility theorems for
finite electorates, one shows, using rationality axioms on the aggregation function, that the
set of all decisive coalitions must be an ultrafilter (filter, respectively) on the power-set of
the electorate. If the electorate is finite, one can then deduce that this set of coalitions must
be the set of all coalitions containing one and the same element (one and the same subset,
repectively), viz. the dictator (set of oligarchs, respectively).

During the past two years, the (ultra)filter method has also been applied in the theory
of judgment aggregation (i.e. aggregation of logical propositions): Eckert and Klamler
[6] employ ultrafilters to prove a simple dictatorial impossibility theorem for judgment
aggregation due to Nehring and Puppe [15], and Dietrich and Mongin [4] prove more
general impossibility results for judgment aggregation, of both oligarchic and dictatorial
kind, by means of (ultra)filters.

The success of the (ultra)filter method in social choice theory has often been simply
attributed to the fact that filters and ultrafilters possess, apparently by some mathematical
coincidence, exactly those set-theoretic closure properties that are also desirable in the
investigation of economic aggregation problems. A notable exception is an article by
Lauwers and Van Liedekerke [12] which shows that there is a one-to-one correspondence
between ultraproducts3 of preference relations on a given set of alternatives and preference
aggregation functions.

However, one can give a more fundamental explanation for the link between abstract
aggregation theory and (ultra)filters: On the one hand, the concept of a Boolean algebra is
a natural mathematical notion for formalizing abstract aggregation theory as it provides a
unified framework to capture both the algebraic structure of the electorate and the algebraic
structure of the set of truth values. On the other hand, (ultra)filters occur naturally in the
context of Boolean algebras because homomorphisms of Boolean algebras are typically
classified via the pre-image of the1-element of the image algebra, calledshell, and shells
of (2-valued) Boolean algebra homomorphisms are nothing else than (ultra)filters.

In light of this, it is reasonable to ask whether judgment aggregators can, at least under
some rationality assumptions, be conceived of as Boolean algebra homomorphisms and, if

1By “Arrovian rationality axioms” we mean the following four conditions: at least three alternatives;
universality; unanimity preservation (Pareto principle); independence of irrelevant alternatives.

2Monjardet [14] has argued that Guilbaud’s analysis of collective decision making [8] (English translation in
[9]), which appeared around the time of Arrow’s classicSocial Choice and Individual Values, implicitly uses the
notion of an ultrafilter.

3An ultraproduct is a model-theoretic construction, obtained from a — finite or infinite — sequence of
structures of the same type, based on an ultrafilter on the index set of the sequence.
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so, whether such a representation allows for an economic interpretation of the shell of a
homomorphism induced by a judgment aggregator.

For sufficiently rich agendas, the answer to both questions turns out to be affirmative.
Assuming universality, systematicity, and an agenda richness condition, we show

through Theorem 3;

• Consistent and complete judgment aggregators correspond to2-valued Boolean
algebra homomorphisms defined on the power-set algebra of the electorate.

• The shell of any such homomorphism is just the set of allwinning coalitions(i.e.
those coalitions which win the collective outcome for some proposition and some
profile).

• Hence the set of all winning coalitions is an ultrafilter if the judgment aggregator
is consistent, complete, universal and systematic.

Theorem 6 generalizes this result. Again assuming universality, systematicity, and an
agenda richness condition:

• Non-trivial deductively closed judgment aggregators correspond to Boolean
algebra homomorphisms defined on the power-set algebra of the electorate.

• The shell of every such homomorphism equals the set of all winning coalitions.
• Hence the set of all winning coalitions is a filter if the judgment aggregator is

non-trivial, deductively closed, universal and systematic.

Under the additional assumption of a finite electorate, we obtain a dictatorial
impossibility theorem for certain complete systematic judgment aggregators and an
oligarchic impossibility theorem for certain deductively closed systematic aggregators.
These impossibility theorems are among the most general versions of Arrow’s theorem
to this day, and are slight variations of results by Dietrich and List [3] and Dietrich and
Mongin [4]. The algebraic methodology of this paper allows us to give remarkably short
proofs of these results.

The paper presents the framework in Section 2 and Section 3. Thereafter, one section
each is devoted to the axioms on judgment aggregators, the results, the proofs, and a
conclusion. Technical footnotes make this article self-contained.

2. JUDGMENT SETS

Let X be a set of sentences in propositional logic, called theagenda. We assume thatX
is the union of proposition-negation pairs (i.e. there exists a non-empty setX ′ of sentences
such thatX =

⋃
p∈X′ {p,¬p}). For everyp ∈ X we denote by∼p an elementq of X

such that eitherq = ¬p or p = ¬q.
Subsets ofX will be calledjudgment sets, and we denote the power-set ofX by P(X).
Let Σ be a consistent set of sentences in propositional logic.4

For every judgment setY :

(1) Y is Σ-consistentif and only if Σ ∪ Y 6` (p ∧ ¬p) for any sentencep.

4Many authors of the judgment-aggregation literature formulate their results with respect to a general
monotonic logicL instead of propositional logic. In order to translate our framework into theirs, we have to
assume thatX is a set ofL-formulae, whereL is a language whose symbols include the connectives¬ and∧
(other truth-functional connectives are defined as usual in terms of¬ and∧). We need to require, in addition, that
a formal provability relatioǹ is defined for sets ofL-formulae, and assume that the system of consistent subsets
induced bỳ has the following properties:

(1) {p,¬p} is inconsistent for everyL-formulap;
(2) subsets of consistent sets are consistent (monotonicity);
(3) ∅ is consistent, and every consistent set has a consistent superset containing an element of each pair-set

{p,¬p} ;
(4) for all L-formulaep, q, {p, q} ` p ∧ q as well as bothp ∧ q ` p andp ∧ q ` q.

Note that in this framework,Σ can simply be added to the axioms of the deductive system given by`. Hence, if
one adopts this general framework,Σ is redundant and may be deleted — or replaced by∅— wherever it occurs
in the following. (I owe the formulation of this footnote to Professor Franz Dietrich.)
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(2) Y is Σ-deductively closedif and only if for all p ∈ X, if Σ ∪ Y ` p, thenp ∈ Y .
(3) Y is completeif and only if for all p ∈ X, p 6∈ Y implies∼p ∈ Y .
(4) Y is algebraically consistentif and only if for all p ∈ X,∼p ∈ Y impliesp 6∈ Y .

Clearly, everyΣ-consistent set is algebraically consistent. The converse is true if the
elements ofΣ ∪ X ′ consist of pairwise different propositional variables, hence the name
algebraic, as opposed to logical, consistency.

We assume that for everyp ∈ X, {p} is Σ-consistent. Let us introduce the following
abbreviations:

(1) D denotes the set of allΣ-consistent and complete subsets ofX.
(2) D∗ denotes the set of allΣ-consistent andΣ-deductively closed subsets ofX.
(3) D′ denotes the set of allΣ-deductively closed subsets ofX.
(4) Dac denotes the set of all algebraically consistent and complete subsets ofX.
(5) Da denotes the set of all algebraically consistent subsets ofX.

A subsetY ⊆ X is∈ Dac if and only if for all p ∈ X,

p 6∈ Y ⇔ ∼p ∈ Y.

ClearlyD ⊆ D∗ ⊆ D′, andD ⊆ Dac ⊆ Da.

3. JUDGMENT AGGREGATORS AND COALITIONS

Consider a non-empty (finite or infinite) setN , called the electorate
(committee/population) set. The elements ofN will be referred to asindividuals,
and subsets ofN will be calledcoalitions. We denote the power-set ofN by P(N).

Consider some mapf : Df → P(X) with Df ⊆ DN , called judgment aggregator.
Elements of the domainDf of f will be referred to asprofiles, the components of every
profile will be calledindividual judgment sets, whereas the elements of the range off will
be calledcollective judgment sets.

f is calledcomplete(or consistent, or deductively closed, or algebraically consistent,
respectively) if its range only consists of complete (or consistent, or deductively closed, or
algebraically consistent, respectively) judgment sets.5

There are two kinds of impossibility theorems: dictatorial and oligarchic ones.f will
be calleddictatorial if and only if there exists someif ∈ N such thatf(A) = Aif

for all
A ∈ DN . f will be calledoligarchic if and only if there exists some non-emptyMf ⊆ N
such thatf(A) =

⋂
i∈Mf

Ai for all A ∈ DN .
Next, we introduce some terminology and notation for the description of coalitions. For

all p ∈ X andA = 〈Ai〉i∈N ∈ Df , the coalition

A(p) := {i ∈ N : p ∈ Ai}
is called thecoalition supportingp givenA. We say thatA(p) is winning forp givenA
underf if and only if p ∈ f(A).

We collect allwinning coalitions6 in the set

Ff :=
{
A(p) : A ∈ DN , p ∈ f(A)

}
,

5In the first part of Theorem 6, we shall only assume thatf is deductively closed, hence we do not have to
assume completeness or consistency at the collective level. A similar framework has been suggested by Dietrich
and List [3]. The consistency of the collective judgment sets will follow from other properties of the judgment
aggregators under consideration.

6 The set of winning coalitions forp is the same for each profile if and only iff is independent, i.e. for every
p ∈ X andA, A′ ∈ Df ,

A(p) = A′(p) ⇒ ą
p ∈ f(A) ⇔ p ∈ f(A′)

ć
.
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and we say that two coalitionsC,C ′ ⊆ N are said toshare the same part of a winning
coalition (denotedC ∼f C ′) if and only if there exists someU ∈ Ff such that

C ∩ U = C ′ ∩ U.

These two concepts — winning coalition and sharing the same part of a winning coalition
— will be useful in the algebraic description of systematic judgment aggregators.

Finally, we adopt the following convention as a notational device: For allA ∈ Df , we
regardf(A) as a functionf(A) : X → {0, 1}, defined via

f(A)(p) =
{

1, p ∈ f(A)
0, p 6∈ f(A)

4. AXIOMS

Consider the following axioms, which are inspired by Arrow’s rationality axioms:

• A1. Finite electorate.N is finite.
• A2. Agenda richness. There are propositionsp, q ∈ X such that each of the

propositionsp ∧ q,¬p ∧ q, p ∧ ¬q is Σ-consistent and∈ X.
• A3. Universality. Df = DN .
• A4. Non-triviality. f is neither constantly= ∅ nor constantly= X.
• A5. Systematicity.For allp, q ∈ X andA, A′ ∈ Df : If A(p) = A′(q), then

p ∈ f(A) ⇔ q ∈ f(A′).

The axiom of non-triviality, which to the knowledge of the author is new in the
judgment-aggregation literature, is satisfied in two important special cases:

Remark 1. (1) Supposef satisfies the axiom ofstrict unanimity preservation, i.e. for
all p ∈ X and A ∈ Df , if A(p) = N thenp ∈ f(A) and if A(p) = ∅ then
p 6∈ f(A). Thenf satisfies (A4).

(2) Since∅ is not a complete subset andX not a consistent subset ofX, one has∅ 6∈
D andX 6∈ D. Therefore, (A4) is satisfied iff is both complete and consistent.

The axiom of systematicity clearly implies the axiom of independence.7 Actually,
systematicity is even equivalent to independence if the agenda satisfies an additional
condition known astotal blockedness(cf. e.g. Eckert and Klamler [6]). Intuitively, an
agenda is totally blocked if “any proposition in the agenda can be reached from any other
proposition in it via a sequence of conditional entailments” (List and Puppe [13]), in other
words, if one can deduce “any position on any issue from any position on any issue, via a
chain of deductions” (Dokow and Holzman [5]).

The agenda richness axiom is inspired by the ultrafilter proof of Lauwers and
Van Liedekerke [12].

5. RESULTS

Recall that
〈
P(N),∩,∪, {,∅, N

〉
(wherein {B := N \ B for all B ⊆ N ) and

〈{0, 1},∧,∨,∗ , 0, 1〉 (wherein0∗ = 1, 1∗ = 0), are Boolean algebras.8 We write 2 for
{0, 1}. We will show that non-trivial universal systematic judgment aggregators are derived

7See Footnote 6 on page 4.
8〈B,∧,∨,∗ , 0B , 1B〉 is called aBoolean algebraif and only if ∧ and∨ are associative and commutative

operations on a non-empty setB satisfying both

∀x, y ∈ B (x ∨ y) ∧ y = (x ∧ y) ∨ y = y

and the distributivity axiom

∀x, y, z ∈ B (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z),

and for allx ∈ B, the elementx∗ ∈ B satisfies

x ∧ x∗ = 0B , x ∨ x∗ = 1B .
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from Boolean algebra homomorphisms9 with domainP(N) and vice versa. The shell10 of
these homomorphisms will be just the the set of winning coalitions.

Lemma 2. If f satisfies (A2), (A3) and (A5), then the map

π : P(N) → 2, A(p) 7→ f(A)(p)

is well-defined. Furthermore,π−1{1} equalsFf and is both⊇-closed and∩-closed.11

Note thatπ does not have to be a lattice homomorphism12 (let alone a Boolean algebra
homomorphism) in general:π need not preserve joins, since the union of two coalitions
C, C ′ which are not winning (i.e.C, C ′ ∈ π−1{0}) can nevertheless be a winning coalition
(i.e. C ∪ C ′ ∈ π−1{1}).13

Our first result is that completeΣ-consistent non-trivial systematic judgment
aggregators correspond to2-valued Boolean algebra homomorphisms, and that every such
homomorphism yields a complete algebraically consistent systematic judgment aggregator.

Theorem 3. (1) If f satisfies (A2), (A3) and (A5) and is both consistent and complete,
thenf also satisfies (A4) andπ is a homomorphism with shellFf .

(2) Conversely, ifρ : P(N) → 2 is a homomorphism, then the judgment aggregator

f : A 7→ {p ∈ X : ρ (A(p)) = 1}
satisfies (A2-A5) and is both algebraically consistent and complete.

Corollary 4. If f satisfies (A2), (A3) and (A5) and its range is⊆ D, then Ff is an
ultrafilter.14 If, in addition, (A1) holds, thenf is dictatorial.

In the following we mean by acongruence relationan equivalence relation which
respects the Boolean operations.15 Recall that two coalitionsC,C ′ stand in relation∼f

to each other if and only if they share the same part of some winning coalition.

Lemma 5. If f satisfies axioms (A2-A5), then∼f is a congruence relation on the Boolean
algebraP(N) and the Boolean operations onP(N) induce a Boolean algebra structure
onP(N)/ ∼f .

Theorem 3 can be generalized as follows:

Every Boolean algebra can be endowed with an antisymmetric, reflexive and transitive ordering by defining

x ≤ y :⇔ x ∧ y = x

for all x, y ∈ B. For a primer of Boolean algebras and their use in logic, cf. e.g. Bell and Slomson [1, Chapter 1].
9A Boolean algebra homomorphism, for short:homorphism, is a mapρ : B1 → B2 between two Boolean

algebras〈B1,∧1,∨1,∗ , 01, 11〉 and
ŋ
B2,∧2,∨2,− , 02, 12

ő
which preserves all three Boolean operations, i.e.

ρ (x ∧1 y) = ρ (x) ∧2 ρ (y) , ρ (x ∨1 y) = ρ (x) ∨2 ρ (y) , ρ (x∗) = ρ (x)−

for all x, y ∈ B1.
10Theshellof a Boolean algebra homomorphismρ : B1 → B2 is defined asρ−1{12}.
11In other words, ifC, C′ ∈ Ff andC′′ ⊇ C, then bothC ∩C′ ∈ Ff andC′′ ∈ Ff . A non-empty subset

G of P(N) that is both⊇-closed and∩-closed is sometimes already calledfilter. However, we use the wordfilter
in the sense ofproper filterand require in addition thatG 6= P(N).

12A lattice homomorphismis a map between two lattices, e.g. Boolean algebras, which preserves meets and
joins.

13Consider, for example, an oligarchicf and letC be a proper subset of the setMf of oligarchs and let
C′ = Mf \ C. Then,C, C′ ∈ π−1{0} albeitC ∪ C′ = Mf ∈ π−1{1}.

14A non-empty setG ⊆ P(N) is called afilter on N if and only if G 6= P(N) andG is both⊇-closed and
∩-closed. A filter is called anultrafilter if and only if for all C ⊆ N , eitherC ∈ G or N \ C ∈ G.

15More formally, a binary relation∼C on a Boolean algebra is acongruence relationif and only if∼C is
reflexive, symmetric and transitive, and for allx, y, x′, y′ such that bothx ∼C x′ andy ∼C y′, one has

x ∧ y ∼C x′ ∧ y′, x ∨ y ∼C x′ ∨ y′, x∗ ∼C (x′)∗.
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Theorem 6. (1) If f satisfies (A2-A5) and is deductively closed, then the canonical
surjectionσ : P(N) → P(N)/ ∼f is a homomorphism with shellFf .

(2) Conversely, ifτ : P(N) → B is a homomorphism for some Boolean algebraB,
then the judgment aggregator

f : A 7→ {p ∈ X : τ (A(p)) = 1B} ,

satisfies (A2-A5) and is algebraically consistent.

Corollary 7. If f satisfies axioms (A2-A5), thenFf is a filter. If, in addition, (A1) holds,
thenf is oligarchic.

6. CONCISE ALGEBRAIC PROOFS

Remark 8. Letκ be finite or infinite. LetN =
⋃

j∈κ Cj be a disjoint decomposition ofN
and let〈Yj〉j∈κ be a family ofΣ-consistent subsets ofX. Then, eachYj can be extended to

a Σ-consistent and complete subsetZj of X. Thus, there exists a unique profileA ∈ DN

such thatAi = Zj ⊇ Yj for everyi ∈ Cj andj ∈ κ.

Remark 9. If (A2) is satisfied, then
{
A(p) : A ∈ DN , p ∈ X

}
= P(N).

Proof. Due to (A2), X contains a sentencep such that both{p} and {¬p} are Σ-
consistent.16 Consider now an arbitrary coalitionC. Remark 8 provides a profileA ∈ DN

such that for alli ∈ N , if i ∈ C thenp ∈ Ai and if i ∈ N \C then¬p ∈ Ai, hencep 6∈ Ai

wheneveri ∈ N \ C sinceAi is consistent. Therefore,

p ∈ Ai ⇔ i ∈ C

for everyi ∈ N . HenceA(p) = C. So, every coalitionC is of the formA(p) for some
A ∈ DN andp ∈ X. ¤

Proof of Lemma 2.Supposef satisfies (A2), (A3) and (A5). By (A5),π is well-defined
on Dπ := {A(p) : A ∈ Df , p ∈ X}. SinceDf = DN by (A3), we actually have
Dπ =

{
A(p) : A ∈ DN , p ∈ X

}
, henceDπ = P(N) by Remark 9.

Since
f(A)(p) = 1 ⇔ p ∈ f(A)

for all p ∈ X andA ∈ Df , it is clear thatπ−1{1} = Ff . Next, we shall prove that
π−1{1} is closed under supersets and intersections. For the following, letp, q denote the
two sentences whose existence was postulated in (A3).

π−1{1} is ⊇-closed. Let C ′ ∈ π−1{1} andC ⊇ C ′. By (A3) and Remark 8 there
exists a profileA ∈ DN such that

∀i ∈ C \ C ′ p ∧ ¬q ∈ Ai, ∀i ∈ N \ C ¬p ∧ q ∈ Ai, ∀i ∈ C ′ p ∧ q ∈ Ai.

ThenA(p∧q) = C ′ ∈ π−1{1}, whencep∧q ∈ f(A) becauseπ is well-defined. However,
f(A) is deductively closed, thereforep ∈ f(A), henceπ−1{1} 3 A(p) = (C \C ′)∪C ′ =
C.

π−1{1} is∩-closed.LetC ′, C ′′ ∈ π−1{1}. By (A3) and Remark 8 there exists a profile
A′ ∈ DN such that

∀i ∈ C ′′ \C ′ p∧¬q ∈ A′i, ∀i ∈ N \C ′′ ¬p∧ q ∈ A′i, ∀i ∈ C ′∩C ′′ p∧ q ∈ A′i.

ThenA′(p) = (C ′ ∩ C ′′) ∪ (C ′′ \ C ′) = C ′′ ∈ π−1{1}, sop ∈ f(A′) sinceπ is well-
defined. On the other hand,A′(q) = (C ′∩C ′′)∪(N \C ′′) ⊇ (C ′∩C ′′)∪(C ′\C ′′) = C ′ ∈
π−1{1}, henceA′(q) ∈ π−1{1} because we have already seen thatπ−1{1} is ⊇-closed.
Again, sinceπ is well-defined,A′(q) ∈ π−1{1} implies q ∈ f(A′). So,p, q ∈ f(A′),
whencep ∧ q ∈ f(A′) becausef(A′) is deductively closed andp ∧ q ∈ X. It follows that
π−1{1} 3 A′(p ∧ q) = C ′ ∩ C ′′. ¤

16Such a sentence is also calledΣ-contingent.
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Proof of Theorem 3.First, suppose thatf satisfies (A2), (A3) and (A5) and is consistent
and complete. Then Remark 1 teaches that (A4) is satisfied. Also, Lemma 2 already affirms
thatπ−1{1} = Ff . For the first part of the Theorem, it remains to verify thatπ preserves
algebraic operations.

π preserves meets.Let C,C ′ ⊆ N . Sinceπ−1{1} is both⊇-closed and∩-closed, we
have that

C ∩ C ′ ∈ π−1{1} ⇔ (
C ∈ π−1{1}, C ′ ∈ π−1{1}) .

Becauseπ is {0, 1}-valued, we deduce

π (C ∩ C ′) = 1 ⇔ (π(C) = 1, π(C ′) = 1) ⇔ π(C) ∧ π(C ′) = 1

and thus
π (C ∩ C ′) = π(C) ∧ π(C ′).

π preserves complements.Let A ∈ DN andp ∈ X. For everyi ∈ N , the setAi is
consistent and complete, hence

p ∈ Ai ⇔ ∼p 6∈ Ai,

soA(p) = N \A(∼p) = {A(∼p), or equivalently

(1) {A(p) = A(∼p).

On the other hand,f(A) is consistent and complete, therefore∼p ∈ f(A) if and only if
p 6∈ f(A). Hence, we finally obtain

π
(
{A(p)

)
= 1 ⇔ π (A(∼p)) = 1 ⇔ ∼p ∈ f(A) ⇔ p 6∈ f(A) ⇔ π (A(p)) = 0,

π
(
{A(p)

)
= 0 ⇔ π

(
{A(p)

) 6= 1 ⇔ π (A(p)) 6= 0 ⇔ π (A(p)) = 1.

π preserves joins.Let C, C ′ ⊆ N . First, supposeπ(C) ∨ π(C ′) = 1. Then either
π(C) = 1 or π(C ′) = 1, hence eitherC ∈ π−1{1} or C ′ ∈ π−1{1}. Therefore,C ∪ C ′

will be the superset of an element ofπ−1{1}, hence by⊇-closedness ofπ−1{1}, we obtain
C ∪ C ′ ∈ π−1{1}, that isπ (C ∪ C ′) = 1.

Next, supposeπ(C) ∨ π(C ′) = 0, henceπ(C) = π(C ′) = 0. We have already shown
thatπ preserves complements, therefore we deduce thatπ

(
{C

)
= π

(
{C ′

)
= 1. Since we

have also already seen thatπ preserves meets, we obtain thatπ
(
{C ∩ {C ′

)
= 1 ∧ 1 = 1.

Using de Morgan’s law,π
(
{(C ∪ C ′)

)
= 1, hence, again exploiting thatπ preserves

complements, we arrive atπ (C ∪ C ′) = 0.
Hence,π is a homomorphism and the first part of the Theorem established.
For the converse part of the Theorem, supposeρ : P(N) → 2 is a homomorphism.

We have to verify thatf satisfies axioms (A2-A5). We have not changedX, so (A2) is
satisfied. By definition,f satisfies (A3) and (A5).

To prove (A4), note thatρ(∅) = 0 and ρ(N) = 1 sinceρ is a homomorphism,17

and by Remark 9, we can findA,A′ ∈ DN and p, q ∈ X such thatA(p) = ∅ and
A′(q) = N . Then, by construction off , bothq ∈ f

(
A′

)
andp 6∈ f (A), sof

(
A′

) 6= ∅
andf (A) 6= X.

Finally, for everyA ∈ DN andp ∈ X, note thatA(∼p) = {A(p) by Equation (1), and
therefore, using thatρ is a homomorphism,

p ∈ f(A) ⇔ ρ (A(p)) = 1 ⇔ ρ
(
{A(p)

)
= 0 ⇔ ρ (A(∼p)) = 0

⇔ ρ (A(∼p)) 6= 1 ⇔ ∼p 6∈ f(A).

Hence,f(A) is complete and algebraically consistent for everyA ∈ DN . ¤

17For, sinceρ preserves algebraic operations, one has (for an arbitraryC ⊆ N )

ρ (∅) = ρ
ą
C ∩ {C

ć
= ρ (C) ∧ ρ (C)∗ = 0

and
ρ (N) = ρ

ą
C ∪ {C

ć
= ρ (C) ∨ ρ (C)∗ = 1

by the definition of the complement of a Boolean algebra element .
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Proof of Corollary 4. Every shell of a 2-valued homomorphism is an ultrafilter.18

Therefore, (A2-A5) implies via Theorem 3 thatFf = π−1{1} is an ultrafilter onN .
However, every ultrafilterF on a finite setN is principal.19 Hence, if even (A1-A5) are

satisfied, then there must be someif ∈ N such thatπ−1{1} = Ff = {C ⊆ N : if ∈ C},
hence

p ∈ f(A) ⇔ π (A(p)) = 1 ⇔ A(p) ∈ Ff ⇔ if ∈ A(p) ⇔ p ∈ Aif

for all A ∈ DN andp ∈ X. ¤

Proof of Lemma 5.Supposef satisfies (A2-A5). ThenFf = π−1{1} is non-empty by
(A4) and∩-closed by Lemma 2. Therefore,∼f must be a congruence relation.20 For all
C ⊆ N , denote by|C| the equivalence class ofC with respect to∼f . Since∼f is a
congruence relation, the operations∧,∨,∗, introduced representative-wise via

|C| ∧ |C ′| := |C ∩ C ′| , |C| ∨ |C ′| := |C ∪ C ′| , |C|∗ :=
∣∣{C

∣∣
for all C, C ′ ⊆ N , are well-defined. If we define, in addition,

0∼f
:= |∅|, 1∼f

:= |N |
then through straightforward calculations one can check that〈
P(N)/ ∼f ,∧,∨,∗ , 0∼f

, 1∼f

〉
is indeed a Boolean algebra. ¤

18Cf. e.g. Bell and Slomson [1, Chapter 1, Lemma 4.7, Theorem 4.9] The proof can be sketched as follows:
Every homomorphismh : P(N) → B translates∩ into ∧ and translates⊆ into ≤. (For, if C ⊆ C′ then
C ∩C′ = C, henceh(C) ∧ h(C′) = h(C ∩C′) = h(C), thereforeh(C) ≤ h(C′).) It is therefore clear that
the shellH of h is∩-closed and⊇-closed. Moreover, as shown in Footnote 17 on page 8, bothh(∅) = 0B and
h(N) = 1B , henceH 6= P(N) andH 6= ∅. Hence,H is a filter. If, in addition,h is 2-valued, then

C ∈ H ⇔ h(C) = 1 ⇔ h(C)∗ = 0 ⇔ h
ą{C

ć
= 0

⇔ h
ą{C

ć 6= 1 ⇔ {C 6∈ H,

soH is even an ultrafilter.
19Cf. e.g. Bell and Slomson [1, Example 1.3.2 and Exercise 1.3.3] An ultrafilterF is calledprincipal if

and only if there exists somei ∈ N such thatF = {C ⊆ N : i ∈ C}. If N is finite and some ultrafilterF
on N were not principal, then{i} 6∈ F and henceN \ {i} for all i ∈ N . Since filters are closed under finite
intersections, we get

T
i∈N N \ {i} ∈ F, albeit

T
i∈N N \ {i} = N \T

i∈N{i} = ∅ by de Morgan’s law, a
contradiction.

20Cf. e.g. Bell and Slomson [1, Chapter 1, proof of Lemma 4.3, proof of Lemma 4.4]. The proof can be
summarized as follows: SinceFf is non-empty,∼f is reflexive. By definition,∼f is symmetric. SinceFf is
∩-closed,∼f is transitive. (For allC, C′, C′′ ⊆ N , if there existU, V ∈ Ff such thatC ∩ U = C′ ∩ U and
C′ ∩ V = C′′ ∩ V , thenC ∩ U ∩ V = C′′ ∩ U ∩ V whilst U ∩ V ∈ Ff .) Similarly, sinceFf is ∩-closed,
∼f respects∩ and∪: For allC0, C1, C′0, C′1 ⊆ N , if there existU0, U1 ∈ Ff such thatC0 ∩ U0 = C′0 ∩ U0

andC1 ∩ U1 = C′1 ∩ U1, then, by commutativity of∩,

C0 ∩ C1 ∩ U0 ∩ U1| {z }
∈Ff

= C′0 ∩ C′1 ∩ U0 ∩ U1

and by distributivity of∩,∪ also

(C0 ∪ C1) ∩ U0 ∩ U1| {z }
∈Ff

=
ą
C′0 ∪ C′1

ć ∩ U0 ∩ U1.

Finally, for all C, C′ ⊆ N , if there existsU ∈ Ff such thatC ∩ U = C′ ∩ U , then

U = (U ∩ C) ∪ (U ∩ {C) = (U ∩ C′) ∪ (U ∩ {C),

whence on the one hand

{C′ ∩ U = {C′ ∩ ą
(U ∩ C′) ∪ (U ∩ {C)

ć
=

ą{C′ ∩ U ∩ C′
ć

| {z }
=∅

∪ ą{C′ ∩ U ∩ {C
ć

= {C′ ∩ {C ∩ U,

and symmetrically (by interchanging the roles ofC andC′), one obtains on the other hand

{C ∩ U = {C ∩ {C′ ∩ U = {C′ ∩ {C ∩ U,

hence{C′ ∩ U = {C ∩ U .
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Proof of Theorem 6.With the notation of the proof of Lemma 5,σ : C 7→ |C| trivially
preserves the Boolean operations.

Note that for everyC ⊆ N , one has

C ∼f N ⇔ ∃U ∈ Ff (C ∩ U = N ∩ U) ⇔ ∃U ∈ Ff (C ∩ U = U)
⇔ ∃U ∈ Ff U ⊆ C,

hence, due to the⊇-closedness ofFf , we obtain

|C| = |N | ⇔ C ∼f N ⇔ C ∈ Ff .

Thereforeσ−1 {1∼f} = σ−1 {|N |} = Ff .
For the converse part of the Theorem, the same argument as in the proof of Theorem 3

shows thatf satisfies axioms (A2-A5).
Finally, supposef were not algebraically closed. Then there would be someA ∈ DN

andp ∈ X such that both∼p ∈ f(A) andp ∈ f(A). Henceτ (A(p)) = f(A)(p) = 1
as well asτ (A(∼p)) = g(A)(∼p) = 1. HoweverA(∼p) = {A(p) by Equation (1), so
τ

(
{A(p)

)
= 1. On the other hand, sinceτ is a homomorphism andτ (A(p)) = 1, one has

τ
(
{A(p)

)
= 0, contradiction. This proves the algebraic closedness off . ¤

Proof of Corollary 7. As the shell of a homomorphism,Ff is a filter.21

For every filterF on a finite setN , there exists someM ⊆ N such thatF =
{C ⊆ N : M ⊆ C}.22 Hence, if (A1-A5) are satisfied, then there must be someMf ⊆ N
such thatπ−1{1} = Ff = {C ⊆ N : Mf ⊆ C} =

⋂
i∈Mf

{C ⊆ N : i ∈ C}, so

p ∈ f(A) ⇔ π (A(p)) = 1 ⇔ A(p) ∈ Ff ⇔


∀i ∈ Mf i ∈ A(p)︸ ︷︷ ︸

⇔p∈Ai


 ⇔ p ∈

⋂

i∈Mf

Ai

for all A ∈ DN andp ∈ X. ¤

7. CONCLUSION

Under the assumptions of agenda richness, universality and systematicity, we have
established a correspondence between deductively closed judgment aggregators and
Boolean algebra homomorphisms on the power-set of the electorate. Moreover, we
have shown that complete judgment aggregators correspond to2-valued Boolean algebra
homomorphisms on the power-set of the electorate.

As is well-known, Boolean algebra homomorphisms can be partially characterized
through their shells, and (2-valued) homomorphism shells are the same as (ultra)filters. We
have shown that the shell of a homomorphism induced by a judgment aggregator is just the
set of all winning coalitions. Hence the set of winning coalitions is always a filter — and
even an ultrafilter if the judgment aggregator is complete. This provides an explanation for
the effectiveness of the (ultra)filter method in social choice theory.

From the (ultra)filter property of the set of winning coalitions, one can easily derive
impossibility theorems for judgment aggregators on finite electorates, even without
requiring preservation of unanimity (Pareto principle): Assuming agenda richness,
universality and systematicity, the oligarchies are the only non-trivial aggregators, and the
dictatorships are the only complete aggregators.

21Cf. e.g. Bell and Slomson [1, Chapter 1, Lemma 4.7]; see Footnote 18 on page 9.
22Filters are closed under finite intersections, hence

T
F ∈ F for every filter on a finite setN . This implies,

since filters are closed under supersets,{C ⊆ N :
T

F ⊆ C} ⊆ F. Trivially, the converse inclusion also holds.
HenceF = {C ⊆ N :

T
F ⊆ C} for every filterF on a finite setN .
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