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Abstract  In this note, we studied some classes of n-person games pos-
sessing properties of two person zero-sum games. We extend the degnition
of a two-person almost strictly competitive game (Aumann 1961) to the n-
person case. We show that the Nash equilibria of a n-person almost strictly
competitive game induce the same payoce; and we exhibit the connections
between almost strictly competitive games and some classes of n-person
games introduced by Kats and Thisse in 1992.

Introduction

In a two-person zero-sum game, the gain of one player is equal to the loss
of his opponent. This class of games has some important features: when
equilibria exist, they induce a unique payoce, the set of Nash equilibria is
convex, the equilibria are interchangeablel...

Some classes of two-person non zero-sum games having some of these nice
properties have been introduced by diceerent authors. The degnitions of
these classes are based on diceerent notions of antagonism. Indeed, zero-sum
games correspond to the extreme case of competition between two players:
what Player 1 wins is equal to what Player 2 loses. By weakening this no-
tion of antagonism, we get some classes of non zero-sum games which satisfy

1 Equilibria are interchangeable if for every equilibria (s1,s2) and (s}, s5),
(s1,5%) and (s%, s2) are also equilibria (Nash 1951). Note that for the mixed ex-
tension of a gnite game, if the equilibria are interchangeable, then the set of Nash
equilibria is convex. In fact, these two properties are equivalent for the mixed
extension of every gnite two-person game but it is no longer true in the n-person
case when n > 2 (Chin, Parthasarathy and Raghavan 1974).
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some properties of zero-sum games.

The degnitions of some of these classes are also available for games with

gnitely many players. The aim is the same as in the two-person case: to de-

gne classes of n-person games which possess some properties of two-person

zero-sum games, as for example uniqueness of equilibrium payoce. But the
problematic is diceerent: we have to degne the notion of antagonism between
n players.

In section 1, we recall the degnition of n-person game of type A, B and C
introduced by Kats and Thisse (1992). In section 2, we degne the notions

of saddle-point and value of a n-person game. With the help of these degni-

tions, we extend the degnitions of games of type I (introduced by Aumann

(1961) under the name of almost strictly competitive games(ASC)), II and

IV to the n-person case2. In section 3, we give some results concerning the

connection between these diceerent classes. In section 4, we generalize Au-
mann’s theorem concerning game of type I in extensive form (Aumann 1961)

to the n-person case. At last some examples of games are given in section

5.

Notations

We denote by G = (1, (S;)icr, (u;)icr) a n-person game where

o I ={1,...,n} is the set of players, n > 2.

e S; is the set of strategies of Player 1.

e u; is the payoce function of Player i; u; : S; X --- x S, =& R where R
stands for the set of real numbers.

Let S = [];c; Si- For each Player i € I, —i denotes the set I\ {i} (i.e. —i
is the set of opponents of Player 7). Sa terms the set [[;c 4 Si (A C I).
From now, we assume the following property:

Hypothesis 1  The sets S; and the payoce functions u; are such that the
game G = (I, (S;)icr, (ui)icr) has a Nash equilibrium.

For example, Hypothesis 1 is satisged if each set of strategies is a convex

compact subset of an Euclidian space and if the payoce function of each
player is continuous and quasi-concave in his own action (Glicksberg 1952).

We denote by NE(G) the set of Nash equilibria of G and by NEP(G) the
set of its Nash equilibrium payoces.

1 n-person game of type A, B and C

The antagonism for these three classes of (non zero-sum) games is degned
by comparing diceerent n-tuple of strategies according to several evaluation
rules (see Figure 1):

2 Games of type I and IV are generalizations of ASC games (Beaud 1999).
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Type Couples of strate- Evaluation rule
gies
A Compare $iy8—i) | ui(s) > ui(3) & u;(s) <u;i(3),VjeI\{i}

s = (
With§ = (§i,§_i)

B Compare s = (si,5-i) | ui(s) > wi(3) & u;(s) <u;j(3),VjeI\{i}
With §= (5;’, Sfi)

C Compare s = (s;,5-;) | ui(s) > u;(8) = u;(s) <wu;(8) and
with 5§ = (§i, S_i) uq,(s) = ul(§) = Uj (S) = uj (§), V] (S I\{l}

Fig. 1 Degnitions of the classes.

This leads to the following degnitions:

Degnition 1 (Kats-Thisse, 1992) Let G = (I, (S:i)icr, (ui)icr) be a n-
person game.

“

v

“

G is a game of type A if for alli € I, s,s' € S, u;(s) > ui(s') & u;(s) <

u;(s') Vj e I'\{i}.
G is a game of type B if for each 7 € I, for all s;,s; € S; and for all
s_; € S_;, we have

wi(8i,8—i) > u;i(s}, 5-:) © uj(si,s—i) <wj(si,s—;) VjeTI\{i} (1.1)

G is a game of type C if for each ¢ € I, for all s;,s; € S; and all
s_; € S_;, we have

wi(8i, 5—3) > ui(s,5-3) = u;(si,s—;) <wj(si,s—;) VjeTI\{i} (1.2)
and

wi(8i,8_i) = u;i(s},5-;) = u;(si,8_3) = u;(s},s_;) VjeI'\{i} (1.3)

Remarks:

1.

2.

By degnition, every game of type A is of type B and every game of type
B is of type C.

Two-person games of type A have been introduced under the name of
strictly competitive games (Friedman 1983, Moulin 1976). Games of type
B and C are also called unilaterally competitive games and weakly uni-
laterally competitive games (Kats and Thisse 1992).

Kats and Thisse (1992) have shown that every game of type C has a unique
equilibrium payoce, and that equilibria of a game of type B are interchange-
able under some conditions on the sets of strategies and on the payoce func-
tions.
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2 m-person game of type I, II and IV

The classes of games of type A, B and C are degned directly be the preferences
of each player without resorting to other concepts. This is no more the case
for the classes we introduce now: we compare the strategic behavior of the
players with the help of the notion of twisted equilibrium.

21n=2

Let G = (51,52, u1,u2) be a two-person game. We associate to G the game
G = (51,82, —ug, —uy). G is called the twisted game.

s € S is a twisted equilibrium of G if s is a Nash equilibrium of G (Aumann
1961).

e € R? is a twisted equilibrium payoce of G if there exists a twisted equi-
librium s such that u;(s) = e; for each i =1, 2.

Aumann gives the following degnition of an almost strictly competitive game
when n = 2 (Aumann 1961).

Degnition 2 G is an almost strictly competitive (ASC) game if

(i) there exists s € S which is a Nash and a twisted equilibrium;
(ii) the set of Nash equilibrium payoces is equal to the set of twisted equilib-

rium payooes.

Condition (%) of Degnition 2 may be degned using the notion of a saddle-
point of a two-person game (Beaud 1999):

Degnition 3 § € S is a saddle-point of the game G if for all s€ S, i € I,

wi(si,5-i) < u;i(8) <wi(8i,5-4)

It is shown that the set of saddle-points of G, denoted by S(G), is equal
to the intersection of the sets of Nash and twisted equilibria of G. Hence,
condition (i) of Degnition 2 is equivalent to: S(G) # 0.

Aumann has shown that every almost strictly competitive game has a unique
Nash equilibrium payoce.

2.2 n > 3: saddle-point and value of a n-person game

The degnition of a twisted game does not extend when the number of players
is greater than 2. In this latter case, how can we generalize the notion of a
twisted equilibrium? Kats and Thisse suggest the following degnition of a
twisted equilibrium (Kats and Thisse 1992):
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Degnition 4 5 € S is a twisted equilibrium of a game G if u;(5) < w;(s;,5-;)
foralli eI, s; € S; and for all j € I'\ {i}.

By using this degnition of a twisted equilibrium, the degnition of an almost
strictly competitive game can be extended to n-person games.
Unfortunately, Kats and Thisse’s degnition is not satisfactory: we give now
an example of a three-person almost strictly competitive game having two
diceerent Nash equilibrium payoces.

Example 1. n =3, S; = {A4;, B;} for each i € I.

If83:A3Z
Ay Bs
Ay 1,3,5 1,3,5
B, (1,4,5 1,4,5)
If83=B3:
Az B
A (1,45 1,4,5
B, (1,4,5 1,4,5)
There are two Nash equilibria: (41, Ba, A3) and (By, B2, B3). Hence NEP =
{(13375)3
(1,4,5)}.

(A1, Ba, A3) and (Bi, Bs, B3) are also the only twisted equilibria. Hence,
TEP = {(1,3,5),(1,4,5)}.

So, there exists a progle of strategies which is a twisted and a Nash equili-
bria, and the sets of Nash equilibrium payoces and twisted equilibrium pay-
ooes coincide: the game is almost strictly competitive and have two distinct
Nash equilibrium payoces contrary to the two-person case.

Let us grst generalize the notion of saddle-point to n-person games.

Degnition 5 § € S is a saddle-point of the game G = (I,(S;)icr,
(ui)icr) if for every i € I, for every s € S,

ui(si,5 ) < ui(8) < ui(8i,5 ) (2.4)

We denote by S(G) the set of saddle-points of G.

Equation (2.4) means that for every i € I, § is a saddle-point of the function
u; with respect to maximizing in s; and minimizing in s_; (Rockafellar
1970).

This leads to the following degnition:

Degnition 6 5 € S is a strong twisted equilibrium of a n-person game G
if:

Viel, Vs ; €S i, ui(5) <ui8i,54) (2.5)
We denote by STE(G) (resp. STEP(QG)) the set of strong twisted equilibria
(resp. the set of the payoces induced by the strong twisted equilibria).
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Remarks:

1. In degnition 4, any (unilateral) deviation of Player ¢ induces a gain for
all the other players whereas in degnition 6, any deviation of (part of)
the other players induces a gain for Player i.

2. Degnition 6 is the same as the degnition of a twisted equilibrium when
n = 2.

3. In the above example, (1,4, 5) is not a strong twisted equilibrium payoce.

Degnition 7 G = (I, (S;)icr, (ui)icr) is a game of:

Y type I if
a) there exists a progle of strategies which is a Nash and a strong twisted
equilibrium,
b) the set of Nash equilibrium payoces is equal to the set of strong twisted
equilibrium payoces;
Y type IT if
a) there exists a progle of strategies which is a Nash and a strong twisted
equilibrium,
b’) the intersection between the set of Nash equilibrium payoces and the
set, of strong twisted equilibrium payoces is non empty;
7 type IVif
b’) the intersection between the set of Nash equilibrium payoces and the
set, of strong twisted equilibrium payoces is non empty.

Example 2. Let n =3, S; = {4;,B;} for each i € I.

IngZAgi
A2 32
A, (1,0,0 0,1,0
B, \0,0,1 0,0,0

IngZBgt
A2 32
A, {0,0,0 0,0,1
B, \0,1,0 1,0,0

This game has two Nash equilibria, (By, Bz, A3) and (A4;, As, B3), which
induce a payoce equal to (0,0,0). Indeed (B1, Bs, A3) and (A1, Ay, Bs) are
saddle-points.

By degnition of a Nash and of a strong twisted equilibrium, we get the
following property:

Property 21  For every n-person game G, S(G) = NE(G) N STE(G).

When n = 2, saddle-points are interchangeable (Beaud 1999). This is no
more the case when n > 2. In the example above, (B, Ba, A3) and (A;, As, Bs)
are saddle-points, but not (A4, Az, A3).
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2.2.1 Value of a n-person game
We can associate to each Player ¢ two quantities:

1. The max-min of Player i: v, = maxg, ming_; u;(-, ).
2. The min-max of Player i: I; = ming_, maxg, u;(-, ).

Note that v; > v, for all 4 € I.

Degnition 8 The n-person game G = (I,(S:)icr, (u;)icr) has a vector
valueve R"if v, =y, =v; for alli € I.

For example, it is well known that every two-person zero-sum game has a
value (recall Hypothesis 1).

De Wolf (1999) generalizes this result to n-person games of type C. In fact,
we have this stronger result (see Section 3):

Property 22 Every n-person game of type IV has a value, and this value
is the unique Nash equilibrium payoce.

Proof:
Let i € I and e € NEP(G) N STEP(G).
Consider s* € NE(G) and 5 € STE(G) such that u;(3) = u;(s*) = e;. We
have
e; = u;(s*) > I%?XUi(SiaSti) > min max u;(s;, 5—;)
e; = u;(5) < rgin ui(8i,8—4) < msaxmin ui(8i, 5—i)
Hence 7; < e; < v;.
Soe; =v, =v; =v;. =

3 Connection between the diceerent classes

The degnitions of the diceerent classes of games imply that every game of
type A (respectively B, I,IT) is a game of type B (resp. C, I, TV).

When n = 2, it is known that every game of type C is of type II (Beaud
1999). When n > 2, this is still the case. De Wolf has proved that for a
game of type C, for each player ¢ € I, if any players —i deviate from their
equilibrium strategy, then Player ¢’s payoce increases (De Wolf 1999). This
implies that for every game of type C, NE(G) is a subset of ST E(G). Hence:

Property 31 Every n-person game of type C is a game of type II.

Remark: Example 2 is an example of a game of type I but not of type C:
when so = By and s3 = Az, Player 1 is indiceerent between A; and By, but
not Player 2. There exists also game of type C but not of type I (Beaud 1999,
Example 2.3) 3,

SA ggure showing the connections between the diceerent classes is placed at the
end of this paper.
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4 Extensive form game

4.1 n-person game of type I

The aim of this section is to generalize Theorem D of Aumann (1961) to the
n-person case. We refer to Owen (1995) for the degnition of an extensive
game and its properties.

Theorem 1 Let G be a m-person extensive game which decomposes at a
move X and GX be of type I. Let GP be the diceerence game, where the
payoce to GP at (the terminal note) X is the value of GX. Assume that GP
is of type I. Then G is of type I, NEP(G) = v(GP), and the composition

of saddle points in GX and G? yields a saddle-point in G.

Proof of the Theorem

Let s be a strategy progle. We denote by s* the couple of strategies obtained
by restricting s to GX. We degne similarly s”. We denote by u! the payoce
of player ¢ in the game I'.

We need the following result

Theorem 2 Let G decomposes at X, and let s be a strategy such that (i)
sX is a strong twisted equilibrium of GX, and (ii) s&\X
%)

is a strong twisted
equilibrium of G \ X with payoce u(s*) assigned to the terminal payoce X.
Then s is a strong twisted equilibrium of G.

Proof: Let s be an n-tuple of strategies which veriges (i) and (ii), ¢ € I and
s'; € S_;. From (i), we have

ui(s%, %) > u;(s%) (4.6)

i 2°—13

We denote by GP the demand game where the payoce associated to the
(terminal) node X is u(sX). From (ii), we have in the game GP:

ui(s,85) > ui(s?) (4.7)
But the payoce of player ¢ induced by (s;,s’_;) is greater in Gg o thanin
GP. Hence, u;(si,s' ;) > ui(s) (Owen 1995, Theorem 1.4.3). L]

Lemma 1 Let v be the unique equilibrium payoce of GP. Then every equi-
librium payoce in G is equal to v.

Proof: The proof in the n-person case is similar as the proof in the 2-person
case (Aumann 1961). m

Let s be a strong twisted equilibrium in G. We denote by sX the strat-
egy obtained by restricting s to GX. We denote by P, the probability over
nodes induced by s.
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Lemma 2 Every strong twisted equilibrium payoce of G is equal to v.

Proof: First, we prove that: (A) if P;(X) > 0, then s¥ is an strong twisted
equilibrium of GX; and (B) s” is an equilibrium of GP.

(A): The proof of (A) is the same as for Nash equilibrium (Aumann 1961).
(B): If P;(X) > 0, s¥X is a strong twisted equilibrium of GX, then GP = GP
and if sP is not a twisted equilibrium of GP, we can construct a strategy
such that s is not a strong twisted equilibrium of G.

If P;(X) = 0, the payoce in G? is the same as the one in GP. Let s’ ; be
such that (2.5) is not satisged. Let 5%, be a saddle-point of GX. Then

~ D ~
uzG(si’ (S’,“ Si(,)) < uzG (Si’ (sl—z'7 Si(z))

aPb .
=u;* (8i, (Sl—z'asi(z'))

GD
<u;* (sP) = uf(s)
which is impossible. So (B) is true.

Now, we apply Theorem 1.4.3 in Owen (1995): for all i € I, u;(s) =
uf” (sP) = v(GP) = v. =

Lemmata 1 and 2 imply that condition b) is satisged.

Lemma 3 The composition of a Nash (resp. strong twisted) equilibrium of
GX and of GP yields a Nash (resp. strong twisted) equilibrium of G.

Proof

The proof for the Nash equilibria is the same as in (Aumann 1961). For the
strong twisted equilibria, it is a consequence of theorem 2 because GP = GP.
u

Let sX (resp. sP) be a Nash and a strong twisted equilibrium of GX (resp.
GP). By Lemma 3, the composition of sX and s” is a Nash and a strong
twisted equilibrium of G. Hence, condition a) is satisged and G is of type 1. m

5 Examples

5.1 Bertrand’s model

n grms produce the same item. The marginal cost is the same for each grm
and is equal to ¢. The grms choose simultaneously their prices p1,...,p, > c.
The demand of the consumers is represented by a function D(p) where
p = (p1,---,pn) is the progle of prices chosen by the grms. (Kreps 1990).
The progt of grm i is

Hi(pla"';pn) = (pz _C)Di(pla"'apn)
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D(p; .
where Dz(p) = |argmin{1§f})k=1,___,"| 1{Pi€al‘gmin{Pk}k:l,...,n}’ |L| denotlng the
cardinality of the gnite set L.

The aim is to show that Bertrand’s model is a game of type I, but not of
type C.

Lemma 4 (c,...,c) is a Nash equilibrium of this game.
Lemma 5 (0,...,0) is the unique Nash equilibrium payoce.
Proof:

Let p* be an equilibrium and let us suppose that Player i’s payoce is posi-
tive for some ¢ € I. This implies that py > c. But then player ¢ has always
incentive to deviate in playing min;er{p}} — ¢ for some e su(Eciently small,
e>0. ]

Lemma 6 (c,...,c) is a strong twisted equilibrium of this game, and each
strong twisted equilibrium induces a payoce of 0 to every player.

Proof:
Let i € I. Then II;(c, .. .,c) = II;(c,p_;) = 0 for all p_;. Moreover at every
strong twisted equilibrium, at least one player plays c. ]

The Bertrand’s model is a game of type I: by Lemmas 4 and 6, NENSTE #
¢ and by Lemma 5 we have that NEP = STEP. But it is not a game
of type C: suppose n = 3, then IT;(c,2¢,2¢) = II;(3¢,2¢,2¢) = 0 and
II5(e,2¢,2¢) = 0 < IT1 (3¢, 2¢,2¢) = D(2¢) /2.

5.2 Auctions

A divisible item is sold by auction (see for example Wolfstetter (1996)).

Player i’s valuation of the item is v;. We assume that everybody knows
the valuation of the other players. The bid of Player i belongs to the set
Si={1,...,v;,— 1} 4 Player ¢ bids s; € S;. The player who has done the

greatest bid wins the auction. If there is more than one winner, the item is di-

vided. The payoce function of Player 1 is equal to u;(s) = ﬁ(vi —s;)1{s; =
max;cr $;} where ¢(s) = | argmax{si, s2, s3}|.

The game (I, (S;)ier, (ui)icr) fulglls hypothesis 1: (98,97,97) is an equilib-

rium.

Lemma 7 This game is a game of type C.

Proof: Leti € I,s € Sand s’ ; € S;. We denote W (s) = {i € argmax;er $;}-

1. Suppose that u;(s;,s—;) = u;(s'i,s_;) = a.

4 Note that we restrict here the bids available to Player s.
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(a) @ > 0. Then i € W(s), and s; = s; and u;(s) = u,;(s},s—;) for all
J#i
(b) @ = 0. This implies that ¢ does not belong to W(s) and W (s}, s_;).
W(s) = W (s}, s—;), hence u;(s) = u;(s},s—;) for all j #1i.
2. Suppose that u;(s;, s—;) > u;(s},s_;). Then i € W(s) and u;(s;,s—;) <
u;j(s},s—;) = a for all j.

For other economical examples, see De Wolf (1999).

5.3 1Perturbation” of two-person zero-sum games

Let I' = (S1, S2,u, —u) be a two-person zero-sum game and let 6; : S_; —
R fori=1,2.

We associate to I' the non-zero sum game G = (Si,S2,Ui,Us) where
Ui (s1,82) = u(s1,82) — 01(s2) and Ua(s1,82) = —u(s1, s2) — d2(s1). G may
be considered as a perturbation of the zero-sum game I

It is easy to check that G is a game of type B, and that G and I" have the
same set of Nash equilibria.
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Fig. 2 Connection between the diceerent classes
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