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Characterizing Core Stability with Fuzzy Games∗†

Evan Shellshear‡

Abstract

This paper investigates core stability of cooperative, TU games via a fuzzy extension of
the totally balanced cover of a TU game. The stability of the core of the fuzzy extension
of a game, the concave extension, is shown to reflect the core stability of the original game
and vice versa. Stability of the core is then shown to be equivalent to the existence of an
equilibrium of a certain correspondence.
JEL Classification: C71
MSC Classification: 90D12, 03E72
Keywords: Cooperative game; Core; Stable set; Fuzzy coalition; Fuzzy game; Core Stability

1 Introduction

The core of a cooperative game is called stable if it coincides with the stable set in the sense
of [22]. The problem of core stability is an important problem in cooperative game theory for
numerous reasons. A characterization of core stability is desirable because it provides one with
an existence theorem for von Neumann-Morgenstern stable sets for a certain class of games as
well as insights into the core, which itself is a central paradigm of cooperative game theory. This
is not to mention that the stable core is also a very convincing solution concept. There are
numerous papers providing conditions for core stability in cooperative, TU games, however, a
complete characterization of core stability via the coalition function of a cooperative, TU game
is still lacking. For a recent paper providing an overview of previous results as well as new results
on core stability, see [20].

The difficulty of characterizing core stability (via the coalition function or some other criteria that
are simple to verify) has led researchers to consider new ways of analyzing the problem of core
stability, namely via fuzzy games. The fuzzy game paradigm utilized in this paper was introduced
by [1]. (For other approaches to defining and analyzing fuzzy “extensions” of cooperative TU
games, see, e.g., [3] and [17].) The analysis, presented in this paper, continues the line of work
of [6] and [5]. In [6], the authors discuss properties related to core stability for fuzzy games in
∗Financial support from the German Science Foundation (DFG) is gratefully acknowledged.
†The author is also greatly indebted to Prof. Peter Sudhölter and Prof. em. Joachim Rosenmüller for their

proof reading and subsequent advice.
‡IMW, Bielefeld University, e-mail: eshellshear@gmail.com
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general. In [5], the concavification of a cooperative game is introduced and characterizations for
numerous properties intimately related to core stability of cooperative, TU games are provided.
Other papers also relevant to the analysis presented here are [10] and [11]. The goal of this paper
is to use the tools of [5] to derive new necessary and sufficient conditions for core stability of
cooperative, TU games. It is shown that core stability of a cooperative, TU game is equivalent
to the existence of an equilibrium of a certain correspondence.

This paper is structured as follows. In Section 1.1 the relevant cooperative, TU game theory
definitions and notation are introduced. Section 1.2 is devoted to presenting all the necessary
fuzzy game concepts and definitions as well as an example to demonstrate an important property
relating to core stability that had been neglected by the literature. In Section 1.3, the concavifica-
tion of the coalition function is introduced and Theorem 1.27 states that the fuzzy game defined
by the concavification has a stable core if and only if the original cooperative, TU game has a
stable core. In Section 1.4 important properties of the concavification and its superdifferential
are investigated that then form the basis of the final section. In the last section, Section 1.5,
Theorem 1.46 provides new necessary and sufficient conditions for core stability. It is also shown
in this section that a certain important correspondence closely resembling the correspondence in
Theorem 1.46 satisfies many nice properties.

1.1 Preliminaries - TU Games

In this section relevant definitions and concepts for the entire paper are provided. The definitions
provided here may be found in [22] unless specified otherwise.

A game here is a pair, (N, v), where N ⊆ N is a finite, nonempty subset with numbers repre-
senting players. For the sake of simplifying the notation it will be assumed that |N | = n (here
and in the following, if D is a finite set, then |D| denotes the cardinality of D). In addition,
nonempty subsets of N will be referred to as coalitions. v is the coalition function, v : 2N → R
satisfying v(∅) = 0, which intuitively describes the worth of a coalition. For S ⊆ N denote by
RS the set of all real functions on S. So RS is the |S|-dimensional Euclidean space. A payoff to
the players is generated by a vector x, x ∈ RN . To simplify the notation, one often introduces
the following convention for a vector x ∈ RN and a set S ⊆ N : x(S) :=

∑
i∈S xi, where each

xi stands for the ith component of the vector x (x(∅) = 0). Let xS denote the restriction of x
to S, i.e. xS := (xi)i∈S . In addition, if x, y ∈ RS , then write x ≥ y if xi ≥ yi for all i ∈ S and
x � y if xi > yi for all i ∈ S. For a game (N, v) the set of imputations I(N, v) is defined
as, I(N, v) := {x ∈ RN | x(N) = v(N), xi ≥ v({i}) ∀ i ∈ N} and the core, C(N, v), is given
by C(N, v) := {x ∈ I(N, v) | x(S) ≥ v(S) ∀S ⊆ N}. Let (N, v) be a game. η ∈ RN is said to
dominate ζ ∈ RN via the coalition D if η satisfies η(D) ≤ v(D) as well as ηD � ζD. In the case
that η dominates ζ via the coalition D one writes η domD ζ and one writes η dom ζ in case
there is a coalition D such that η domD ζ.

Definition 1.1. Let (N, v) be a game. (N, v) has a stable core if for all x ∈ I(N, v)\C(N, v)
there exists y ∈ C(N, v) such that y domx.

In order to state the Bondareva-Shapley Theorem (see [8] and [19]), which provides necessary
and sufficient conditions for the existence of the core, the following definitions are necessary. For
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T ⊆ N , denote by χT ∈ RN the characteristic vector of T , defined by

χTi =

 1 , if i ∈ T,

0 , if i ∈ N \ T.

A collection B ⊆ 2N \ {∅} is called balanced (over N) if positive numbers δS , S ∈ B, exist such
that

∑
S∈B δ

SχS = χN . The collection (δS)S∈B is called a system of balancing weights for B.
The totally balanced cover of (N, v), (N, v̄), is given by

v̄(S) = max

∑
T∈B

δT v(T )

∣∣∣∣∣∣ B is a balanced collection over S and

(δT )T∈B is system of balancing weights for B

 ∀S ⊆ N. (1.1)

The Bondareva-Shapley Theorem states that a game (N, v) has a nonempty core if and only if
v̄(N) = v(N). A game will be called balanced if it has a nonempty core.

1.2 Fuzzy Games

In this section all necessary definitions and concepts relating to fuzzy games will be provided.
Unless stated otherwise, all definitions stated here can be found in [6].

For a nonnegative vector Q ∈ RN , let F (Q) be the box F (Q) = {c ∈ RN |0 ≤ c ≤ Q}. The point
Q represents the grand coalition and every c ∈ F (Q) represents a fuzzy coalition. The support
of a fuzzy coalition c ∈ F (Q) is the set supp(c) := {i ∈ N | ci > 0}. In addition, |c| stands for
the l1 norm of c, that is |c| =

∑n
i=1 |ci| and for two vectors x, y ∈ RN , x · y =

∑n
i=1 xiyi.

Definition 1.2. A fuzzy game is a pair (Q, v) so that
i) Q ∈ RN

+ and
ii) v : F (Q)→ R is bounded and satisfies v(0) = 0.

Definition 1.3. Let (Q, v) be a fuzzy game. The set of imputations, I(Q, v), is defined as

I(Q, v) = {x ∈ RN | x ·Q = v(Q), xiQi ≥ v(Qiχ{i}) ∀ i ∈ N}.

Definition 1.4. Let (Q, v) be a fuzzy game. The core, denoted by C(Q, v), is defined as

C(Q, v) = {x ∈ RN | x ·Q = v(Q), x · c ≥ v(c) ∀ c ∈ F (Q)}.

In accordance with the terminology for cooperative, TU games, if the core of a fuzzy game is not
empty, then the game will be called balanced. (see [4] for details).

Definition 1.5. Let (Q, v) be a fuzzy game and 0 6= c ∈ F (Q). Then x ∈ RN is said to
dominate y ∈ RN via the fuzzy coalition c, x domc y, if x · c ≤ v(c) and xi > yi for every
i ∈ supp(c). x is said to dominate y, x dom y, if there exists a 0 6= c ∈ F (Q) such that x domc y.

Definition 1.6. Let (Q, v) be a fuzzy game. The fuzzy game (Q, v) has a stable core if, for
every imputation y /∈ C(Q, v), there exists an x ∈ C(Q, v) such that x dom y.

Definition 1.7. Let (Q, v) be a fuzzy game. A fuzzy coalition c ∈ F (Q) is exact if there exists
x ∈ C(Q, v) such that x · c = v(c).
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Definition 1.8. Let (Q, v) be a fuzzy game. (Q, v) has a large core if for every y ∈ RN that
satisfies y · c ≥ v(c) for every c ∈ F (Q), there exists x ∈ C(Q, v) such that x ≤ y.

In [6] a number of relationships between the above concepts are demonstrated. The authors,
however, did not consider the relationship between core stability and largeness. Here it will be
shown that for fuzzy games, in contrast to cooperative, TU games, largeness of the core does
not imply, in general, that a fuzzy game has a stable core, even for balanced fuzzy games (to see
that core stability does not imply largeness of the core one can consider the obvious fuzzy game
arising from Example one in [21]). In addition, there exist games which have a large core that is
empty.

Example 1.9. Let (Q, v) be a fuzzy game defined as follows. Q = (1, 1) and for x = (x1, x2) ∈
F (Q)

v(x) =

 2(x1 + x2)2, if 0 ≤ x1 + x2 < 1,

(x1 + x2)2, if 1 ≤ x1 + x2 ≤ 2.

Then it follows that I(Q, v) = {α(1, 3) + (1− α)(3, 1) | 0 ≤ α ≤ 1}. Also for ζ ∈ R2,

ζ · x ≥ v(x) ∀ x ∈ F (Q) ⇐⇒ ζi ≥ 2, i = 1, 2.

This will now be proven. To prove the if direction, let ζ ∈ R2 and let ζi ≥ 2, i = 1, 2. Then
for all x ∈ F (Q) it follows that ζ · x ≥ 2(x1 + x2) ≥ v(x). So, to prove the other direction let
x1 = (x1, 0) and x2 = (0, x2) for 0 < xi < 1, i = 1, 2. Then ζ · xi = ζixi ≥ 2x2

i for i = 1, 2
implies that ζi ≥ 2xi for all 0 < xi < 1 and i = 1, 2, hence ζi ≥ 2 for i = 1, 2. Therefore,
C(Q, v) = {(2, 2)} and the game (Q, v) has a large core. However, the game (Q, v) does not have
a stable core, as not a single imputation y 6= (2, 2) can be dominated by (2, 2). To demonstrate
this, choose η ∈ I(Q, v)\C(Q, v) and assume, without loss of generality, that η1 < 2. If x ∈ F (Q)
were to exist such that (2, 2) domx η, then it would follow that supp(x) = {1}. However, if
x = (1, 0), then it follows that 2 = (2, 2)(1, 0) > v((1, 0)) = 1 and if x = (x1, 0) with 0 < x1 < 1,
then (2, 2)(x1, 0) = 2x1 > 2x2

1 = v(x).

Example 1.10. By letting Q = 1 and v(x) = x + 1 for all x ∈ [0, 1) and v(1) = 1, it follows
that the fuzzy game (Q, v) has a large core that is empty.

1.3 The Concavification of the Coalition Function

In [5], the authors introduced the concavification of the coalition function. In this section, it
will be shown that the fuzzy game defined by the concavification preserves core stability of the
original cooperative, TU game.

To define the concavification, let H := {x ∈ RN | 0 ≤ xi ≤ 1 ∀ i ∈ N}.

Definition 1.11. Let (N, v) be a game. The concavification of v, v̂, is defined as the minimum
of all concave, positively homogeneous functions f : H → R such that f(χS) ≥ v(S) for every
coalition S.

In [5], the authors prove the following.
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Proposition 1.12. Let (N, v) be a game and v̂ the concavification of v. For every q ∈ H,

v̂(q) = max{
∑
S⊆N

αSv(S) |
∑
S⊆N

αSχ
S = q, αS ≥ 0}.

Let (N, v) be a game. Note that the concavification of v, v̂, coincides with the totally balanced
cover of v, v̄, on all χS , that is, for a coalition S, v̂(χS) = v̄(S). For the next definition, note
that F (χN ) = H.

Definition 1.13. Let (N, v) be a game and v̂ the concavification of v. The fuzzy game (χN , v̂)
is called the concave extension of (N, v).

Remark 1.14. The reader should note that the concave extension does not “extend” the coalition
function v over H, however, the totally balanced cover of v over H. To avoid clumsy formulations,
however, the fuzzy game (χN , v̂) will still be referred to as the concave extension of (N, v).

For a game (N, v), the concavification of the coalition function v is piecewise linear, positively
homogeneous and totally balanced (see [5] and [23]). Here it will also be proven to be continuous
on H (in [5] the authors mention that the concavification is continuous but give no proof of
this claim). To this end, four definitions and a proposition, which will also be relevant for later
sections, will be given here. These definitions can be found in, e.g., [9]. Throughout, let X ⊆ Rm

and Y ⊆ Rn.

Definition 1.15. A correspondence is a map ϕ : X → 2Y . One writes ϕ : X  Y .

Definition 1.16. A correspondence ϕ : X  Y is lower hemi-continuous (l.h.c.) at x ∈ X if
for every y ∈ ϕ(x) and all sequences {xt}t∈N in X with xt → x̄, there exists a sequence {yt}t∈N
with yt → ȳ so that yt ∈ ϕ(xt) for all t. ϕ is l.h.c. if it is l.h.c. at all x ∈ X.

Definition 1.17. A correspondence ϕ : X  Y is upper hemi-continuous (u.h.c.) at x if,
for every neighborhood V ⊇ ϕ(x), there exists a neighborhood U of x such that ϕ(y) ⊆ V for all
y ∈ U ∩X. ϕ is u.h.c. if it is u.h.c. at all x ∈ X.

To simplify a number of proofs in this paper, the following proposition will be useful (see, e.g.,
[9]).

Proposition 1.18. Let ϕ : X  Y be a correspondence and let Y be compact. Then ϕ : X  Y
is upper hemi-continuous (u.h.c.) at x̄ ∈ X, if for all sequences {xt}t∈N in X with xt → x̄
and all sequences {yt}t∈N with yt → ȳ and yt ∈ ϕ(xt) for all t, it follows that ȳ ∈ ϕ(x̄).

Definition 1.19. A correspondence ϕ : X  Y is continuous at x ∈ X if ϕ is both u.h.c. and
l.h.c. at x. ϕ is continuous if it is continuous at all x ∈ X.

It will now be proven that the concavification of a coalition function is continuous. To do so, it
will be shown that the following correspondence is continuous, an interesting result in its own
right. Let Φ : H→ R2N\{∅} be defined by,

Φ(x) = {(αS)S∈2N\{∅} | αS ≥ 0,
∑

S∈2N\{∅}

αSχ
S = x}. (1.2)
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Remark 1.20. In the proof the following simple fact will be used. For a finite set I and αi ∈ R+,
i ∈ I, and γ ∈ R+, if γ ≥ maxi∈I αi, then

∑
i∈I(αi−γ)+ = 0. If there exists i∗ ∈ I with αi∗ ≥ γ,

then
∑

i∈I(αi − γ)+ ≤
∑

i∈I\i∗ αi + αi∗ − γ =
∑

i∈I αi − γ.

Remark 1.21. In addition, one notices immediately that the correspondence Φ is from H to a
compact subset W of R2N\{∅}, whereby

W := {η ∈ R2N\{∅} | η = (αS)S∈2N\{∅}, 0 ≤ αS ≤ 1 ∀ S ∈ 2N\{∅}}.

Lemma 1.22. Φ is a continuous correspondence.

Proof:
1stSTEP :
It will first be proven that Φ is a l.h.c. correspondence. Take x̄ ∈ H and η = (αS)S∈2N\{∅} ∈
Φ(x̄). For x ∈ H, let δx = maxi∈N (x̄i − xi) and define for all coalitions S, |S| ≥ 2, αxS =
(αS − δx)+. Then, by Remark 1.20, it follows, for all i ∈ N , that one can choose αx{i} ≥ 0, so
that

∑
S∈2N\{∅} α

x
Sχ

S = x. Let xt → x̄ and let ηt := (αx
t

S )S∈2N\{∅}, with the αxt

{i} chosen so that∑
S∈2N\{∅} α

xt

S χ
S = xt. Then it follows immediately that ηt → η and ηt ∈ Φ(xt) for all t ∈ N.

2ndSTEP :
To prove that Φ is an u.h.c. correspondence, let x̄ ∈ H, let xt → x̄ and let ηt := (αtS)S∈2N\{∅} →
η := (αS)S∈2N\{∅} with ηt ∈ Φ(xt) for all t ∈ N. Then for all ε > 0 one can choose M ∈ N such
that for all k > M it follows that |ηk − η| < ε

2|N | and |x̄ − x
k| < ε

2 . Hence, for all ε > 0 there
exists a k ∈ N, such that

|x̄−
∑

S∈2N\{∅}

αSχ
S | = |x̄−

∑
S∈2N\{∅}

αkSχ
S +

∑
S∈2N\{∅}

αkSχ
S −

∑
S∈2N\{∅}

αSχ
S |

≤ |x̄− xk|+ |
∑

S∈2N\{∅}

αkS −
∑

S∈2N\{∅}

αS ||S| ≤
ε

2
+ |ηk − η||N | < ε.

Whence it follows that η ∈ Φ(x̄) q.e.d.

To demonstrate that the concavification is continuous one other property of the correspondence
Φ needs to be demonstrated.

Definition 1.23. Let X ⊆ Rm and Y ⊆ Rn and let ϕ : X  Y be a correspondence. ϕ is
compact valued if ϕ(x) is compact for all x ∈ X.

Lemma 1.24. The correspondence Φ is compact valued.

Proof: Let x ∈ H. It follows from Remark 1.21 that Φ(x) is bounded. To demonstrate that
Φ(x) is closed, let {ηt}t∈N, ηt := (αtS)S∈2N\{∅}, be a sequence such that ηt ∈ Φ(x), for all t, and
ηt → η. Let η = (αS)S∈2N\{∅} and let x̄ =

∑
S∈2N\{∅} αSχ

S . Then for all ε > 0 it follows that
there exists an M ∈ N such that for all k > M , k ∈ N,

ε > |ηk − η||N | ≥
∑

S∈2N\{∅}

|αkS − αS ||S| =
∑

S∈2N\{∅}

|αkSχS − αSχS | = |x− x̄|.

Hence, one has that η ∈ Φ(x). q.e.d.

An application of the following theorem, first proven in [7], will then be used to show that, for
a game (N, v), the concavification v̂ is continuous.
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Theorem 1.25. Let X ⊆ Rm and Y ⊆ Rn and let ϕ : X  Y be a compact valued correspon-
dence. Let f : Y → R be continuous. Define µ : X  Y by

µ(x) = {y ∈ ϕ(x) | y maximizes f on ϕ(x)}

and F : X → R by F (x) = f(y) for y ∈ µ(x). If ϕ is continuous at x, then F is continuous at x.

Corollary 1.26. Let (N, v) be a game and v̂ the concavification of v. Then v̂ is continuous.

Proof: For η := (αS)S∈2N\{∅} ∈ R2N\{∅}, define the function f : R2N\{∅} → R by f(η) =∑
S∈2N\{∅} αSχ

S . As Φ defined by Equation 1.2 is a compact valued, continuous correspondence
and f is clearly continuous, it follows from the previous theorem that v̂ is continuous. q.e.d.

The main reason for studying the concave extension is because of a property that it shares with
the totally balanced cover of a cooperative game. That is, a balanced game (N, v) has a stable
core if and only if its concave extension (χN , v̂) has a stable core. This result will now be proven.
Note that I(χN , v̂) = I(N, v) for balanced games.

Theorem 1.27. Let (N, v) be a balanced game and let (χN , v̂) be the concave extension of
(N, v). Then (N, v) has a stable core if and only if (χN , v̂) has a stable core.

Proof:
1stSTEP :
For the only if implication, let (N, v) have a stable core. If x ∈ I(χN , v̂)\C(χN , v̂), then there
exists 0 6= q ∈ H such that x · q < v̂(q). This implies, however, that there exists a coalition S
such that x(S) < v(S). As the game (N, v) has a stable core and x ∈ I(N, v), there exists a
y ∈ C(N, v) and a coalition R satisfying v(R) = v̂(χR)1 and y domR x. Now y(P ) ≥ v(P ) for all
P ⊆ N and hence, y · q ≥ v̂(q) for all q ∈ H. Therefore, y ∈ C(χN , v̂) and (χN , v̂) has a stable
core.
2ndSTEP :
It will now be proven that if the game (χN , v̂) has a stable core, then (N, v) has a stable core.
So let x ∈ I(N, v)\C(N, v). Then there exists a coalition S such that x(S) < v(S). Hence,
x · χS < v̂(χS) and therefore x /∈ C(χN , v̂) and x ∈ I(χN , v̂). As the game (χN , v̂) has a stable
core, there exists y ∈ C(χN , v̂) and a non zero q ∈ H such that y domq x. Then there exists a
coalition S such that y(S) = v(S) (see Proposition 3.11 in [21]) and S ⊆ supp(q). Now yi > xi
for all i ∈ S and therefore, y domS x and one also has that y ∈ C(N, v). Hence, (N, v) has a
stable core. q.e.d.

Remark 1.28. One should note that the fuzzy game defined by the Choquet extension of a TU
game (see, e.g., [12]) also satisfies the previous theorem (the proof is even simpler than the one
just given). The Choquet extension, however, is concave if and only if the coalition function v is
convex (see [16]). As concavity plays an important role for the rest of this paper, this justifies
the current author’s negligence of the coming analysis for the Choquet extension of a TU game.

1.4 The Superdifferential of v̂

Let (N, v) be a game and let (χN , v̂) be the concave extension of (N, v). In this section properties
of the superdifferential of v̂, ∂v̂, will be investigated. In the last section of this paper, this analysis

1As demonstrated in [14], domination can always be achieved via a coalition S with v(S) = v̄(S).
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will be used to characterize when the concave extension (RN
+ , v̂) over RN

+ of a game (N, v) (see
below) has a stable core.

Remark 1.29. Let (N, v) be a game. To continue the analysis, the domain of the concavification
v̂ of v will be extended over RN

+ via its homogeneity. By a certain abuse of notation, the extension
of v̂ over RN

+ will also be denoted by v̂. So, let q ∈ RN
+ , q 6= 0. Then v̂(q) := q(N)v̂( q

q(N)),
where the v̂ on the left hand side is defined on RN

+ and the v̂ on the right hand side is the
concavification defined on H. To make it clear that the extension over RN

+ is being considered
the notation (RN

+ , v̂) will be used. One can then consider the pair (RN
+ , v̂) as an extended type

of fuzzy game, which will be called the concave extension over RN
+ of a game (N, v). For the

concave extension over RN
+ of a game (N, v), the core and the set of imputations will be defined

as follows, C(RN
+ , v̂) := C(χN , v̂) and I(RN

+ , v̂) := I(χN , v̂). Notice that for x ∈ C(RN
+ , v̂), for all

q ∈ RN
+ , q 6= 0, one has x · q = q(N)x · q

q(N) ≥ q(N)v̂( q
q(N)) = v̂(q).

Remark 1.30. By applying the definitions of domination and a stable core for fuzzy games to
the concave extension (RN

+ , v̂) over RN
+ of a game (N, v), one notices, because of the homogeneity

of v̂, that the concave extension (RN
+ , v̂) over RN

+ has a stable core if and only if the game (χN , v̂)
has a stable core.

The notation in the next definition follows that of, e.g., [18].

Definition 1.31. A vector x ∈ RN is a supergradient of a concave function f : RN
+ → R at a

point q ∈ RN
+ if

f(z) ≤ f(q) + x · (z − q) ∀ z ∈ RN
+ . (1.3)

The set of all supergradients of f at q is called the superdifferential of f at q and is denoted
by ∂f(q).

Proposition 1.32. Let (N, v) be a game, let (RN
+ , v̂) be its concave extension over RN

+ and let
q ∈ RN

+ . Then
∂v̂(q) = {x ∈ RN | x · q = v̂(q), x · p ≥ v̂(p) ∀p ∈ RN

+}.

Proof: Let x ∈ ∂v̂(q). To prove that x · p ≥ v̂(p) for all p ∈ RN
+ , take z = p + q in Equation

(1.3). Then from the homogeneity and concavity of the concavification, it follows that

v̂(p) + v̂(q) ≤ v̂(p+ q) ≤ v̂(q) + x · (p+ q − q)

and hence, x · p ≥ v̂(p). To prove that x · q = v̂(q), take z = q
2 in Equation (1.3) and one has

v̂(
q

2
) ≤ v̂(q) + x · (q

2
− q).

From this, and the homogeneity of v̂, it follows that x · q ≤ v̂(q), but as x · p ≥ v̂(p) for all
p ∈ RN

+ , one has x · q = v̂(q). To show the other implication, let y ∈ {x ∈ RN | x · p ≥ v̂(p) ∀p ∈
RN

+ , x · q = v̂(q)}. Then it follows from y · q = v̂(q) and y · z ≥ v̂(z) for all z ∈ RN
+ that

y · z − y · q ≥ v̂(z)− v̂(q). Hence, y · (z − q) + v̂(q) ≥ v̂(z). q.e.d.

The following result, for super additive games, appears in a slightly different setting, e.g., in the
first edition of [2], p. 213.

Corollary 1.33. Let (N, v) be a balanced game and let (RN
+ , v̂) be its concave extension over

RN
+ . Then ∂v̂(χN ) = C(N, v).

8



For later results it will also be necessary to demonstrate that for all q ∈ RN
+ , ∂v̂(q) 6= ∅. To do

so the following proposition is necessary, which can be found in [18] (int stands for the interior
of a set).

Proposition 1.34. Let f : RN
+ → R be a closed2, concave function and let q ∈ intRN

+ . Then
∂f(q) is a nonempty, compact set.

Lemma 1.35. Let (N, v) be a game and (RN
+ , v̂) be its concave extension over RN

+ . Then for all
q ∈ RN

+ , ∂v̂(q) 6= ∅.

Proof: By Proposition 1.34, ∂v̂(r) 6= ∅ for all r ∈ intRN
+ . Let q ∈ RN

+\intRN
+ . Because v̂ is

piece-wise linear, it follows that there exists a δ > 0 so that for all t ∈ RN
+ with |t − q| < δ one

has, for all 0 ≤ α ≤ 1,
αv̂(t) + (1− α)v̂(q) = v̂(αt+ (1− α)q).

Let r ∈ intRN
+ , |r − q| < δ and define p = 1

2r + 1
2q ∈ intR

N
+ . Let y ∈ ∂v̂(p). Then one has, from

the linearity of y and v̂, 1
2y · r + 1

2y · q = 1
2 v̂(r) + 1

2 v̂(q), however, y · r ≥ v̂(r) and y · q ≥ v̂(q),
hence, one can conclude that y ∈ ∂v̂(q). q.e.d.

Another well-known, simple result (cf. [18]), which will be useful later on, is the following.

Proposition 1.36. Let (N, v) be a game, let (RN
+ , v̂) be its concave extension over RN

+ and let
q ∈ RN

+ . Then ∂v̂(q) is a convex set.

To prove some more results about ∂v̂, which will be used in the last section of this paper, a
characterization of v̂ will now be given. In the following, let (N, v) be a game and

U(N, v) := {x ∈ RN | x(S) ≥ v(S), ∀ S ⊆ N}.

Proposition 1.37. Let (N, v) be a game, let (RN
+ , v̂) be its concave extension over RN

+ and let
q ∈ RN

+ . Then
v̂(q) = min

x∈U(N,v)
{x · q}. (1.4)

Proof: Let q ∈ RN
+ . By Lemma 1.35, for all q ∈ RN

+ , ∂v̂(q) 6= ∅. However, all y ∈ ∂v̂(q) are
such that y · q = v̂(q) and y · p ≥ v̂(p) otherwise. Hence, all such y are elements of U(N, v) and
satisfy v̂(q) = y · q = minx∈U(N,v){x · q}. q.e.d.

Let extC stand for the extreme points of a set C ⊆ RN
+ . As is well-known, for each q ∈ RN

+ , the
minimum in Equation (1.4) is attained by an extreme point of the set U(N, v). Note also that
the number of extreme points of U(N, v) is finite (see [13]). Let H ∈ extU(N, v) and let

x̂ :=
∑

{S⊆N : v(S)=H(S)}

χS . (1.5)

Then, from Equation (1.4),

v̂(x̂) = H · x̂ < G · x̂ ∀ G ∈ extU(N, v)\{H} (1.6)

Via the continuity of v̂, this allows one, for q ∈ RN
+ , to rewrite v̂ in the following form.

v̂(q) = min
H∈extU(N,v)

{H · q}. (1.7)

2A concave function f : RN
+ → R is closed if the set {(p, a) ∈ RN

+ × R | a ≤ f(p)} is closed.
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Using the previous results, a proposition concerning the structure of the set ∂v̂(q) for q ∈ RN
+

will be proven, which will be useful later on. Before that can be done, some well-known results,
which will also be relevant for later analysis, will be presented. In the following, let convH(C)
stand for the convex hull of a set C (the following proposition and definition can be found in,
e.g., [18]).

Proposition 1.38. Let C ⊆ RN be a compact, convex set. Then C = convH(extC).

Definition 1.39. A hyperplane H to a set C ⊆ RN is supporting if C is contained in one of
the closed half spaces defined by H and also H ∩ C 6= ∅.

As the set extU(N, v) is finite, it follows that for each extreme point, x, of U(N, v) there is a
supporting hyperplane through x which contains no other point of U(N, v) (i.e. extreme points
are also exposed, see [15]). To simplify the statement of the next result, let

J(q) := {H ∈ extU(N, v) | H · q = v̂(q)}. (1.8)

Proposition 1.40. Let (N, v) be a game, let (RN
+ , v̂) be its concave extension over RN

+ and let
q ∈ intRN

+ . Then ∂v̂(q) = convH(J(q)).

Proof: Let q ∈ intRN
+ . First of all, it is clear from the definition of v̂, in Equation (1.7), that

∂v̂(q) ⊇ J(q). By Proposition 1.34 and Proposition 1.36, it follows that ∂v̂(q) is a nonempty,
compact, convex set. By Proposition 1.38, it follows that this set can be written as the convex
hull of its extreme points. Assume now, per absurdum, that there exists an extreme point
η ∈ ext ∂v̂(q) such that η 6= H for all H ∈ J(q). Because η is an extreme (and hence exposed)
point of U(N, v) there exists a vector y ∈ RN (which defines a supporting hyperplane intersecting
only η in ∂v̂(q)) so that η · y > H · y for all H ∈ J(q). In addition, as v̂ is continuous and
all H ∈ extU(N, v)\J(q) are also continuous (considered as functions of q ∈ RN

+ ) and also
v̂(q) < minH∈extU(N,v)\J(q){H · q}, it follows that there exists a δ > 0 so that for p ∈ Nδ(q) :=
{z ∈ RN

+ | |z−q| < δ} one has v̂(p) < minH∈extU(N,v)\J(q){H ·p}. Let ε > 0 so that q−εy ∈ Nδ(q).
Because η · q = H · q for all H ∈ J(q), it follows that

η · (q − εy) < min
H∈J(q)

{H · (q − εy)} = v̂(q − εy).

A contradiction, because η ∈ ∂v̂(q). q.e.d.

For the general case, see [18]3.

Remark 1.41. Note that one can show more than the result in the previous proposition. Let
q ∈ intRN

+ . Then, from Equations (1.5) and (1.6), it follows that ext∂v̂(q) = J(q).

1.5 The Inverse Domination Correspondence

In this section the question of core stability will be considered from the perspective of nonlin-
ear analysis. In addition, a closely related correspondence will be investigated and important
properties of this correspondence will be proven. The focus of this section is on the following
correspondence.

3That is, ∂v̂(q) = K(q) + convH(J(q)), where K(q) is the normal cone at q.
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Definition 1.42. Let (N, v) be a game. For an imputation x, let

domx := {y ∈ I(N, v) | y domx}.

In particular, one can say that the game (N, v) has a stable core if and only if for all x ∈
I(N, v)\C(N, v), it follows that domx ∩ C(N, v) 6= ∅, i.e., if and only if 0 ∈ domx − C(N, v).
As it stands, this result is not very useful. In the following, however, it shall be rewritten in a
form which is amenable to the techniques of nonlinear analysis. To do so, the extension of domx
over RN

+ , for the concave extension (RN
+ , v̂) over RN

+ of a game (N, v), will be considered. The
extended definition of domx is clear (one can now dominate via q ∈ RN

+ and not just via the χS ,
S ⊆ N). To begin the analysis some lemmata are required.

Lemma 1.43. Let (N, v) be a game, let (RN
+ , v̂) be its concave extension over RN

+ and let q ∈ RN
+

be an exact coalition. Then for all λ > 0 it follows that

v̂(q + λχN ) = v̂(q) + λv̂(χN ).

Proof: Let q ∈ RN
+ be an exact coalition. Then there exists an x ∈ C(RN

+ , v̂) such that x·q = v̂(q).
Let λ > 0. Then, by homogeneity and concavity of v̂,

v̂(q + λχN ) ≤ x · (q + λχN ) = x · q + λx · χN = v̂(q) + λv̂(χN ) ≤ v̂(q + λχN )

and the result follows. q.e.d.

Using this, one can now prove the following result.

Lemma 1.44. Let (N, v) be a game, let (RN
+ , v̂) be its concave extension over RN

+ , let q ∈ RN
+

be an exact coalition and let λ > 0. Then

∂v̂(q + λχN ) = ∂v̂(q) ∩ ∂v̂(χN ).

Proof: Let q ∈ RN
+ be an exact coalition and let λ > 0. If x ∈ ∂v̂(q+λχN ), then x · (q+λχN ) =

v̂(q + λχN ), whence one has that x · q + λx · χN = v̂(q) + λv̂(χN ) from the exactness of q and
the previous lemma. However, x · q ≥ v̂(q) and x · χN ≥ v̂(χN ), which imply that x · q = v̂(q)
and x · χN = v̂(χN ) (and x · p ≥ v̂(p) otherwise, as x ∈ ∂v̂(q + λχN )). It then follows that
x ∈ ∂v̂(q) ∩ ∂v̂(χN ). The other implication is clear, as if x · q = v̂(q) and x · χN = v̂(χN )
(and x · p ≥ v̂(p) otherwise), then x · q + λx · χN = v̂(q) + λv̂(χN ) and, from the previous
result, it follows that, because q is an exact coalition, v̂(q + λχN ) = v̂(q) + λv̂(χN ) and hence,
x · (q + λχN ) = v̂(q + λχN ). Whence x ∈ ∂v̂(q + λχN ). q.e.d.

Utilizing this result, one can now formulate necessary and sufficient conditions for core stability
of the the concave extension (RN

+ , v̂) over RN
+ of a game (N, v). Before that is done, some more

notation needs to be introduced. For two sets C1, C2 ⊆ RN
+ , let C1 − C2 := {x− y | x ∈ C1, y ∈

C2}. In addition, define the following set for a game (N, v) and its concave extension (RN
+ , v̂)

over RN
+ .

Definition 1.45. Let (N, v) be a game, let (RN
+ , v̂) be its concave extension over RN

+ , let x ∈ RN

and q ∈ RN
+ .

D(q, x) := {y ∈ I(RN
+ , v̂) | y · q = v̂(q), yi ≥ xi ∀ i ∈ supp(q)}.

The desired result is as follows (for a set C, riC stands for the relative interior of C).
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Theorem 1.46. Let (N, v) be a game and let (RN
+ , v̂) be its concave extension over RN

+ . Then
(RN

+ , v̂) has a stable core if and only if for all x ∈ I(RN
+ , v̂)\C(RN

+ , v̂) there exists a non-zero,
exact q ∈ RN

+ and λ > 0 so that

0 ∈ riD(q, x)− ∂v̂(q + λχN ).

Proof: First of all, if the game (RN
+ , v̂) has a stable core, then for all imputations x /∈ C(RN

+ , v̂)
there exists a non-zero q ∈ RN

+ and y ∈ C(RN
+ , v̂) ∩ domq x. Hence, q is exact, y ∈ riD(q, x) and

y ∈ ∂v̂(q). Therefore, for λ > 0, y ∈ ∂v̂(q)∩ ∂v̂(χN ) = ∂v̂(q+λχN ), by Lemma 1.44, and hence,
0 ∈ riD(q, x)−∂v̂(q+λχN ). To prove the other implication, assume that x ∈ I(RN

+ , v̂)\C(RN
+ , v̂).

Then there exists a non zero, exact q ∈ RN
+ and λ > 0 such that 0 ∈ riD(q, x) − ∂v̂(q + λχN ).

That is, there exists a z ∈ ∂v̂(q + λχN ) such that z domq x, from which the concave extension
(RN

+ , v̂) over RN
+ has a stable core, as by Lemma 1.44, z ∈ C(RN

+ , v̂). q.e.d.

The reason for the interest in such a result is based on the properties of the following corre-
spondence, called the inverse domination correspondence. Let (N, v) be a game and (RN

+ , v̂) its
concave extension over RN

+ , let x ∈ I(RN
+ , v̂)\C(RN

+ , v̂) and let λ > 0 be fixed. Define for q ∈ RN
+

the correspondence Fx : RN
+  RN by

Fx(q) := D(q, x)− ∂v̂(q + λχN ). (1.9)

Note that the choice of λ in the definition is irrelevant.

Definition 1.47. Let X ⊆ Rn
+ and Y ⊆ Rm

+ . Let ϕ : X  Y be a correspondence. ϕ is convex
valued if ϕ(x) is convex for all x ∈ X.

Let (N, v) be a game, (RN
+ , v̂) its concave extension over RN

+ and let x ∈ RN . As is clear,
D(·, x) is a correspondence taking compact and convex values. Note also that for q ∈ intRN

+ , by
Proposition 1.40, ∂v̂ is also a nonempty, compact and convex valued correspondence. Another
important property shared by both correspondences, ∂v̂ and D(·, x), is that they are u.h.c.
correspondences.

Proposition 1.48. Let (N, v) be a game, let (RN
+ , v̂) be its concave extension over RN

+ and let
q ∈ intRN

+ . Then ∂v̂(q) is u.h.c. at q.

Proof: Let q ∈ intRN
+ and let J(q) be defined as in Equation (1.8). As v̂ is continuous and

all H ∈ extU(N, v)\J(q) are also continuous (considered as functions of q ∈ RN
+ ) and also

v̂(q) < minH∈extU(N,v)\J(q){H · q}, it follows that there exists a δ > 0 so that for p ∈ Nδ(q) :=
{z ∈ RN

+ | |z − q| < δ} one has v̂(p) < minH∈extU(N,v)\J(q){H · p}. Hence, one has for all
p ∈ Nδ(q) ∩ intRN

+ (by Proposition 1.40) that ∂v̂(p) ⊆ ∂v̂(q). q.e.d.

For the general case, see [2].

Proposition 1.49. Let (N, v) be a game, let (RN
+ , v̂) be its concave extension over RN

+ and let
x ∈ RN . Then D(·, x) is a u.h.c. correspondence.

Proof: Note that the range of D(·, x) is contained in I(RN
+ , v̂), a compact set. Let q ∈ RN

+ .
If x · q > v̂(q), then D(q, x) = ∅ and the result clearly follows. Hence, let x · q ≤ v̂(q) and let
{qt}t∈N be a sequence in RN

+ such that qt → q and {yt}t∈N be a sequence such that yt → y
and yt ∈ D(qt, x) for all t. Hence, one clearly has yi ≥ xi for all i ∈ supp(q) and also that
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y ∈ I(RN
+ , v̂) (because there exists t̄ ∈ N such that for all t > t̄, yti ≥ xti, for all i ∈ supp(q),

and yt ∈ I(RN
+ , v̂)). Because v̂ is a continuous function, it follows that for qt → q one has

v̂(qt)→ v̂(q) and because yt → y and ytqt = v̂(qt) for all t ∈ N, one can conclude that yq = v̂(q).
q.e.d.

Finally, it also important to note that for two u.h.c. correspondences ϕ1 and ϕ2 that one also
has the following result (cf. [9]).

Proposition 1.50. Let ϕ1 : X  Y and ϕ2 : X  Y be u.h.c. correspondences. Then ϕ1 − ϕ2

is also u.h.c.

Proof: Let O be a neighborhood of ϕ1(x)−ϕ2(x) and let O1 be a neighborhood of ϕ1(x) and O2

a neighborhood of ϕ2(x) such that O1 −O2 ⊆ O. Then there exist neighborhoods U1 and U2 of
x so that ϕ1(x1) ⊆ O1 for all x1 ∈ U1 and ϕ2(x2) ⊆ O2 for all x2 ∈ U2. Choose a neighborhood,
U ⊆ U1, U2, of x and it follows that ϕ1(z)− ϕ2(z) ⊆ O for all z ∈ U . q.e.d.

Corollary 1.51. Let (N, v) be a game, let (RN
+ , v̂) be its concave extension over RN

+ . Let
x /∈ C(RN

+ , v̂) be an imputation, let λ > 0 and let Fx : RN
+  RN be defined as in Equation (1.9).

Then Fx is a nonempty, u.h.c., compact and convex valued correspondence.

Proof: As ∂v̂(q) is a u.h.c. correspondence for all q ∈ intRN
+ and for two compact (convex) sets

C1, C2 ∈ RN
+ , C1 − C2 is also compact (convex), the corollary follows from the definition of Fx.

q.e.d.

Remark 1.52. Let (N, v) be a game, let (RN
+ , v̂) be its concave extension over RN

+ and let
λ > 0. Note that if for all x ∈ I(RN

+ , v̂)\C(RN
+ , v̂) there exists an exact q ∈ RN

+ such that
0 ∈ riFx(q) = riD(q, x)− ri∂v̂(q+λχN ) ⊆ riD(q, x)−∂v̂(q+λχN ), then it follows that (RN

+ , v̂)
has a stable core. For a characterization of exactness, see [23] (note that the statements in both
[23] and [5] characterizing when a coalition is exact are actually incorrect. In addition to the
conditions stated in both papers, one also requires, for a coalition S, that v̂(χS) = v(S) for the
claimed results to be correct).
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