The Dummy Paradox of the Bargaining Set*

Bezalel Peleg ${ }^{\dagger} \quad$ Peter Sudhölter ${ }^{\ddagger}$
Center for Rationality and Interactive Decision Theory
The Hebrew University of Jerusalem

Abstract

By means of an example of a superadditive 0-normalized game, we show that the maximum payoff to a dummy in the bargaining set may decrease when the marginal contribution of the dummy to the grand coalition becomes positive.

We consider the weighted majority game (N, v_{0}) which has the tuple ($3 ; 1,1,1,1,1,0$) as a representation (see (3)). The maximum payoff to the dummy (the last player) in the bargaining set of $\left(N, v_{0}\right)$ is shown to be $2 / 7$ (see Remark 2). If we now increase $v_{0}(N)$ by $\delta, 0<\delta<2 / 3$, then the maximum payoff to the last player in the new game, in which this player is no longer a dummy and contributes δ to N, is smaller than $2 / 7$ and strictly decreasing in δ (see Lemma 3).

We recall some definitions and introduce relevant notations. A (cooperative TU) game is a pair (N, v) such that $\emptyset \neq N$ is finite and $v: 2^{N} \rightarrow \mathbb{R}, v(\emptyset)=0$. For any game (N, v) let

$$
I(N, v)=\left\{x \in \mathbb{R}^{N} \mid x(N)=v(N) \text { and } x^{i} \geq v(\{i\}) \text { for all } i \in N\right\}
$$

denote the set of imputations. (We use $x(S)=\sum_{i \in S} x^{i}$ for every $S \subseteq N$.) Let (N, v) be a game, $x \in I(N, v)$, and $k, l \in N, k \neq l$. Let

$$
\mathcal{T}_{k l}=\{S \subseteq N \backslash\{l\} \mid k \in S\} .
$$

An objection of k against l at x is a pair (P, y) satisfying

$$
\begin{equation*}
P \in \mathcal{T}_{k l}, y(P)=v(P), \text { and } y^{i}>x^{i} \text { for all } i \in P . \tag{1}
\end{equation*}
$$

We say that k can object against l via P, if there exists y such that (P, y) is an objection of k against l. Hence k can object against l via P, if and only if $P \in \mathcal{T}_{k l}$ and $e(P, x, v)>0$,

[^0]where $e(S, x, v)=v(S)-x(S)$ is the excess of S at x for $S \subseteq N$. A counter objection to an objection (P, y) of k against l is a pair (Q, z) satisfying
\[

$$
\begin{equation*}
Q \in \mathcal{T}_{l k}, z(Q)=v(Q), z^{i} \geq y^{i} \text { for all } i \in Q \cap P \text { and } z^{j} \geq x^{j} \text { for all } j \in Q \backslash P . \tag{2}
\end{equation*}
$$

\]

Aumann and Maschler (1964) introduced the concepts of objections and counter objections.
An imputation $x \in I(N, v)$ is stable if for every objection at x there exists a counter objection. The bargaining set $\mathcal{M}(N, v)$ is defined by $\mathcal{M}(N, v)=\{x \in I(N, v) \mid x$ is stable $\}$. The bargaining set was introduced by Davis and Maschler (1967).
Player $i \in N$ is a dummy of (N, v) if $v(S \cup\{i\})=v(S)+v(\{i\})$ for all $S \subseteq N \backslash\{i\}$. The game (N, v) is superadditive if $v(S)+v(T) \leq v(S \cup T)$ for all $S \subseteq N$ and $T \subseteq N \backslash S$.
Remark 1. Let (N, v) be a game. We recall that the core of (N, v) is the set $\mathcal{C}(N, v)=$ $\{x \in I(N, v) \mid e(S, x, v) \leq 0$ for all $S \subseteq N\}$. Also we remark (see [2]) that $\mathcal{C}(N, v) \subseteq$ $\mathcal{M}(N, v)$.

In the sequel let $N=\{1, \ldots, 6\}$ and (N, v_{0}) be the weighted majority game mentioned above. That is, $v_{0}(S), S \subseteq N$, satisfies the following equation:

$$
v_{0}(S)= \begin{cases}0, & \text { if }|S \backslash\{6\}| \leq 2 \tag{3}\\ 1, & \text { if }|S \backslash\{6\}| \geq 3\end{cases}
$$

Then $\left(N, v_{0}\right)$ is a superadditive game and player 6 is a dummy. Also, for every $\delta \in \mathbb{R}, \delta>0$, let $\left(N, v_{\delta}\right)$ be the game which differs from $\left(N, v_{0}\right)$ only inasmuch as $v_{\delta}(N)=1+\delta$.
If $0 \leq \delta \leq 2 / 3$, then define $x_{\delta} \in \mathbb{R}^{N}$ by

$$
\begin{equation*}
x_{\delta}^{j}=\frac{1}{7}+\frac{2}{7} \delta \text { for } j \in N \backslash\{6\} \text { and } x_{\delta}^{6}=\frac{2}{7}-\frac{3}{7} \delta . \tag{4}
\end{equation*}
$$

If $\delta \geq 2 / 3$, then define $x_{\delta} \in \mathbb{R}^{N}$ by

$$
\begin{equation*}
x_{\delta}^{j}=\frac{1}{3} \text { for } j \in N \backslash\{6\} \text { and } x_{\delta}^{6}=\delta-\frac{2}{3} . \tag{5}
\end{equation*}
$$

Remark 2. For every $\delta \geq 0, x_{\delta} \in \mathcal{M}\left(N, v_{\delta}\right)$.
Proof: Clearly $x_{\delta} \in I\left(N, v_{\delta}\right)$. If $\delta \geq 2 / 3$, then $x_{\delta} \in \mathcal{C}\left(N, v_{\delta}\right)$, thus $x_{\delta} \in \mathcal{M}\left(N, v_{\delta}\right)$ by Remark 1. Now we assume $0 \leq \delta<2 / 3$. Then $\mathcal{C}\left(N, v_{\delta}\right)=\emptyset$. Let $k, l \in N, k \neq l$, and let (P, y) be an objection of k against l at x_{δ}. By (1), $|P \backslash\{6\}| \geq 3$. If $l \neq 6$ and $k \neq 6$, then let $Q=(P \backslash\{k\}) \cup\{l\}$. If $k=6$, then there exists $i \in P$ and let $Q=(P \backslash\{k, i\}) \cup\{l\}$. If $l=6$, then select $i \in P \backslash\{k\}$ satisfying $y^{i} \geq y^{j}$ for all $j \in P \backslash\{k\}$ and let $Q=N \backslash\{k, i\}$. Also, let $z \in \mathbb{R}^{Q}$ be given by

$$
z^{j}=\left\{\begin{array}{cl}
y^{j} & , \text { if } j \in Q \cap P \tag{6}\\
v(Q)-y(P \cap Q)-x_{\delta}(Q \backslash(P \cup\{l\})) & , \text { if } j=l \\
x_{\delta}^{j} & , \text { if } j \in Q \backslash(P \cup\{l\}) .
\end{array}\right.
$$

Then (Q, z) is a counter objection to (P, y).

Lemma 3. Let $\delta \in \mathbb{R}_{+}$. If $x \in \mathcal{M}\left(N, v_{\delta}\right)$, then $x^{6} \leq x_{\delta}^{6}$.
Proof: Let $x \in I\left(N, v_{\delta}\right)$ satisfy $x^{6}>x_{\delta}^{6}$. It remains to show that $x \notin \mathcal{M}\left(N, v_{\delta}\right)$. Without loss of generality we may assume

$$
\begin{equation*}
x^{1} \leq \cdots \leq x^{5} . \tag{7}
\end{equation*}
$$

In what follows we shall construct a justified objection of 1 against 6 via the coalition $P=$ $\{1,2,3\}$. We distinguish two cases:
(1) $\delta \geq 2 / 3$: Then 1 can object against 6 via P by (7) and the assumption that $x^{6}>$ x_{δ}^{6}. Also, $\{2,3,4,6\},\{2,3,5,6\}$, and $\{2,4,5,6\}$ are the only coalitions in \mathcal{T}_{61} which might have a nonnegative excess at x. Now, player 2 is a member of all of them and $e\left(P, x, v_{\delta}\right)>e\left(Q, x, v_{\delta}\right)$ for all $Q \in \mathcal{T}_{61}$, thus there exists $y \in \mathbb{R}^{P}$ such that $y(P)=v(P)$, $y^{i}>x^{i}$ for all $i \in P$, and $y^{2}-x^{2}>e\left(Q, x, v_{\delta}\right)$ for all $Q \in \mathcal{T}_{61}$. We conclude that (P, y) is a justified objection of 1 against 6 at x_{δ}.
(2) $0 \leq \delta<2 / 3$: Again, 1 can object against 6 via P, because $x^{6}>x_{\delta}^{6}$. Let $Q_{\{i\}}, i=2,3$, and $Q_{\{2,3\}}$ be the members of \mathcal{T}_{61} defined by

$$
Q_{\{i\}}=\{i, 4,5,6\}, i=2,3, \text { and } Q_{\{2,3\}}=\{2,3,4,6\} .
$$

Then

$$
\begin{equation*}
Q \in \mathcal{T}_{61}, e\left(Q, x, v_{\delta}\right) \geq 0 \Rightarrow u(Q)=1, \tag{8}
\end{equation*}
$$

because $x \geq 0$ and $x^{6}>0$. Also, we have

$$
\begin{equation*}
Q \in \mathcal{T}_{61}, u(Q)=1 \Rightarrow e\left(Q, x, v_{\delta}\right) \leq e\left(Q_{Q \cap\{2,3\}}, x, v_{\delta}\right) . \tag{9}
\end{equation*}
$$

Indeed, every $Q \in \mathcal{T}_{61}$ satisfying $u(Q)=1$, intersects $\{2,3\}$, hence $Q_{Q \cap\{2,3\}}$ is defined. The inequality follows from (7). Also, $x \geq 0, x^{6}>0,(7)-(9)$ imply that

$$
\begin{equation*}
e\left(P, x, v_{\delta}\right)>\left(e\left(Q, x, v_{\delta}\right)\right)_{+} \text {for all } Q \in \mathcal{T}_{61} . \tag{10}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
e\left(P, x, v_{\delta}\right)>\left(e\left(Q_{\{2\}}, x, v_{\delta}\right)\right)_{+}+\left(e\left(Q_{\{3\}}, x, v_{\delta}\right)\right)_{+} . \tag{11}
\end{equation*}
$$

By (10) it suffices to show that

$$
\begin{equation*}
e\left(P, x, v_{\delta}\right)>e\left(Q_{\{2\}}, x, v_{\delta}\right)+e\left(Q_{\{3\}}, x, v_{\delta}\right), \tag{12}
\end{equation*}
$$

which is equivalent to

$$
1-x(P)>1-x\left(Q_{\{2\}}\right)+1-x\left(Q_{\{3\}}\right)
$$

and, thus, to $-1-x^{1}+2 x(\{4,5,6\})>0$. By the observation that

$$
-1-x^{1}+2 x(\{4,5,6\})=-1+x(N)-2 x^{1}-x(\{2,3\})+x(\{4,5,6\}) \geq \delta+x^{6}-2 x^{1}
$$

it suffices to show that $\delta+x^{6}-2 x^{1}>0$. By (7), $5 x^{1}+x^{6} \leq 1+\delta$, thus

$$
\delta+x^{6}-2 x^{1} \geq \frac{3 \delta+7 x^{6}-2}{5}>0
$$

The last inequality is implied by the assumption that $x^{6}>x_{\delta}^{6}=2 / 7-(3 / 7) \delta$.
Now the proof can be finished. By (10) and (11) there exists $t \in \mathbb{R}^{P}$ satisfying

$$
\begin{align*}
& t(P)=e\left(P, x, v_{\delta}\right), t(\{2,3\})>e\left(Q_{\{2,3\}}, x, v_{\delta}\right) \tag{13}\\
& t^{i}>\left(e\left(Q_{\{i\}}, x, v_{\delta}\right)\right)_{+}, i \in\{2,3\}, \text { and } t^{1}>0
\end{align*}
$$

Let $y=x^{P}+t$. By $(13),(P, y)$ is a justified objection of 1 against 6 at x. q.e.d.
Remark 4. The reactive bargaining set and the semi-reactive bargaining set, two variants of the bargaining set recently introduced by Granot and Maschler (1997) and Sudhölter and Potters (2001), do not show the dummy paradox. Indeed, in [4] it is shown, that both solutions, when restricted to superadditive games, satisfy the dummy property (that is, each member of the solution assigns $v(\{i\})$ to a dummy $i)$.

References

[1] Aumann, R. J. and M. Maschler (1964): "The bargaining set for cooperative games," in M. Dresher, L. S. Shapley, and A. W. Tucker, eds., Advances in Game Theory, Princeton University Press, Princeton, NJ, pp. 443-476
[2] Davis, M. and M. Maschler (1967): "Existence of stable payoff configurations for cooperative games," in M. Shubik, ed., Essays in Mathematical Economics in Honor of Oskar Morgenstern, Princeton University Press, Princeton, NJ, pp. 39-52
[3] Granot, D. and M. Maschler (1997): "The reactive bargaining set: Structure, dynamics and extension to NTU games," International Journal of Game Theory, 26, pp. 75-95
[4] Sudhölter, P. and J. A. M. Potters (2001): "The semireactive bargaining set of a cooperative game," forthcoming in the International Journal of Game Theory

[^0]: *The second author was partially supported by the Edmund Landau Center for Research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany).
 ${ }^{\dagger}$ Email: pelegba@math.huji.ac.il
 ${ }^{\ddagger}$ Also at the Institute of Mathematical Economics, University of Bielefeld. Email: petersud@math.huji.ac.il

