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Network Formation with Closeness Incentives 

Berno Buechel*           
 
 
 
 

Abstract 
 

We study network formation in a strategic setting where 
every agent strives for short paths to the other agents. The 
main parameter of our model is the marginal rate of 
substitution between network benefits and linking costs. We 
provide boundaries of stable networks for increasing and 
decreasing marginal returns.  
The formulated model stands in strong relation to the famous 
connections model (Jackson&Wolinsky ‘96): we show that 
for certain parameter values both models induce the same 
network structures.  
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1 Introduction 
Positions in social networks play a predominant role for economic outcomes. For 
example, consider a network of R&D collaborations in some technology-based industry. 
Companies which occupy a very “central” position are considered to better acquire and 
exploit knowledge what finally fosters their performance (e.g. [15]).  
In the field of social network analysis there is a long and rich history of studying 
benefits of network structures in various contexts. Beyond describing case studies, 
measures were developed that quantitatively assess the “merit” of certain network 
positions.1  
This paper flips perspective by asking how network structures can be affected by agents 
that strive for beneficial positions. As the motor of each individual’s linking behavior 
we use one of the most customary centrality indices: closeness centrality.[8]  
Closeness captures the idea that it is beneficial for an agent to have short paths to many 
agents in the network. Applications reach from performance of organizational units [17] 
to status in school classes.2

This is not the first paper to use a measure of network centrality as the motor of 
strategic link formation: Buskens & Van de Rijt [6] study dynamics of intermediary 
benefits and Rogers [16] models the formation of weighted graphs using an index of 
social influence. This paper is however the first to work with closeness centrality and to 
address the open question: Which network structures emerge when everybody strives for 
short paths? 
In the next section we will introduce the model. Section 3 provides general results. 
Section 4 strengthens the assumptions to a linear closeness model and compares this to 
the connections model introduced by [12].  
 

2 Model 

2.1 Framework 
Definitions 
Let  be a (finite, fixed) set of agents/players, with . }{1,...,= nN 3≥n

A network/graph g is a set of unordered pairs,  with },{ ji Nji ∈, . This set represents 
who is linked to whom in a non-directed graph, i.e.  ijji =},{ g∈  means that player i 
and player j are linked under g. Let  be the set of all subsets of  of size two and G Ng N

                                                 
1 The underlying assumption of these approaches is that there are some structural features of networks 
(also called network statistics) that always have an impact on the opportunities or well-being of the 
agents, be it firms, people, or other units of decision.  
2 Freeman [8] clarifies that closeness measures one dimension of centrality while there are other 
dimensions, i.e. closeness does not sufficiently capture the intermediary role of some network positions. 
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be the set of all possible graphs, . A network can be seen as a 
(irreflexive, symmetric) binary relation on the player set. It can be represented by a 
matrix of zeros and ones called adjacency matrix. 

}:{= NgggG ⊆

Let  be the set of links that player i is involved in, that is  , 
and  its cardinality, called degree. 

)(gLi }:{=)( NjgijgLi ∈∈
)(gli

 
A path between two players i and j is a sequence of distinct players  such that 

, , and  
),...,( 1 Kii

ii =1 jiK = gii kk ∈+ },{ 1 1}{1,..., −∈∀ Kk . The (geodesic) distance between 
two players is the length of their shortest path(s), where the length is the number of 
links in the sequence. Formally, we can define the distance between two players (dij) in 
a graph g by the corresponding adjacency matrix A(g): 

. If two players cannot reach one another (there 
does not exist a path connecting them), we define their distances as M, a number that is 
bigger than the feasible distances (see section 2.2).  

};1)(:{=:)( MgAkmingd ij
k

ij ≥ℵ∈

A graph is called connected, if there exists a path between any two players in the graph. 
A set of connected players is called component, if they cannot reach agents outside this 
set. A link is called critical, if its deletion increases the number of components in a 
graph. A graph is called minimal, if all links are critical. A tree is a connected network 
that is minimal.  
An isolate is a player with degree zero. A pendant is a player with degree one (this 
structure is called a loose end). A circle of size K is a sequence of K distinct players 
( ) such that  Kii ,...,1 gii kk ∈+ },{ 1 }{1,..., Kk∈∀ , where . 11 := iiK+

 
Game Theoretic Framework 
We base our model on a game-theoretic framework introduced by [14], [12], and [1]. 
Without defining the game explicitly, we take the “shortcut” of working with 
preferences and directly applying a stability concept. 
For each player Ni∈  a utility function represents his preferences over the set of 
possible graphs,  ℜ→Gui : .

 
We work with the most basic equilibrium concept due to [12]: a network is considered 
as “stable” if no link will be added or cut (by one, respectively two, agents). Formally, a 
network g is pairwise stable (PS) or just stable if  

(i) ,  and  and  gij∈∀ )\()( ijgugu ii ≥ )\()( ijgugu jj ≥

(ii) , . gij∉∀ )(<)()(>)( guijguguijgu ijii ∪⇒∪
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2.2 Closeness 
Motivation of closeness 
The unique feature of the model presented here is the utility function, which will be 
based on closeness.3 Closeness is based on the idea that an actor prefers networks, in 
which his distance to the other players is short. 
Central positions in terms of closeness are beneficial for multiple reasons:  

 The higher your closeness, the smaller the distance to one arbitrary node in the 
network.  
E.g. imagine the joint-work network of Hollywood’s actors and directors; where 
somebody has an idea for a new movie and needs one other artist to pursuit this 
project. The higher his closeness, the higher the probability to have the desired 
candidate very few contacts away, such that one can contact him, by just asking 
a friend.  
Or think of some researcher having a revolutionary idea. In the (co-author) 
network of this field, people with high closeness are very likely to hear early 
about it.  

 The higher your closeness, the higher your status.4   
In a friendship network of a school class you can recognize peripheral pupils 
who are not very popular; and the “central” pupils who seem to identify in a 
stronger way with the group and enjoy a higher reputation.  
As shown in [5] the structural determinants of trust go beyond direct contacts.  

 The higher the closeness, the better you know the network.  
Accuracy of knowledge decreases with distances. If you get information third 
hand and only by one source, you may not have such a balanced view as 
somebody in the center.  
Short geographic “distances” lead to external economies of scale, e.g. cars in 
Detroit, Silicon Valley for computers, etc. It is plausible that this argument also 
holds for closeness in a network.   

 The higher your closeness, the better you can shape the community.  
Networks with short path lengths facilitate quick diffusion of innovation. Agents 
with high closeness, therefore, can better spread their ideas.  

 
Definition of closeness 
We can generally define closeness such that benefits of an agent i gained by network g 

                                                 
3 To get an idea of closeness, one can think a node that has the duty to “visit” all other nodes in the 
network. He travels on the network links and, hence, wants the average distance (for one visit) to be as 
small as possible.  
4 In some of the examples it is not clear that the causality only goes in this direction. A central position 
can also be reached because of high status or high performance. Our analysis, however, takes this 
assumption: network positions are beneficial; people form links to optimize their positions.  
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are decreasing with the (geodesic) distances of i to all other agents. To measure 
closeness there are some more details to look at. 
To handle pairs that cannot reach one another you can either restrict the attention to the 
set of connected graphs, which would be a harsh assumption in a network formation 
game, or you have to define the distance of unconnected players. Here we define it as 
M. When i and j are connected, their distance is in [1, n-1], hence let M > n-1.5

In the literature on centrality it is standard to normalize an index between 0 and 1. We 
follow this convention by defining closeness of an agent i as the following affine 
transformation of his average distance )1()( −∑

∈

ngdij
Nj

: 

.
)1)(1(

)(

1
:)(

−−
−

−
=

∑
∈

Mn

gd

M
MgClose

ij
Nj

i  

There is another operationalization which is more prominent in the literature: the 
closeness definition according to Freeman [8]: .)()1(:)( gdngFrClose ij

Nj
i ∑

∈

−=  

The author’s trade-off here was that while Freeman’s version (inverse distances) is 
much more customary, our closeness definition (reverse distances) more naturally 
separates the measurement of a structural feature of a network (network statistic) from 
its evaluation (as argued in [18]). In the next subsection we will see that this choice does 
not restrict generality, e.g. if people strive just for Freeman-closeness, this is a special 
case of our model.  
 

2.3 Model Specification 

Our model is based on three major assumptions on individual behavior: 
1. The agents take linking decisions in respect to their degree and their closeness, 

where closeness is beneficial and links are costly.  
To get a pure model we exclude all other aspects (that can perturb clear strategic 
decisions).  
We can think of any decision about adding or cutting links as a proposed 
exchange of average distance versus degree: You can buy closeness by adding 
links; you can save costs by passing on closeness.  

2. The utility of a player is composed in an additive way by costs and benefits.  
This assumption is not very restrictive as utility functions that are not additive 
separable may be transformed into this form. But it is a very convenient 
assumption: As the cross-derivatives are zero, the assumption uncouples the 
effects on utility coming from a change in closeness and a change in degree.  

3. The players are homogeneous in respect to preferences. 

                                                 
5 It is often convenient to define M=n. In this paper, however, we will keep it as a parameter. 
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It is an interesting question to ask how networks evolve when players differ in 
their preferences (see e.g. [9]). However, as applications of our model are very 
different in nature, we would like to put emphasis on the different contexts that 
influence everybody’s choice, not on the difference between agents (as argued in 
[4]).  

By introducing a (non-decreasing, twice differentiable) benefit function ℜ→]1,0[:b  
and a (non-decreasing, twice differentiable) cost function ℜ→− ]1,0[: nc , we can put 
all assumptions together to what we call the closeness model:  
the preferences of any player i can be represented by ))(())(()( glcgClosebgu iii −= . 
 
Although concave and convex cost functions are reasonable - concave costs represent 
the combination of fix costs and variable costs; convex costs represent the scarcity of 
resources (e.g. time) – we will restrict attention to linear cost functions 

)(0,,)(=)( ∞∈cwhereglcgc i
linear . The justification is that a concave or convex cost 

function would induce similar behavior as the benefit function does when transformed 
with the inverse function. So these aspects are assumed to be absorbed by the benefit 
function.6  
For the benefit function we will distinguish three cases: concave shape, convex shape 
and linear shape.7 The first one represents decreasing marginal returns. Formally, 

 a concave benefit function implies 0,', >∆∀ xx )'()'()()( xbxbxbxb −∆+≥−∆+  
whenever  (by the mean value theorem). Convexity implies increasing marginal 
returns: just let .  

'xx ≤
xx ≤'

Remark. If you take the following convex benefit function , 
then the benefits are equivalent to Freeman-closeness (with linear evaluation), because 

. 

1)]1([)( −−−= MxMxf

)())(( gFrClosegClosef ii =

 
The marginal costs are constant at c  and serve as the parameter for our model. The 
marginal benefits depend on the network g and on the shape of the benefit function. Let 

 denote the marginal benefit that link ij (either added or cut) means to player i 
in graph g. That is ))j

)(gij
iβ

, \(())((:=)( igClosebijgClosebg ii
ij
i −∪β .   

When players take linking decisions, they compare marginal costs and marginal 
benefits: in graph g player i is eager to form a link to j ( gij∉ ) iff cgij

i >)(β  and i 
wants to cut a link with k ( ) iff gik ∈ cgik

i <)(β .8

                                                 
6 In fact, this assumption restricts preferences to be quasi-linear in degree. 
7 In [10] the role of concave/convex benefits is nicely elaborated. [13] analyzes decreasing marginal 
returns in a similar model, but with one-sided link formation 
8 When marginal benefits are equal to marginal costs, the player is indifferent. In this case he won’t cut 
the link, respectively does not initiate the new link (but agrees when asked).  
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3 General Results 
This section provides boundaries (thresholds of the parameter) for stable networks in 
the closeness model and addresses how they can be affected by the curvature of the 
benefit function.9  
 

3.1 Connectedness and loose ends 
To have a shorter notation, we substitute two often needed units of closeness: 

 
)1)(1(

1:1
−−

=
Mn

T . This is the smallest possible change in closeness, as it 

corresponds to a shift in distance of 1. It occurs when two players, who were at 
distance two, form a link and only the distance between these two changes, e.g. 
because they are already directly linked to everybody else.  

 
)1(

1:2
−

=
n

T . This is the change in closeness of a player that connects to an 

isolated node. As his distance shifts from M to 1, his closeness increases by 

2
)1)(1(

1 T
Mn

M
=

−−
− . 

The following results provide two characteristics of all stable networks.  
 
Proposition 3.1. In a closeness model with linear costs and concave benefits the 
following holds: 

(i) If )21()1( Tbbc −−< , all stable graphs are connected.  

(ii) If )0()2( bTbc −> , no stable graph exhibits loose ends.  

Proof. (i) Take any unconnected graph g. Take any player i and let . 
Linking with somebody of another component leads to a shift in closeness of at least T2. 
Because  and  concave, it holds that 

xgClosei :)( =

12 ≤+ Tx )(⋅b )21()1()()2( TbbxbTxb −−≥−+ . 
By assumption the marginal costs are lower, such that i wants to form this link. As in 
any unconnected graph there exist two players who are not connected, they will alter the 
network structure, which makes g unstable.  
(ii) Take any network g with at least one pendant and let i be his (only) neighbour. 
Denote . Cutting the link to the pendant means a shift in closeness of T2. 
Because  and  concave, it holds that 

xgClosei :)( =
2Tx ≥ )(⋅b )0()2()2()( bTbTxbxb −≥−− . By 

assumption the marginal costs are higher. Therefore, i will cut the link, which makes g 
unstable. ◊  

                                                 
9 A more comprehensive characterization of the stable networks – which are between these boundaries - 
is provided in section 4, where we consider one special case. 
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The intuition behind the result is that the thresholds of (i) and (ii) are just the minimal 
and the maximal marginal benefit that a link to an isolated node can mean. I.e. the 
threshold in (ii) is the marginal benefit of a new link in the empty graph ; 
where the threshold in (i) is the marginal benefit that cutting a link means to the center 
of a star .  

)( emptyij
i gβ

)( ∗gci
cβ

If the benefit function is not concave but convex, these two thresholds just switch roles, 
as stated by the following proposition.  
 
Proposition 3.2. In a closeness model with linear costs and convex benefits the 
following holds: 

(i) if )0()2( bTbc −<  all stable graphs are connected.  

(ii) if )21()1( Tbbc −−>  no stable graph exhibits loose ends.  

The proof is analogue to the proof of proposition 3.1.  
Connectedness and non-existence of pendants heavily restrict the candidates for stable 
networks. This will be exploited in chapter 4.  

3.2 Existence 
With the assumption of a convex benefit function, there is a very simple – admittedly 
not a very elegant - way of proving existence of stable graphs.  
 
Proposition 3.3. In a closeness model with linear costs and convex benefits the 
following holds: for any parameter value there exists at least one stable network.  
Proof. To show that for any marginal costs )(0,∞∈c  there exists a stable network, we 
take for low costs the complete graph, for high costs the empty network, and in the 
medium range the star. It is easy to verify that:  

 The complete graph is stable iff )11()1()( Tbbgc Nij
i −−=≤ β . Remember that 

T1 is the shift in closeness when distance increases by 1.  

 The empty network is stable iff )0()2()( bTbgc emptyij
i −=≥ β .  

 A star is stable iff )}0()(),21()1(min{)()1( bxbTbbcxbTxb −−−≤≤−+ , 

where 
)1)(1(

32
)1(

:
−−

−
−

−
=

nM
n

M
Mx  is the closeness of a peripheral player 

(pendant). To verify the result note that this condition precludes all possible 
deviations: (a) no peripheral players add a link )()1( xbTxbc −+≥ ; and (b) the 
center does not cut a link )21()1( Tbbc −−≤ ; and (c) no peripheral player cuts a 
link )0()( bxbc −≤ .  

To prove existence for any marginal cost c , it remains to show that (1) the lower bound 
of the star is below the upper bound of the complete network and (2) the upper bound of 
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the star is above the lower bound of the empty network (see figure 2).  
1) )11()1()()1( TbbxbTxb −−≤−+  follows from 11≤+ Tx  and convexity of . )(⋅b

2)  follows from convexity of )0()2()21()1( bTbTbb −≥−− )(⋅b ; and 
 follows from )0()2()0()( bTbbxb −≥− )(⋅b  increasing and . ◊  2Tx ≥

Figure 1 shows the idea of the proof: For any marginal cost, we can give a trivial 
example for a pairwise stable network. For concave benefits the thresholds shift such 
that these trivial graphs do not span the whole parameter space. So in the case of 
concavity there are two “gaps” for which we could neither prove existence nor non-
existence, for all other parameter values, existence is assured.  
 

 
Figure 1: Existence of stable networks for convex benefits. 

 
Remark. Figure 1 also contains the thresholds for proposition 3.2. In the case of concave 
benefits the two thresholds not only switch positions, but also switch their roles as 
stated in proposition 3.1. 
Besides these trivial examples (empty, complete, star) there are many more stable 
networks (which will be addressed in section 4).   
 

3.3 Pairwise Nash Stability 
The next result addresses the players’ incentives to cut links.  
Besides pairwise stability there are other equilibrium concepts for network formation 
models, most of which are refinements of (PS). One of the most used stems from a non-
cooperative framework and is called pairwise nash stability (PNS) (see e.g. [2]). We can 
directly define it by just strengthening condition (i) of (PS): A network  is pairwise 
nash stable (PNS) if  

g

(i) ,  and  )(, gLlNi i⊆∀∈∀ )\()( lgugu ii ≥

(ii) gij∉∀ , . )(<)()(>)( guijguguijgu ijii ∪⇒∪

In the closeness model, (PNS) is not always a proper refinement of (PS).  
 
Proposition 3.4. In a closeness model with linear costs and concave benefits the set of 
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pairwise stable networks ][PS  and the set of pairwise nash stable networks ][PNS  
coincide.  
One direction of the result follows directly from the definitions: . The 

in the append

coincide, if the utility function 

][][ PSPNS ⊆
other direction is more intriguing. The complete proof can be found ix. Its 
main ideas are the following:  
[7] show that [PNS] and [PS] )(⋅u  satisfies a property 
called convexity−α  in current links. Moreover, if costs and benefits are additively 
separab al costs are constant, it is enough to show that the benefit function 
satisfies )(,, gLlGgNi i⊆∀

le and margin
∈∀∈∀ ,  

lβ ≥ )()( gg ij
iliji β∑ ∈

,     (1) 

 denotes the marginal benefit that the 
  of the links (in l) means to some player

e of player i’s links hurts him 

ndition (1) holds in a closeness model with concave benefits, we need 

ility of 

al results for the closeness model and stressed how they are 

4 THE LINEAR CLOSENESS MODEL 
 to have a linear cost function and 

where ))\(())((:=)( lgClosebgClosebg iiii
l
i −β

deletion  i.  
In essence, the condition says that the deletion of som
weakly more than the sequential deletion of these links, one at the time. For constant 
marginal costs it is intuitive that this is the condition that deviations of cutting more 
than one link are only utility improving, if deviations of cutting just one link are, which 
is sufficient for ][=][ PNSPS .  

To show that co
two steps: one step shows that the shift in closeness on the lefthandside of (1) cannot be 
smaller than the shift in closeness on the righthandside. The other step exploits 
decreasing marginal returns (which guarantee, roughly speaking, that multiple small 
reductions of closeness are not evaluated as sever as one big reduction).  
The proof of proposition 3.4 clarifies the role of the benefit function for the stab
networks: it is a genuine feature of the model that cutting one link at a time shifts 
closeness (weakly) less than cutting them at once. The concavity of the benefit function 
just preserves this feature.  
This section provided gener
affected by the curvature of the benefit function. The next section characterizes more 
explicitly which networks are stable by looking at one special case. 
 

In the linear closeness model, we assume all players
a linear benefit function.10  Without restriction of generality we take closeness as the 
numeraire good and represent any player’s preferences by 

)()(=)( glcgClosegu ii
linear
i − . Note that by taking the id-function as benefit function 

                                                 
10 As a consequence, the linear closeness model differs from Freeman-closeness (with linear evaluation). 
But it is equivalent to Freeman-Closeness with a certain concave benefit function.  
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we mingle in this section wha

.1 Transition Points 
 Prop 3.1 and 3.2, as the linear benefit function is a 

t we distinguished before: the closeness of an agent and 
his benefit derived from closeness.  
 

4
The first proposition is a corollary of
special case of both, concave and convex benefits functions. 

Proposition 4.1. Let again 
)1(

12 ≡T . In the linear clos
−n

eness model the following 

(i) For 
holds:  

2Tc <  all stable graphs are connected. 
(ii) For  no stable graph exhibits loose en2Tc > ds. 

Excluding pendants implie nnot be minimal (i.e. a 

model, two thresholds coincide: 

Proposition 4.2. Let again 

s for the stable networks: (a) they ca
tree); (b) there exists at least one circle if the graph is non-empty; and (c) if the graph is 
connected, then it must contain at least n links. 
Typically for the linear closeness 

2)0()2()21()1( TbTbTbb =−=−− . This is also true for the next transition point.  

)1)(1(
1 . In the linear closeness model th1

−−
≡

Mn
T e 

following holds:  
(i) For 1Tc < the unique stable network is the complete network. 

(ii) 21T ≤  a star shaped graph is stable, but not necessarily uTc ≤ nique. 
Proof. R mber that T1 i

ers is T1; 
eme s the shift in closeness when distances shift by 1.   

(i) The minimal increase in benefit that a new link can lead to for both its own
because a new link reduces at least the distance to the other player from 2 to 1. So, if 
costs are strictly lower than this, it follows immediately that nobody wants to cut a link 
in any graph (stability of complete graph) and any two players, who are not directly 
linked, will add a link (uniqueness).  
(iii) Shown in proof of prop. 3.3. ◊  
 
Costs below T1 are considered as very small; costs above T2 are considered as very 

et T3 be the maximal marginal benefit that a non-critical link can mean to both its 

high. However, T2 is not necessarily a threshold for uniqueness: There is a third 
transition point (which can be bigger than T2). 
 
L
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owners. We claim that 
)1(4

13
−
−

=
M
nT .11 T3 occurs in the line graph, where the pendants 

form a link. This is just the same marginal benefit that cutting a link in a circle graph 
means.  
 
Proposition 4.3. In the linear closeness model the following holds: 

(i) For 3Tc >  every stable graph is minimal or empty. 
(ii) If 1223 TT ≥ , then for 3Tc >  the unique stable graph is the empty 

network.  
Proof.  (i) If a non-empty network is not minimal, then there must be at least one non-
critical link. By the definition of T3 networks with such links cannot be stable in this 
cost range.  
(ii) The empty graph is stable because 2Tc ≥ . For uniqueness note that any non-empty 
graph must contain either loose ends or circles. By proposition 4.1 (iii) we can exclude 
all graphs with loose ends for 2Tc > . By (i) we can exclude all graphs with circles for 

3Tc > . ◊  
The transition points organize the equilibria in the parameter space. For very small costs 
and for very high costs, there are only trivial stable networks. In the medium cost range 
we can find a multitude of stable networks. Figure 3 shows one example of a stable 
network in the linear closeness model for n=14, M=n and medium costs. 
 

 
Figure 3: Example of a stable network.13

 

                                                 
11 The derivation of the value for T3 can be found in the appendix. 
12 In general we will assume that M is such that  holds. We treat the exception of  in the 
next subsection as prop. 4.4. 

23 TT ≥ 23 TT ≤

13 The size and the position of the nodes indicate their closeness.  
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4.2 Comparison to Connections Model 
The linear closeness model is heavily related to the already classic papers of Jackson 
and Wolinsky [12] and Bala and Goyal [1]. In the famous example of the (symmetric) 
connections model basically the following benefit is used: 

 where 
)(

\
=)(

gijd

iNji gsConnection δ∑ ∈
(0,1)∈δ . So every agent means some worth for 

i, but this diminishes by path length.  
[12] already point towards generalizing the model: “we remark that the results presented 
for the connections model are easily adapted to replace  by any non-increasing 
function ”

ijt
δ

)( ijtf 14. The closeness centrality is such an adaption as 

)1)(1(

)(

1
=))((

−−
−

−

∑
∈

Mn

gd

M
MgCloseb

ij
Nj

ii  is a linearly decreasing function in the sum of 

distances.  
 
The motivation of both models is quite similar: in both models you gain from having 
short paths to other nodes.15 Both models do not consider benefits from having an 
intermediary position; they are rather about access to resources. But there is also a 
difference in motivation: In the connections model you benefit from having many nodes 
close to you; while in the closeness model you benefit from having a small average 
distance.  
Comparison of the stable networks 
The linking behavior in the linear closeness model and the (symmetric) connections 
model can be expected to be quite similar: in both models there is high incentive to link 
to somebody who is at high distance (or in another component) and there is low 
incentive to keep links that do not shorten some paths significantly. While the 
motivation is similar, it turns out that the stable networks are almost identical.  
Observe first that propositions 4.1 and 4.2 correspond directly to the results of the 
connections model, where  and 2ˆ1 δδ −=T δ=̂2T .  
 
For n not too big, a computer can enumerate all networks and check for stability.16 We 
did this for n=8 with the connections model (taking 5.0=δ  and 8.0=δ ) , and for the 
closeness model once with the convex benefit function according to Freeman and once 

                                                 
14 Where . )(ˆ gdt ijij =
15 Borgatti and Everett [3] summarize a group of “Closeness-like measures” and mention the connections 
model as one of them.  
16 I thank Vincent Buskens for programming the routines to find all the stable networks for the various 
centrality measures. 
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taking the linear closeness model (with M=n).17   
For n=8 there are 12’346 possible isomorphic graphs. In the linear closeness model 
only 45 of them are stable for some parameter range (larger than 0).18 As depicted in 
table 1, those 45 networks are not identical to the 63 stable networks with convex 
benefit function (Freeman), but overlap to some extent. The stable networks of the 
linear closeness model and the connections model overlap heavily.  
 

Table 1: Stable networks in the linear closeness model and related models for n=8. 

Number of stable networks 
(for some cost range)  total also stable in linear 

closeness model 

Freeman closeness 63 29 

Connections 5.0=δ  29 26 

Connections 8.0=δ  45 45 

 
So we find that, neither the closeness model is a special case of the connections model 
nor vice versa. With certain specifications they lead to the same network structures.  
 

4.3 Trees 
A very special case of the connections model occurs when the decay is very small or 
zero. Then distances do not matter anymore, crucial is only who you can reach (that is 
the size of the component). In this context the stable networks are trees.  
In the closeness model trees are among the stable networks. We can strengthen this 
statement for the linear closeness model when M is “big enough”19 : 
 
Proposition 4.4. In the linear closeness model for marginal costs in the range 

23 TcT <<  the following holds:  
(i) all stable networks are trees and  

(ii) all trees are stable.  
Proof. (i) Trees are characterized as minimal graphs that are connected. For 2Tc <  all 

                                                 
17 The computer program used slightly different conventions for the treatment of unconnected pairs: In 
the connections model the distance of unconnected agents is defined as infinity; and for Freeman 
closeness isolates were normalized to have 0 benefit.   
18 That is: we did not count the networks which are „stable“ for only one point in the parameter space, e.g. 
the networks which are only stable if 1Tc = . 
19 Letting 1)1(

4
1 2 +−> nM  assures that . 32 TT >
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stable graphs are connected, as shown in Prop. 4.1(i). For 3Tc >  all stable graphs are 
minimal as shown in Prop. 4.3(i).  
(ii) A graph is stable, if (a) nobody cuts a link and (b) no two players add a link.  
(a) As a tree is minimal, cutting a link leaves two components (unconnected groups of 
players). The more agents there are in the other component, the higher the loss of 
benefits. The highest incentive to cut is always given by the neighbor of a pendant, he 
looses closeness of 2)1(1 Tn =− . By assumption, marginal costs are lower than this 
(minimal marginal benefit), therefore no agent in a tree will cut a link.  
(b) Adding a link to a tree is an addition of a non-critical link (it is a property of trees to 
be maximally acyclic graphs). For 3Tc >  this cannot be favorable for both (by the 
definition of T3).  ◊
 
So in the cost level between T3 and T2, stability of a graph is equivalent to being a tree. 
Note that many trees are also stable, when costs are below T3. Trees are typical 
outcomes in network formation based on closeness incentives.  
 

5 CONCLUSION 
We introduced a network formation model based on closeness centrality. We found very 
general results on boundaries of stable networks and analyzed the stable networks for a 
specific case.  
The main limitations of the model are its pure assumptions on behavior. In reality 
people and organizations are not as rational (computing their marginal costs and 
benefits) when deciding about forming relations; and even if they were, in many cases 
they would not have enough information to act as purposely. Still, the model provides a 
benchmark scenario and captures processes that occur whenever actors in a network try 
to optimize their position in respect to short distances.  
To complete the analysis of this model, at least three things need to be done: a 
characterization of the specific patterns of stable networks, a look on the dynamics of 
the model, and finally the discussion of efficiency.  
For future research on strategic network formation it will be important to systematize 
the types of incentives and to build models that allow for multiple incentives at the same 
time. 
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Appendix 
 

Claim T3. We claim that 
)1(4

1
−
−

M
n  is the maximal marginal benefit that an inessential 

link can mean to both its owners.  
 
The claim is based on the following considerations:  

Fix two players i and j. Let })(1:{:~ MgdGgG ij <<∈=  be the set of graphs, where i 
can reach j, without being directly linked. The problem is to find 

.  )}(),({minmax_arg
~

gg ij
j

ij
i

Gg
ββ

∈

To split the problem into cases, let dgdij ≡)(  and denote })(:{:~ dgdGgG ij
d =∈= . 

Now we solve for each ]1,2[ −∈ nd  the problem . 

Consider the following three notes: 

)}(),({minmax_arg
~

gg ij
j

ij
i

Gg d
ββ

∈

 Because , there are d-1 players on one path between i and j in any 

. Besides these players there are n-d-1 players which differ in their roles, 
denoted by the set .  

dgdij ≡)(
dGg ~

∈
NK ⊂

 The contribution of any player Kk ∈  to  is at least 0 (e.g. i,k not 

connected); and at most 

)(gij
iβ

)1)(1(
1
−−

−
Mn

d  in the case where the shortest path from i 

to k uses j. 

 Each player  can only contribute either to  or to , but not to 
both.  

Kk ∈ )(gij
iβ )(gij

jβ

Therefore, the maximin occurs in a configuration like in figure “weighted line”: All 
players that are not part of the second shortest path between i and j are attached either to 
i or to j such that i respectively j is their gatekeeper. Furthermore these disposable nodes 
are equally distributed between i and j.  

 
Figure: weighted line. Maximin marginal benefit of a non-

critical link. 

 



 
Claiming that the weighted line of length d is the argmax for each problem, we can 
compute the maximal marginal benefit for each d:   
It is straight forward to compute that in a weighted line the addition of the link ij leads 
to the following change in the sum of distances for i (and j)†: 

1)1)((
2
12)(

4
11=)()( 2 −−−+−+−∪−∑∑

∈∈

dndddijgdgd ir
Nr

ir
Nr

.  

Now we introduce a function  that relates to any distance d the maximal 
marginal benefit of a link ij for i (and j): 

ℜ→− ]1[:ˆ nβ

)1)(1(]
4
1

2
1

2
1

4
1[=)(ˆ 2 −−+−′+′−′ nMndnddβ . This function attains its maximum at 

, which is nothing but a line graph.  1= −nd

By plugging in (and simplifying), we get the result: 3
)1(4

11)(ˆ T
M
nn =

−
−

=−β .  

 
 

                                                 
† To use the highest possible value of such a configuration, we took d even and n odd. For other 
combinations, the marginal benefit is slightly smaller. 

 



Proposition 3.4. In a closeness model with linear costs and concave benefits the set of 
pairwise stable networks  and the set of pairwise nash stable networks  
coincide.  

][PS ][PNS

 
Proof.  
One direction follows directly from the definitions: . For a formal 
treatment see Bloch&Jackson06. The other direction is more involving.  

][][ PSPNS ⊂

Calvo-Armengol&Ilkiliç 07 show that [PNS] and [PS] coincide if the utility function 
 is )(⋅u convex−α  in its current links. Moreover, if costs and benefits are additively 

separable and marginal costs are constant, it is enough to show that the benefit function 
satisfies )(,, gLlGgNi i⊂∀∈∀∈∀ ,  

)()( gg ij
ilij

l
i ββ ∑ ∈

≥ , 

where  denotes the marginal benefit that the 
deletion  of the links (in l) means to some player i . Because of our homogeneity 
assumption, we can fix a player i without restricting the generality. So we have to show 
that  it holds that 

))\(())((:=)( lgClosebgClosebg iiii
l
i −β

)(, gLlGg i⊂∀∈∀

[ ]∑
∈

−≥−
lij

iiii ijgClosebgCloseblgClosebgCloseb ))\(())(())\(())(( . (1) 

In words: the deletion of some of player i’s links hurts him weakly more than the 
sequential deletion of these links, one at the time. 
 
Note the following property of concave functions: for any increasing concave function 

 it holds that ℜ→ℜ:f ++ℜ∈∆∀ ,,...,, 1 Tx δδ ,  

∑
=

−−≥∆−−
T

t
txfxfxfxf

1
)]()([)()( δ  if .  ∆≤∑

=

T

t
t

1
δ

Let’s fix a graph g and a set of links . We substitute , 
, and for 

)(gLl i⊂ )(gClosex i≡
)\()( lgClosegClose ii −≡∆ Tt ,...,1= , )\()( itgClosegClose iit −≡δ , where 

every pair in l is renamed (in arbitrary order) as i1, i2,…,iT. 
 
Using this substitution we learn from the result above that for the (concave and 
increasing) benefit function   )(⋅b

[ ]∑
∈

−≥−
lij

iiii ijgClosebgCloseblgClosebgCloseb ))\(())(())\(())((  if 

 (2) ( ) )\()()\()( lgClosegCloseijgClosegClose ii
lij

ii −≤−∑
∈

So (2) is a sufficient condition for (1), for this particular combination of g and l. As we 
have to show that the statement (1) holds for any graph Gg∈  and set of links 

, we can use the substitution each time and check the sufficient condition )(gLl i⊂∀

 



(2). So to proof the result, it remains to show for )(, gLlGg i⊂∀∈∀  statement (2) 
holds.  
 
By using the definition of closeness and after straight forward simplifications, (2) can 
be rewritten as  

∑ ∑∑∑∑
∈ ∈∈∈∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≥−

lij Nj
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Nj
ij gdijgdgdlgd )()\()()\( . (3) 

 
We define  for  and for the ease of notation 
we write it afterwards as 

)}\(<)(:{:=)( lgdgdNkg ikik
l
i ∈κ gl ⊂

κ . We define )(:=)( gg ij
ilij

l
i κκ U ∈

 and write it for the ease of 

notation as κ . κ  is the set of players whose distance to i increases when the l links are 
cut from g. κ  is the union of players whose distance to i increases when one of the 
links in l is cut.  
 
Now we can transform condition (3) by using the kappa sets (as the summation over all 
j in N that are not in any kappa set, cancels out). 
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Note three properties of the distances in graphs (which are also used in Calvo-
Armengol&Ilkiliç 04). 
 

• Note 1:  )\()\( ijgdlgd ikik ≥ lij∈∀ . 
• Note 2: κκ ⊂ . 
• Note 3:  ∅∩ =)()( gg ih

i
ij
i κκ )(gLlihij i⊂∈≠∀ . 

 
By note 2 we can split the sum of the LHS in (4’), and we switch the summation on the 
RHS: 
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By considering note 3 and note 1, the RHS is non-positive. So (6) clearly holds.  ◊
 

 



Hence, in this model deviations of cutting more than one link are only promising if 
deviations of cutting just one link are.  
Note that the result  together with the definition that  
imply that . 

][=][ PNSPS ][][=][ PSNSPNS ∩
][][ NSPS ⊂
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