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Abstract

The semireactive bargaining set, a solution for cooperative games, is introduced.
This solution is in general a subsolution of the bargaining set and a supersolution
of the reactive bargaining set. However, on various classes of transferable utility
games the semireactive and the reactive bargaining set coincide. The semireactive
prebargaining set on TU games can be axiomatized by one-person rationality, the
reduced game property, a weak version of the converse reduced game property with
respect to subgrand coalitions, and subgrand stability. Furthermore, it is shown
that there is a suitable weakening of subgrand stability, which allows to character-
ize the prebargaining set. Replacing the reduced game by the imputation saving
reduced game and employing individual rationality as an additional axiom yields
chracterizations of both, the bargaining set and the semireactive bargaining set.
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0 Introduction

The semireactive bargaining set is a set-valued solution of cooperative transferable utility
games. Its definition is strongly related to the definition (see Aumann and Maschler

(1964)) of the bargaining set M = M(i)
1 . The only difference between the definitions of

the two bargaining sets is that in the classical one the “objector” (player k objects against
some “partner” l) has to announce his objection in advance, whereas in the definition of
the semireactive bargaining set the objector only has to announce in advance the coalition
which he plans to object with. The “complete” objection is announced ex post, i.e., after
his partner has already announced the coalition which he will try to counter object with
(if there is one). In view of the fact that the objector may react to the coalition announced
by player l, the semireactive bargaining set is a subset of the classical bargaining set. In
the definition of the reactive bargaining set, introduced by Granot (1994), the objector is
allowed to wait with his objection until his partner has announced his defending coalition.
Therefore we use the expression “semireactive”. Indeed, the semireactive bargaining set
contains the reactive bargaining set and is contained in the classical bargaining set.

Though in general larger than the reactive bargaining set, the semireactive bargaining
set is easier to compute than the classical one. Moreover, it coincides with the reactive
bargaining set for various classes of games. Like the mentioned well-known bargaining
sets the notion of the semireactive bargaining set can be extended to nontransferable
utility games. One of the main results (Theorem 3.1) shows that the semireactive prebar-
gaining set has an axiomatization that is similar to Peleg’s (1986) axiomatization of the
prekernel. Moreover, a suitable modification of this axiomatization also characterizes the
semireactive bargaining set.

The paper is organized as follows: In Section 1 the notation and some definitions are
presented. Moreover, it is shown that the semireactive bargaining set can be described
as a finite union of polytopes. This description can be used to calculate the semireactive
(pre)bargaining set of a generic TU game.

In Section 2 it turns out that the semireactive prebargaining set satisfies anonymity,
covariance under strategic equivalence, and the reduced game property with respect to
“Davis-Maschler” (1965) reduced games. Subgrand stability, a property which excludes the
possibility that subgrand coalitions (coalitions that contain all but one player) can be used
in a justified objection, is introduced and it is shown that the semireactive prebargaining
set satisfies an appropriate version of the converse reduced game property. If the Davis-
Maschler reduced game is replaced by the imputations saving reduced game in the sense of
Snijders (1995), then the semireactive bargaining set is shown to satisfy both, the reduced
game property and a suitable version of the converse reduced game property. Indeed, this
converse reduced game property requires subgrand stable imputations.

Section 3 is devoted to axiomatize the semireactive prebargaining set. In fact, one-person
rationality, subgrand stability, the reduced game property, and the appropriate version
of the converse reduced game property are logically independent axioms which deter-
mine the semireactive prebargaining set. If the Davis-Maschler reduced game is replaced
by the Snijders reduced game, then the semireactive bargaining set can be axiomatized

2



analogously, when individual rationality is added to the axioms. The axiomatization of
the semireactive prebargaining set is similar to the well-known axiomatization (see Peleg
(1986)) of the prekernel. However, the axiomatization of the semireactive bargaining set
does not lead to an analogous characterization of the kernel.

Section 4 shows that the semireactive prebargaining set satisfies reasonableness, thus
the nullplayer property, if the considered games are superadditive. For superadditive
simple games it turns out that the semireactive bargaining set coincides with the positive
prekernel (see Peleg and Sudhölter (1998)) and, thus, with the reactive bargaining set.

In Section 5 it is shown that subgrand stability can be weakened in such a way that it
can be used to characterize the classical (pre)bargaining set. We admit that this weaker
property is also less intuitive.

Section 6 briefly describes how the definition of the semireactive (pre)bargaining set can
be extended to TU games with coalition structures and to NTU games. Moreover, a
set-valued dynamic system is presented which leads to the semireactive (pre)bargaining
set and which can be seen as the suitable analogon to the one leading to the reactive
bargaining set (see Granot and Maschler (1997)).

1 Notation and Definitions

Let U be a set (the universe of players). A cooperative game with transferable utility
(a TU game) – a game – is a pair (N, v), where N is a finite nonvoid subset of U and
v : 2N → IR, v(∅) = 0 is a mapping (the coalitional function). Here 2N = {S ⊆ N} is the
set of coalitions of (N, v). Let ΓU denote the set of all games.

The set of feasible payoff vectors of a game (N, v) is denoted by

X(N, v) = {x ∈ IRN | x(N) ≤ v(N)},

whereas
I∗(N, v) = {x ∈ IRN | x(N) = v(N)}

is the set of preimputations of (N, v) and

I(N, v) = {x ∈ I∗(N, v) | xk ≥ v({k}) ∀k ∈ N}

is the set of individually rational preimputations (imputations) of (N, v). Here

x(S) = Σi∈Sxi (x(∅) = 0)

for each x ∈ IRN and S ⊆ N . Additionally, let xS denote the restriction of x to S, i.e.

xS = (xi)i∈S ∈ IRS.

For disjoint coalitions S, T ⊆ N and x ∈ IRN let (xS, xT ) = xS∪T . Let ΓIU = {(N, v) ∈ ΓU |∑
i∈N v({i}) ≤ v(N)} denote the set of games which possess nonempty sets of imputations.

3



A solution σ on a set Γ of games is a mapping that assigns a set σ(N, v) ⊆ X(N, v) to
every game (N, v) ∈ Γ.

If Γ is not specified, then σ is a solution on ΓU .

Let (N, v) be a game, x ∈ IRN , and k, l ∈ N be distinct players. Define the collection
Tkl(N) by

Tkl = Tkl(N) = {S ⊆ N \ {l} | k ∈ S}.

Hence, Tkl is the set of coalitions containing k and not containing l. An objection of k
against l at x (w.r.t. (N, v)) is a pair (P, y) satisfying

P ∈ Tkl, y ∈ IRP , y(P ) = v(P ), and y >> xP (i.e., yi > xi ∀i ∈ P ).

If (P, y) has these properties, then we say that k is able to object against l via coalition
P. Note that k is able to object against l via S ∈ Tkl, if and only if the excess e(S, x, v) =
v(S)− x(S) is strictly positive.

A counter objection to an objection (P, y) of k against l at x is a pair (Q, z) satisfying

Q ∈ Tlk, z ∈ IRQ, z(Q) = v(Q), z ≥ xQ, and zP∩Q ≥ yP∩Q.

If (Q, z) has these properties, then we say that l is able to counter (P, y) via coalition Q.
Note that l can counter (P, y) via Q ∈ Tlk, if and only if e(Q, x, v) ≥ y(P ∩Q)−x(P ∩Q).

Definition 1.1 The semireactive prebargaining set M∗
sr(N, v) of a game (N, v) is

the set of all preimputations x ∈ I∗(N, v) that satisfy the following condition for any pair
of distinct players (k, l) ∈ N ×N and for any P ∈ Tkl :

There is Q ∈ Tlk such that any objection of k against l via P can be countered by l via Q.

The semireactive bargaining set of (N, v) is defined to be the set

Msr(N, v) =M∗
sr(N, v) ∩ I(N, v)

of individually rational elements of the semireactive prebargaining set.

Let (N, v) be a game and x ∈ IRN . In order to compare the definitions of the “classical”
bargaining set, the reactive bargaining set, and the semireactive bargaining set, we define
three relations �=�N,v,x, �r=�N,v,xr , and �sr=�N,v,xsr on N.

(1) k � l, if:

∀ P ∈ Tkl with e(P, x, v) > 0 and

∀ y ∈ IRp with y(P ) = v(P ), y >> xP

∃ Q ∈ Tlk such that

∃ z ∈ IRQ with z(Q) = v(Q), z ≥ xQ, zP∩Q ≥ yP∩Q

(1.1)

4



(2) k �r l, if

∃ Q ∈ Tlk such that

∀ P ∈ Tkl with e(P, x, v) > 0 and

∀ y ∈ IRp with y(P ) = v(P ), y >> xP

∃ z ∈ IRQ with z(Q) = v(Q), z ≥ xQ, zP∩Q ≥ yP∩Q

(1.2)

(3) k �sr l, if

∀ P ∈ Tkl with e(P, x, v) > 0

∃ Q ∈ Tlk such that

∀ y ∈ IRp with y(P ) = v(P ), y >> xP

∃ z ∈ IRQ with z(Q) = v(Q), z ≥ xQ, zP∩Q ≥ yP∩Q

(1.3)

We shall say that player k has a justified objection against player l at x in the sense of the
bargaining set, reactive bargaining set, or semireactive bargaining set, respectively, if
k � l, k �r l, or k �sr l, repectively.

The prebargaining setM∗(N, v) (see Aumann and Maschler (1964)) and the reactive pre-
bargaining setM∗

r (N, v) (see Granot (1994)) is the set of all preimputations such that no
player has a justified objection against any other player in the sense of the prebargaining
set or reactive prebargaining set respectively. Note that the condition leading to the reac-
tive prebargaining set (1.2) arises from the condition leading to the prebargaining set (1.1)
by exchanging the order of two quantifiers. In fact (1.2) arises from (1.1) by exchanging
the first and the third row. The bargaining set M(N, v) and the reactive bargaining set
Mr(N, v) arise from the corresponding prebargaining sets by their intersection with the
set of imputations.

A different change of the order (see 1.3) leads to the semireactive (pre)bargaining set (see
Definition 1.1). In fact (1.3) arises from (1.1) by exchanging the second and the third
row. In view of the fact that

k �r l⇒ k �sr l⇒ k � l

we obtain
M∗

r (N, v) ⊆M∗
sr(N, v) ⊆M∗(N, v)

as well as
Mr(N, v) ⊆Msr(N, v) ⊆M(N, v).

The mentioned prebargaining sets are nonempty and the mentioned bargaining sets are
nonempty provided that the set of imputations is nonempty. Indeed, the prekernel

K∗(N, v) = {x ∈ I∗(N, v) | skl(x, v) = slk(x, v) ∀k, l ∈ N, k 6= l}

is a nonempty set (see Davis and Maschler (1965)). Here skl(x, v) = maxS∈Tkl e(S, x, v)
denotes the maximal surplus of k over l. The prekernel of a game is contained in its
reactive prebargaining set (see Granot (1994)). Moreover, the kernel

K(N, v) = {x ∈ I(N, v) | skl(x, v) ≤ slk(x, v) or xl = v({l}) ∀k, l ∈ N, k 6= l}
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is a nonempty subset of the reactive bargaining set, if I(N, v) 6= ∅. Also the core

C(N, v) = {x ∈ I(N, v) | e(S, x, v) ≤ 0 ∀S ⊆ N}

is a subset ofMr(N, v). Peleg and Sudhölter (1998) introduced a solution which contains
both, the prekernel and the core. This solution is the positive prekernel

K∗+(N, v) = {x ∈ I∗(N, v) | (skl(x, v))+ = (slk(x, v))+ ∀k, l ∈ N, k 6= l},

where t+ = max{0, t} denotes the positive part of the real number t. If some player has
an objection via some coalition P, then e(P, x, v) > 0. If x is a member of the positive
prekernel of a game, then every objection of player k against player l can be countered
by any coalition attaining the maximal surplus of l over k. This fact directly implies

C(N, v) ∪ K∗(N, v) ⊆ K∗+(N, v) ⊆M∗
r (N, v).

Similarly it can be shown that the positive kernel

K+(N, v) = {x ∈ I(N, v) | skl(x, v) ≤ (slk(x, v))+ or xl = v({l}) ∀k, l ∈ N, k 6= l}

contains the core and the kernel and is contained in the reactive bargaining set.

Example 2.3 of Peleg and Sudhölter (1998) presents a game (N, v) whose core is a singleton
and which satisfies

C(N, v) ⊂ K(N, v) ⊂ K+(N, v), K∗+ ⊂M∗
r (N, v), and Mr(N, v) ⊂M(N, v),

where “⊂” means “proper subset”. The following examples show that the reactive bar-
gaining set may be a proper subset of the semireactive bargaining set and that the semire-
active bargaining set may be a proper subset of the classical bargaining set. Example 4.4
shows that the positive (pre)kernel may be a proper subset of the reactive bargaining set
even if the game is superadditive.

Example 1.2 (1) Let (N, v) be defined by N = {1, 2, 3, 4} and

v(S) =



8, if S = N

6, if |S| = 3 or
(
|S| = 2 and 1 ∈ S

)
5, if |S| = 2 and 1 /∈ S

0, otherwise

.

We shall show that x = (2, 2, 2, 2) ∈ Msr(N, v) \Mr(N, v). Note that interchange-
able players do not have any justified objection among each other in the sense of
any bargaining set, as long as they are treated equally. (Players k and l are inter-
changeable, if v(S ∪ {k}) = v(S ∪ {l}) ∀S ⊆ N \ {k, l}.) In our example players
2, 3, 4 are interchangeable and treated equally.

In order to show that x belongs to the semireactive bargaining set, first observe that
s1k(x, v) = 2 > sk1(x, v) = 1 for every k ∈ {2, 3, 4}, thus every objection of k against
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1 can be countered by a coalition Q attaining s1,k = e(Q, x, v). Moreover, player 1
can only object against k via some coalition P = {1, j} for some j ∈ {2, 3, 4} \ {k}.
Any of these objections can be countered via the complement coalition.

In order to prove that x /∈Mr(N, v) we show that 1 has a justified objection against
4 in the sense of the reactive bargaining set. Indeed, it suffices to show that for any
Q ∈ T41 with e(Q, x, v) ≥ 0 there is a coalition P ∈ T14 that satisfies Q∩P 6= ∅ and
e(P, x, v) > e(Q, x, v). If Q = {2, 3, 4}, then P = {1, 2} has the desired properties.
If Q = {j, 4} for some j ∈ {2, 3}, then P = {1, j} has the desired properties.

(2) Let (N, v) be defined by N = {1, 2, 3, 4} and

v(S) =



6, if |S| ≥ 3

5, if |S| = 2 and 1 /∈ S

2, if |S| = 2 and 1 ∈ S

0, otherwise

.

We shall show that x = (0, 2, 2, 2) ∈M(N, v) \Msr(N, v).

Players 2, 3, 4 are interchangeable and they are treated equally. Moreover, none of
them has a justified objection against 1, because x1 = v({1}). Player 1 can only
object against l ∈ {2, 3, 4} via P = N\{l}. If (P, y) is an objection of 1 against l, then
there exists j ∈ P \{1} with yj < 3, thus (Q, z), defined by Q = {j, l}, zl = 2, zj = 3
is a counter objection.

We show that 1 has a justified objection against 4 in the sense of the semireactive
bargaining set. Indeed, let P = {1, 2, 3}. If Q = {j, 4} for some j = 2, 3, then there
is an objection (P, y) which cannot be countered via Q, because e(Q, x, v) = 1 <
2 = e(P, x, v) and P ∩Q 6= ∅.

In what follows we show that the semireactive prebargaining set is a finite union of convex
polytopes. To this end we first present an equivalent formulation of (1.3). Let (N, v) be
a game, x ∈ IRN , and k, l ∈ N be two distinct players. Then k �sr l holds true, if and
only if the following condition is satisfied:

∀P ∈ Tkl with e(P, x, v) > 0 ∃Q ∈ Tlk such that(
e(Q, x, v) ≥ 0 and Q ∩ P = ∅

)
or e(Q, x, v) ≥ e(P, x, v)

(1.4)

In order to verify the equivalence of (1.4) and (1.3) first assume that (1.3) is valid. Let
P ∈ Tkl be a coalition with e(P, x, v) > 0 and let Q ∈ Tlk be a coalition which satisfies
the property required in (1.3). If Q ∩ P = ∅, then (1.3) implies the existence of z ∈ IRQ

with z(Q) = v(Q) and z ≥ xQ, thus e(Q, x, v) = z(Q) − x(Q) ≥ 0. If P ∩ Q 6= ∅, then
define y ∈ IRP by

yj =

 xj + ε/|P \Q|, if j ∈ P \Q

xj + (e(P, x, v)− ε)/|P ∩Q|, if j ∈ P ∩Q
.
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Then y(P ) = v(P ) and y >> xP whenever ε is small enough. Moreover, (y−x)(P∩Q) tends
to e(P, x, v), if ε tends to 0. If z ∈ IRQ satisfies z(Q) = v(Q), z ≥ xQ and zP∩Q ≥ yP∩Q,
then e(Q, x, v) = z(Q)−x(Q) ≥ (z−x)(Q∩P ) ≥ (y−x)(Q∩P ), thus e(Q, x, v) ≥ e(P, x, v)
in this case. To show the opposite direction let Q ∈ Tlk be a coalition which has the
property required in (1.4) and let y ∈ IRP satisfy y(P ) = v(P ) and y >> xP . If P ∩Q = ∅,
then z ∈ IRQ, defined by zj = xj for j ∈ Q \ {l} and zl = xl + e(Q, x, v), is a vector which
can be used in (1.3). If P ∩Q 6= ∅, then define z by

zj =


yj, if j ∈ P ∩Q

xj, if j ∈ Q \ (P ∪ {l})

xl + e(Q, x, v) + (x− y)(P ∩Q), if j = l

.

Then zl ≥ xl, thus z can be used in (1.3).

In order to show thatM∗
sr(N, v) is a finite union of polyhedral sets, define P = {(P, k, l) |

k ∈ P ⊆ N \ {l}, l ∈ N \ {k}}. Moreover, for R,Q ⊆ N with R \Q 6= ∅ 6= Q \ R define
the halfspaces

XR = {x ∈ I∗ | e(R, x, v) ≤ 0},

Y Q = {x ∈ I∗ | e(Q, x, v) ≥ 0}, and

ZR,Q = {x ∈ I∗ | e(Q, x, v) ≥ e(R, x, v)}.

Let Q denote the collection of all halfplanes of the form XR, Y Q, and ZR,Q. We call a
map λ : P → Q feasible, if it satisfies

λ(P, k, l) = XR ⇒ R = P,

λ(P, k, l) = Y Q ⇒ Q ∈ Tlk and P ∩Q = ∅, and

λ(P, k, l) = ZR,Q ⇒ R = P, Q ∈ Tlk and P ∩Q 6= ∅.

By (1.4) a preimputation x belongs toM∗(N, v), if and only if there is a feasible mapping
λ such that

x ∈ Aλ :=
⋂

(P,k,l)∈P
λ(P, k, l).

Indeed, if x ∈ M∗(N, v), k, l ∈ N are distinct players, and if P ∈ Tkl, then one of the
following three cases can occur. (1) e(P, x, v) < 0, i.e., k has no objection via P . In
this case define λ(P, k, l) = XP . (2) e(P, x, v) > 0 and there is a coalition Q ∈ Tlk with
Q ∩ P = ∅ and e(Q, x, v) ≥ 0. In this case define λ(P, k, l) = Y Q. (3) e(P, x, v) > 0 and
there is a coalition Q ∈ Tlk with Q∩ P 6= ∅ and e(Q, x, v) ≥ e(P, x, v). In this case define
λ(P, k, l) = ZP,Q. The definition of λ implies that x ∈ λ(P, k, l) is true. Conversely, if
x ∈ λ(P, k, l) for some feasible λ, then three cases can occur. (1) λ(P, k, l) = XP . In
this case there is no objection via P. (2) λ(P, k, l) = Y Q. In this case every objection
of k against l can be countered via Q, because Q ∩ P = ∅ and e(Q, x, v) ≥ 0. (3)
λ(P, k, l) = ZP,Q. In this case every objection of k against l via P can be countered via
Q, because e(Q, x, v) ≥ e(P, x, v).
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Therefore
M∗(N, v) =

⋃
λ is feasible

Aλ (1.5)

is shown.

It should be noted that there is a distinguished feasible λ which satisfies Aλ = C(N, v)
(namely the map λ given by λ(P, k, l) = XP ∀(P, k, l) ∈ P).

Theorem 1.3 If (N, v) is a game, then M∗
sr(N, v) is a finite union of polytopes.

The following well-known result can be used to prove Theorem 1.3.

Lemma 1.4 If (N, v) is a game, then M∗(N, v) is bounded.

For the sake of completeness we prove Lemma 1.4 below.

Proof of Theorem 1.3: For every feasible mapping λ the set Aλ is the intersection
of finitely many halfspaces and, thus, a polyhedral set. There are finitely many feasible
maps λ. Therefore the semireactive prebargaining set is a finite union of polyhedral sets
by equation (1.5). In view of the fact that the semireactive prebargaining set is contained
in the classical prebargaining set, Lemma 1.4 completes the proof. q.e.d.

Proof of Lemma 1.4: In view of the well-known fact that the prebargaining set satisfies
covariance under strategic equivalence (see property (2) of Section 2), we may assume
without loss of generality that (N, v) is monotonic, i.e., v(S) ≤ v(T ) for all S ⊆ T ⊆ N ,
and strictly positive, i.e., v(T ) > 0 for all ∅ 6= T ⊆ N . As M∗(N, v) ⊆ I∗(N, v) it
suffices to show that x ∈ I∗(N, v) with xl > v(N) for some l ∈ N implies that x is not a
member of M∗(N, v). To this end define P = {i ∈ N | xi < 0} and observe that P 6= ∅,
because x(N) = v(N) > 0. With y ∈ IRP defined by yi = v(P )/|P | it suffices to show
that (P, y) constitutes a justified objection of an arbitrary player k ∈ P against l. Indeed,
this objection cannot be countered via any coalition Q ∈ Tlk, because

v(Q)− y(Q ∩ P )− x(Q \ P ) ≤ v(Q)− x(Q \ P ) ≤ v(Q)− xl < v(Q)− v(N) ≤ 0

is true. q.e.d.

2 Properties of the Semireactive Bargaining Set

The main aim of this section is to show that the semireative prebargaining set satisfies
the reduced game property and a weak form of the converse reduced game property.
Moreover, it is shown that it also satisfies some other well-known axioms.

Some convenient and well-known properties of a solution σ on a set Γ of games are as
follows.
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(1) σ is anonymous (satisfies AN), if for each (N, v) ∈ Γ and each bijective mapping
τ : N → N ′ with (N ′, τv) ∈ Γ

σ(N ′, τv) = τ(σ(N, v))

holds (where (τv)(T ) = v(τ−1(T )), τj(x) = xτ−1j (x ∈ IRN , j ∈ N ′, T ⊆ N ′)).

(2) σ is covariant under strategic equivalence (satisfies COV), if for (N, v), (N,w) ∈ Γ
with w = αv + β for some α > 0, β ∈ IRN

σ(N,w) = ασ(N, v) + β

holds. The games v and w are called strategically equivalent.

(3) σ satisfies nonemptiness (NE), if σ(N, v) 6= ∅ for (N, v) ∈ Γ.

(4) σ is Pareto optimal (satisfies PO), if σ(N, v) ⊆ I∗(N, v) for (N, v) ∈ Γ.

(5) σ satisfies the nullplayer property (NPP), if for every (N, v) ∈ Γ every x ∈ σ(N, v)
satisfies xi = 0 for every nullplayer i ∈ N. Here i is nullplayer if v(S ∪ {i}) = v(S)
for S ⊆ N.

(6) σ is reasonable (satisfies REAS), if

xi ≥ min{v(S ∪ {i})− v(S) | S ⊆ N \ {i}} (2.1)

and
xi ≤ max{v(S ∪ {i})− v(S) | S ⊆ N \ {i}} (2.2)

for i ∈ N, (N, v) ∈ Γ, and x ∈ σ(N, v).

It is well-known that both, the classical and the reactive (pre)bargaining set satisfy
anonymity, covariance under strategic equivalence, and Pareto optimality. Every of the
mentioned prebargaining sets also satisfies nonemptiness. Moreover, if Γ ⊆ ΓIU , then the
bargaining sets satisfy NE. The semireactive (pre)bargaining set satisfies PO by definition.
A proof of AN and COV is straightforward and left to the reader.

In general none of the mentioned bargaining sets satisfy the nullplayer property or rea-
sonableness (Note that REAS implies NPP). However, in Section 4 it will be shown that
the semireactive (pre)bargaining set satisfies REAS on the set of superadditive games.

We recall the definitions of the reduced game (see Davis and Maschler (1965)) and of the
reduced game property and its converse (see Sobolev (1975) and Peleg (1986)).

Let (N, v) be a game, let ∅ 6= S ⊆ N, and x ∈ X(N, v). The reduced game w.r.t. S and x
is the game (S, vS,x) defined by

vS,x(T ) =


0, if T = ∅

v(N)− x(N \ S), if T = S

max{v(T ∪Q)− x(Q) | Q ⊆ N \ S}, otherwise

.
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Definition 2.1 Let σ be a solution on a set Γ of games. Then σ satisfies the

(1) reduced game property (RGP), if the following condition holds: If (N, v) ∈
Γ, ∅ 6= S ⊆ N, and x ∈ σ(N, v), then (S, vS,x) ∈ Γ and xS ∈ σ(S, vS,x).

(2) converse reduced game property (CRGP), if the following condition holds:
If (N, v) ∈ Γ with |N | ≥ 3, if x ∈ I∗(N, v), and if for every S ⊆ N with 2 ≤
|S| ≤ |N | − 1 the reduced game (S, vS,x) is a member of Γ and xS ∈ σ(S, vS,x), then
x ∈ σ(N, v).

Note that the converse reduced game property as defined by Peleg (1986) only requires
that the reduced games w.r.t. two-person coalitions have to be taken into consideration.
However, for the solutions that have been axiomatized with the help of the converse
reduced game property, i.e. the prekernel, the core (Peleg (1986,1989)), and the positive
prekernel (Peleg and Sudhölter (1998)), even our weaker version of the converse reduced
game property is suitable to replace the “classical” version in all characterizations.

It is well-known (see Peleg (1988) and Granot and Maschler (1997)) that both the classical
prebargaining set and the reactive prebargaining set satisfy the reduced game property.
We shall now show that the semireactive prebargaining set satisfies RGP.

Lemma 2.2 The semireactive bargaining set satisfies the reduced game property.

Proof: Let (N, v) be a game, ∅ 6= S ⊆ N, and x ∈ M∗
sr(N, v). With w = vS,x we have

to show that xS ∈ M∗
sr(S,w). To this end let k, l ∈ S, k 6= l and P ∈ Tkl(S) satisfy

e(P, xS, w) > 0. We have to prove that there exists a coalition Q ⊆ Tlk(S) such that
either Q ∪ P = ∅ and e(Q, xS, w) ≥ 0 or e(Q, xS, w) ≥ e(P, xS, w) (see equation (1.4)).
Let R ⊆ N \ S such that w(P ) is attained by P ∪R, i.e., w(P ) = v(P ∪R)− x(R). Then
there is a coalition of the form Q∪T ∈ Tlk(N), Q ⊆ S, T ⊆ N \S such that either Q∪T
does not intersect P ∪ R and possesses a nonnegative excess or the coalitions intersect
and e(Q ∪ T, x, v) ≥ e(P ∪R, x, v). In both cases (1.4) is valid. q.e.d.

Note that none of the prebargaining sets satisfies CRGP in general. In order to give
an example we assume that N = {1, 2, 3} ⊆ U and (N, v) is given by v({1, 2}) =
1, v({1, 3}) = v({2, 3}) = v(∅) = v(N) = 0, and v(S) = −1, otherwise. Then the
imputation x = (0, 0, 0) does not even belong to the classical bargaining set, because
({1, 2}, (1/2, 1/2)) is a justified objection of 1 against 3 at x. However, it can easily be
checked that xS ∈M∗

r (S, vS,x) holds true for every nonempty proper subcoalition S of N.

The preceding example motivates the definition of a more restricted version of the converse
reduced game property. Indeed, it is possible to weaken the converse reduced game
property in such a way that the semireactive prebargaining set satisfies the weaker version.
On the other hand our modification of the converse reduced game property together
with other properties will be used to characterize the semireactive prebargaining set (see
Section 3) by implying that it is the maximum solution that satisfies the remaining axioms.
Therefore we shall, on the one side, weaken CRGP by requiring that the “reference” vector
x of Definition 2.1 (2) does not only satisfy Pareto optimality but also an additional
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condition which we shall call subgrand stability. On the other hand our converse reduced
game property will be stronger, because it can even be applied to one-person reduced
games of a two-person game. In order to explicitly formulate the suitable converse reduced
game property a new axiom is defined.

Definition 2.3 A feasible payoff vector x ∈ X(N, v) of a game (N, v) is subgrand
stable if, for all l ∈ N with xl > v({l}) and x(N \ {l}) < v(N \ {l}), the intersection
of all coalitions Q with l ∈ Q and e(Q, x, v) ≥ e(N \ {l}, x, v) consists of player l only.
A solution σ on a set Γ of games satisfies subgrand stability (SGS), if for all games
(N, v) ∈ Γ all members x ∈ σ(N, v) are subgrand stable.

In order to give an interpretation of subgrand stability, assume l has the properties re-
quired in Definition 2.3. ThenN\{l} is treated unsatisfactorily by x, because this coalition
has a positive excess. Nevertheless the vector x may be considered a “stable” proposal,
because the remaining player l as well – though treated satisfactorily as a single player
– “has” a coalition which contains himself, which does not contain an arbitrary player of
N \ {l}, and which is treated as least as unsatisfactorily as N \ {l}. In the foregoing sense
player l is a very significant player in many coalitions that are treated at least as bad as
N \ {l}. Indeed, he possesses the following “strong argument” to defend his payoff: “Yes,
I know, you altogether have a positive excess but look at all the coalitions containing
myself that have an excess that is at least as high as yours. I am the unique member of
all of these coalitions. Therefore it is unreasonable to decrease my payoff. Moreover, if
you will do that nevertheless, then you will also hurt coalitions of which some of you are
members of.”

Lemma 2.4 The semireactive (pre)bargaining set satisfies subgrand stability.

Proof: Let (N, v), x, l satisfy the conditions of Definition 2.3. If there is some player
k 6= l who belongs to every coalition Q satisfying l ∈ Q and e(Q, x, v) ≥ e(N \ {l}, x, v),
then k has a justified objection against l via N \ {l}. Indeed, if Q ∈ Tlk(N) satisfies
e(Q, x, v) ≥ 0, then Q 6= {l}. However, there is no such Q which satisfies e(Q, x, v) ≥
e(N \ {l}, x, v), thus there is an objection of k against l via N \ {l} which cannot be
countered via Q. q.e.d.

Note that subgrand stability rules out justified objections in the sense of the semireactive
bargaining set via any “subgrand coalition”, i.e., a coalition of the form N \ {l}. Note
furthermore that the reactive (pre)bargaining set satisfies SGS, because it is contained in
the semireactive (pre)bargaining set.

With the help of subgrand stability the converse reduced game property can be modified
in a suitable way.

Definition 2.5 A solution σ on a set Γ of games satisfies the converse reduced game
property restricted to subgrand stable preimputations (CRGPsr), if the following
condition holds: If (N, v) ∈ Γ with |N | ≥ 2, if x ∈ I∗(N, v) satisfies subgrand stability,
and if for every S ⊆ N with 1 ≤ |S| ≤ |N | − 1 the reduced game (S, vS,x) is a member of
Γ and xS ∈ σ(S, vS,x), then x ∈ σ(N, v).
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Lemma 2.6 The semireactive prebargaining set satisfies CRGPsr on any set Γ of games.

Proof: Let x be any subgrand stable preimputation of a game (N, v) ∈ Γ with at least
two players such that the (|N |−1)-person reduced games are members of Γ. Moreover, we
assume that x does not belong to the semireactive prebargaining set of (N, v). By (1.4)
there are distinct players k and l of N and a coalition P ∈ Tkl(N) with e(P, x, v) > 0 such
that for all Q ∈ Tlk(N)

e(Q, x, v) <

 0, if Q ∩ P = ∅

e(P, x, v), if Q ∩ P 6= ∅
.

By subgrand stability P 6= N \{l}, thus there is a player j ∈ N \
(
P∪{l}

)
. Let S = N \{j}

and w = vS,x. The straightforward proof that k has a justified objection against l in the
sense of the semireactive bargaining set at xS w.r.t the reduced game (namely via P ) is
skipped. q.e.d.

In Section 3 it will be shown that the reactive prebargaining set does not satisfy CRGPsr.
Moreover, it will turn out that the classical prebargaining set satisfies this property.

In order to obtain similar results for the semireactive bargaining set the notion of the
“imputation saving” reduced game (see Snijders (1995)) is useful. If (N, v) is a game,
∅ 6= S ⊆ N is a coalition and x ∈ X(N, v), then the imputation saving reduced game
(S, vS,x) is the game defined by

vS,x(T ) =

 vS,x(T ), if |T | 6= 1

min{vS,x(T ), x(T )}, if |T | = 1
.

Note that the imputation saving reduced game w.r.t. the grand coalition N leaves the
game unchanged, if and only if the proposal x is individually rational. Therefore we shall
require individual rationality, whenever imputation saving reduced games occur. These
considerations directly lead to the following modifications of the definitions of RGP and
CRGPsr.

A solution σ on a set Γ ⊆ ΓIU of games with imputations satisfies the

(1) reduced game property w.r.t. imputation saving reduced games (RGP),
if the following condition holds: If (N, v) ∈ Γ, ∅ 6= S ⊆ N, and x ∈ σ(N, v), then
(S, vS,x) ∈ Γ and xS ∈ σ(S, vS,x).

(2) converse reduced game property w.r.t. imputation saving reduced games
restricted to subgrand stable imputations (CRGPsr), if the following condi-
tion holds: If (N, v) ∈ Γ with |N | ≥ 2, if x ∈ I(N, v) is subgrand stable, and if for
every S ⊆ N with 1 ≤ |S| ≤ |N | − 1 the imputation saving reduced game (S, vS,x)
is a member of Γ and xS ∈ σ(S, vS,x), then x ∈ σ(N, v).

It is well-known that both, the classical and the reactive bargaining set on ΓIU satisfy the
reduced game property w.r.t. imputation saving reduced games.
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Lemma 2.7 The semireactive bargaining set on ΓIU satisfies (a) RGP and (b) CRGPsr.

Proof: Assertion (a) can be proved by literally copying – only the reduced game has
to be replaced by the imputation saving reduced game – the proof of Lemma 2.2. The
fact that the imputation saving reduced game (S,w) may only differ from the reduced
game (S,w), where (S,w) is the game defined in the proof of Lemma 2.6, on one-person
coalitions and the worth of a one-person coalition {i} differs in both games, if and only
if w({i}) > xi, thus w({i}) = xi, shows that the proof of that lemma can be modified in
such a way that it proves (b). q.e.d.

In Section 3 it will be shown that the classical bargaining set satisfies and the reactive
bargaining set does not satisfy CRGPsr.

3 An Axiomatization of the Semireactive Bargaining

Set

This section is devoted to axiomatize the semireactive bargaining set and the semireactive
prebargaining set. We start with a characterization of the semireactive prebargaining set.

Theorem 3.1 The semireactive prebargaining set is the unique solution that satisfies NE,
PO, SGS, RGP and CRGPsr.

The following lemma is useful to prove Theorem 3.1.

Lemma 3.2 If σ is a solution that satisfies PO, SGS, and RGP, then it is a subsolution
of the semireactive prebargaining set.

Proof: Let σ have the required properties. By PO σ(N, v) ⊆ M∗
sr(N, v) holds true for

any one-person game of ΓU . We proceed by induction on the number |N | of players and
assume that the desired inclusion is already shown for all games with less than m players
for some m > 1. Let (N, v) ∈ ΓU be any m-person game and x ∈ σ(N, v). By RGP of σ
the restriction xs belongs to σ(S, vS,x) for every ∅ 6= S ⊆ N. This is true in particular, if
∅ 6= S ⊂ N, thus Lemma 2.6 yields x ∈M∗

sr(N, v). q.e.d.

Proof of Theorem 3.1: The semireactive prebargaining set satisfies PO by definition.
It satisfies NE (see Section 1), RGP (by Lemma 2.2), SGS (by Lemma 2.4), and CRGPsr

(by Lemma 2.6). In order to prove the converse assertion, let σ be a solution that satisfies
the required properties. In view of Lemma 3.2 it remains to show that the semireactive
prebargaining set is a subsolution of σ. To this end let (N, v) ∈ ΓU and x ∈ M∗

sr(N, v).
If |N | = 1, then x ∈ σ(N, v) by PO and NE. We proceed by induction on |N | and
assume that the inclusion is already verified for all games with less than m persons for
some m > 1. If |N | = m, then xs ∈ σ(S, vS,x) for all ∅ 6= S ⊂ N by RGP of M∗

sr and
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the inductive hypothesis. Moreover, x is subgrand stable, because M∗
sr satisfies SGS. By

CRGPsr of σ we conclude x ∈ σ(N, v). q.e.d.

Note that PO and NE are only needed for one-person games. Indeed, if a solution satisfies
RGP and if it is Pareto optimal on one-person games, then it satisfies PO. Therefore it
is possible to replace PO and NE by one-person rationality. A solution σ on a set Γ of
games satisfies one-person rationality (OPR), if it contains a preimputation in the case of
a one-person game, i.e., σ(N, v) = {v(N)}, whenever |N | = 1.

The reactive prebargaining set satisfies SGS (see Lemma 2.4), NE, PO (see Section 1),
RGP (see Section 2), and does not coincide with the semireactive prebargaining set, if
|U | ≥ 4 (see Example 1.2), thus it does not satisfy CRGPsr. In Remark 5.5 it will be
shown that the prebargaining set satisfies CRGPsr, thus it does not satisfy SGS by the
same example, if |U | ≥ 4.

If |U | ≥ 2, then the following examples show the logical independence of NE, PO, SGS,
RGP, and CRGPsr. Indeed, if the universe consists of a single player only, then only NE
and PO are needed to show the theorem. The empty solution shows the independence
of NE. If Definition 1.1 is changed in such a way that only the requirement of Pareto
optimality is replaced by the requirement of feasibility (i.e., the phrase “all preimputations
x” is replaced by the phrase “all feasible payoff vectors x”), then the solution satisfies all
properties except PO. The set of preimputations I∗ satisfies all properties except SGS.
The solution which assigns to any game with at least two players the set of all subgrand
stable feasible payoff vectors and the singleton of imputations to every one-person game
satisfies all axioms except RGP. Finally the prekernel satisfies all axioms except CRGPsr.

It should be noted that we needed NE only once in the proof of Theorem 3.1, namely to
guarantee that a solution that satisfies the axioms contains the semireactive bargaining
set, if the attention is restricted to one-person games. Hence NE can be replaced by
“nonemptiness for one-person games”.

There is an analogon of Theorem 3.1 for the reactive bargaining set. A solution σ on Γ
is said to satisfy individual rationality (IR), if xi ≥ v({i}) for all (N, v) ∈ Γ, x ∈ σ(N, v),
and all i ∈ N.

Theorem 3.3 The semireactive bargaining set is the unique solution on ΓIU that satisfies
NE, PO, IR, SGS, RGP, and CRGPsr.

Lemma 3.2 has the following analogon.

Lemma 3.4 If σ is a solution on ΓIU that satisfies PO, IR, SGS, and RGP, then it is a
subsolution of the semireactive bargaining set.

Proof: The proof is very similar to the one of Lemma 3.2. IR is additionally needed,
because the current version of the converse reduced game property requires both, Pareto
optimality and individual rationality. q.e.d.
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Proof of Theorem 3.3: The semireactive bargaining set satisfies PO and IR by defi-
nition. It satisfies NE (see Section 1), RGP and CRGPsr (by Lemma 2.7), and SGS (by
Lemma 2.4). The proof can be completed similarly to the proof of Theorem 3.1. Of course
the reduced game has to be replaced by the imputation saving reduced game. q.e.d.

Again NE is only used for one-person games. If the definition of the semireactive bar-
gaining set (see Definition 1.1) is changed in such a way that Pareto optimality is only
required for one-person games, then the arising solution satisfies all axioms except PO.
This example shows that Pareto optimality is also needed for two-person games. Thus
NE and PO cannot be replaced by OPR.

The same reasoning as above shows that the reactive bargaining set satisfies all axioms
of Theorem 3.3 except CRGPsr, if |U | ≥ 4. In Remark 5.5 it will be shown that the
prebargaining set satisfies CRGPsr, thus it does not satisfy SGS, if |U | ≥ 4.

Let |U | ≥ 2. The individually rational subsolutions of the solutions that show the inde-
pence of all axioms used in Theorem 3.1 also show the independence of all axioms used
in Theorem 3.3 except IR. The semireactive prebargaining set satisfies all axioms except
IR, if |U | ≥ 3. Indeed, it is well-known that the prekernel may not be individual rational
even in the three-person case and even if the game has an imputation. The fact that the
all mentioned prebargaining sets coincide with each other and with the bargaining sets for
two-person games, immediately shows that IR can be dropped as a condition in Theorem
3.3, if |U | ≤ 2.

4 The Semireactive Bargaining Set for Superadditive

Games

In this section all considered games (N, v) are superadditive, i.e., v(S) + v(T ) ≤ v(S ∪ T )
holds, whenever S ∩ T = ∅.

A game (N, v) is called a simple game, if it is monotonic and if v(N) = 1 and v(S) ∈
{0, 1} ∀S ⊆ N . A winning coalition S satisfies v(S) = 1.

It is well known (and moreover easy to prove) that a simple game has a nonempty core if
and only if the set V of veto players is nonempty. Player i ∈ N is a veto player , if v(S) = 0
whenever i /∈ S. The core of simple games with veto players consists of all distributions
of v(N) = 1 among the veto players, i.e., C(N, v) = {x ∈ I(N, v) | x(V ) = 1}.

In what follows we shall show that for arbitrary superadditive games the semireactive
prebargaining set satisfies IR. Moreover, for superadditive simple games the semireactive
bargaining set is the union of the core and the kernel. Granot, Granot, and Zhu (1997)
(Theorem 7) showed the same statement for the reactive bargaining set.

Theorem 4.1 If (N, v) is a superadditive game, then M∗
sr(N, v) = Msr(N, v). If (N, v)

is a superadditive simple game, then Msr(N, v) =

 C(N, v), if C(N, v) 6= ∅

K(N, v), if C(N, v) = ∅
.
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Proof: In order to show the first assertion, let (N, v) be an arbitrary superadditive game.
If x ∈ I∗(N, v)\I(N, v), then there is a player k satisfying xk < v({k}). By superadditivity
every coalition of maximal excess contains k. Let P be a maximal (w.r.t. set inclusion)
coalition with maximal excess. This maximal excess is positive, because e({k}, x, v) > 0.
Moreover, by superadditivity and maximality, P contains all players j with xj ≤ v({j}).
By Pareto optimality P 6= N. Take l ∈ N \P and Q ∈ Tlk. Then e(Q, x, v) is not maximal
and Q can only be used in a counter objection if Q ∩ P = ∅ and e(Q, x, v) ≥ 0. This is
not possible by maximality of P. Thus k has a justified objection via P.

In order to show the second assertion let (N, v) be a superadditive simple game. We
distinguish the following cases.

(1) C(N, v) 6= ∅. Let x ∈ I(N, v) \ C(N, v). It remains to show that x 6∈ Msr(N, v). In
view of the fact that x does not belong to the core of (N, v), there is some player
l ∈ N \ V satisfying xl > v({l}) = 0, where V denotes the set of veto players. With
P = N \{l} we come up with e(P, x, v) = 1−x(P ) = 1−x(N) +xl = xl. Moreover,
e(Q, x, v) = −x(Q) ≤ −xl < 0 holds true for any Q ⊆ N satisfying l ∈ Q and
V \ Q 6= ∅. These observations directly show that every player in V has a justified
objection against l via P.

(2) C(N, v) = ∅. Let x ∈ I(N, v) \ K(N, v). It remains to show that x 6∈ Msr(N, v).
Indeed, there are distinct players k and l such that skl(x, v) > slk(x, v) and xl >
v({l}). By the absence of veto players we have e(N \ {k}, x, v) = xk ≥ 0, thus
skl(x, v) > slk(x, v) ≥ 0. Let P ∈ Tkl be a maximal coalition with e(P, x, v) =
skl(x, v). For every coalition Q ∈ Tlk we have e(Q, x, v) < e(P, x, v) and, therefore,
Q can only be used in a counter objection if Q ∩ P = ∅ and e(Q, x, v) ≥ 0. Then Q
must be a winning coalition, because of xl > 0. However, disjoint winning coalitions
do not exist in a superadditive simple game. We conclude that k has a justified
objection against l via P. q.e.d.

Remark 4.2 Theorem 4.1 shows that the positive (pre)kernel of a superadditive simple
game coincides with its (semi)reactive (pre)bargaining set and with the union of the kernel
and the core.

Examples of simple superadditive games are apex games (an apex game has a distinguished
“strong” player such that a coalition is winning if it contains this strong player and
at least one additional “weak” player or if it contains all weak players), superadditive
weighted majority games in general (a superadditive weighted majority game (N, v) has
a representation (λ,m) satisfying 1/2 < λ ≤ 1, m ∈ IRN

+ , m(N) = 1, and v(S) = 1, iff
m(S) ≥ λ), and the seven person projective game (see von Neumann and Morgenstern
(1953) or Granot and Maschler (1997)). For the seven person projective game as well
as for apex games with more than two players the core is empty, thus the semireactive
prebargaining set coincides with the kernel in these cases.

As we have seen in Remark 4.2, the semireactive (pre)bargaining set, unlike the classical
(pre)bargaining set, satisfies REAS and, thus NPP, on superadditive simple games. The
following result shows that these properties hold even on superadditive nonsimple games.
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Theorem 4.3 For superadditive games the semireactive prebargaining set is reasonable
and satisfies the nullplayer property.

Proof: Let (N, v) be any superadditive game and x ∈ I∗(N, v). In view of Theorem 4.1
it remains to show that

xl > max
S⊆N\{l}

v(S ∪ {l})− v(S) for some l implies x 6∈ M∗(N, v).

Note that a coalition of highest excess does not contain player l. Let P ⊆ N be maximal
coalition of highest excess. In view of the fact that e(N \ {l}, x, v) > e(N, x, v) = 0 we
have e(P, x, v) > 0. Take k ∈ P. Then P ∈ Tkl. An objection against l via P can not be
countered via Q ∈ Tlk, because such a coalition Q does not possess the highest excess and
P ∩Q = ∅ and e(Q, x, v) ≥ 0 is not possible by the maximality of P and superadditivity.
Thus k has a justified objection against l via P. q.e.d.

The following example shows that the second assertion of Theorem 4.1 cannot be gener-
alized to superadditive nonsimple games.

Example 4.4 Let N = {1, 2, 3, 4, 5} and (N, v) be given by

v(S) =



1, if S ∈ {{1, 2, 3, 4}, {1, 2, 4, 5}, {1, 3, 4, 5}, {1, 3, 4}, {2, 3, 5}, {1, 2}, {1, 5}}

0, if S ∈ {N, ∅, {1, 2, 3, 5}, {1, 2, 3}, {1, 2, 4}, {3, 4}, {4, 5}}

−4, if S ∈ {{1, 2, 5}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4, 5}}

−5, otherwise

.

It is easy to check that this game is superadditive and x = (0, . . . , 0) is an imputation.
Furthermore, sij(x) = 1 for all pairs (i, j) 6= (4, 1). The coalitions in the first row separate
each pair of players (i, j) except (4, 1) and s1,4(x) = 1 > s4,1(x) = 0. So, x is neither in
the core nor in the kernel of the game. It is nevertheless an element of the (semi)reactive
bargaining set. We only need to consider objections of player 1 against player 4 and, for
this purpose, only the coalitions {1, 2} and {1, 5} can be used. The coalition {3, 4} is
disjoint from both coalitions and can counter every objection via {1, 2} or {1, 5}.

The literature provides several classes of superadditive balanced games for which the
bargaining set and the core coincide. These results immediately apply to the semireactive
and to the reactive (pre)bargaining set.

The following classes have been proved (see Solymosi (1999)) to have this property:

(1) convex games (Maschler, Peleg and Shapley (1972)),

(2) strongly balanced partitioning games, including, e.g., assignment games and Γ-
component additive games (see Potters and Reijnierse (1995)),

(3) simple network games (for these games Granot (1994) and Granot, Granot, and Zhu
(1997) showed the coincidence of the core and the reactive bargaining set),

(4) nonnegative superadditive games (N, v) with a veto player (i.e. a player i such that
v(S) = 0 if i /∈ S) (see Potters, Muto and Tijs (1988))
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5 A Characterization of the Bargaining Set

In this section we show that SGS can be weakened in such a way that, together with
the accordingly modified versions of the converse reduced game property, the analogues
of Theorems 3.1 and 3.3 can be formulated to characterize the classical (pre)bargaining
set. Note that SGS is used to rule out justified objections via subgrand coalitions in the
sense of the semireactive bargaining set. A similar property for the bargaining set can be
defined with the help of the following notions. If (N, v) is a game and x ∈ X(N, v), then,
for every player l ∈ N, we define

Tl(x) = {Q ⊆ N | l ∈ Q and e(Q, x, v) > 0}.

A collection Q ⊆ Tl(x) is less satisfied than N\{l}, if there is a mapping Q → IRQ, Q 7→
λQ > 0, such that

(1)
∑
Q:k∈Q,Q∈Q λQ ≤ 1 for all k 6= l and

(2)
∑
Q∈Q λQ e(Q, x, v) ≥ e(N\{l}, x, v).

For any collection Q of coalitions we define the support by D(Q) =
⋃
Q∈Q Q. We use the

convention that N is the support of the empty collection.

Definition 5.1 A feasible payoff vector x ∈ X(N, v) of a game (N, v) is subgrand
stable in the sense of the bargaining set (satisfies SGS1) if, for all l ∈ N with
xl > v({l}) and x(N \ {l}) < v(N \ {l}), the intersection of the supports D(Q) of all
collections Q ⊆ Tl(x) less satisfied than N \ {l} consists of player l only. A solution σ
on a set Γ of games satisfies SGS1, if for all games (N, v) ∈ Γ all members x ∈ σ(N, v)
satisfy SGS1.

If Q ∈ Tl(x), then, by putting λQ = 1, it follows that {Q} is less satisfied than N \ {l}.
Hence, “SGS” (see Definition 2.3) implies “SGS1”.

Lemma 5.2 Let (N, v) be a game and x ∈ I∗(N, v). Then x satisfies SGS1, if and only
if there are no distinct players k and l of N such that k possesses a justified objection
against l at x via N \ {l} in the sense of the bargaining set.

Proof: Let x ∈ X(N, v) and suppose that a player k ∈ N\{l} has a justified objection
against player l via N \ {l}, i.e., a justified objection of the form (N \ {l}, xN\{l}+ z). We
conclude that z satisfies z >> 0 and z(N \ {l}) = e(N \ {l}, x, v). As l has no counter
objection, we have x(Q) + z(Q \ {l}) > v(Q) for all Q ∈ Tlk.
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We prove that k ∈ D(Q) for every collection Q ⊆ Tl(x) that is less satisfied than N\{l}.
Indeed, take weights (λQ)Q∈Q as in the definition. Then

e(N \ {l}, x, v) ≤ ∑Q∈Q λQe(Q, x, v)

≤ ∑Q:k/∈Q,Q∈Q λQz(Q \ {l}) +
∑
Q:k∈Q,Q∈Q λQe(Q, x, v)

≤ z(N \ {k, l}) +
∑
Q:k∈Q,Q∈Q λQe(Q, x, v)

< e(N \ {l}, x, v) +
∑
Q:k∈Q,Q∈Q λQe(Q, x, v)

and, thus, k ∈ D(Q).

In order to prove the converse implication, suppose that x ∈ X(N, v), xl > v({l}) and
x(N \ {l}) < v(N \ {l}).

If k is a member of the supports D(Q) of all collections Q less satisfied than N\{l}, then
it suffices to prove that player k has a justified objection against player l via coalition
N \ {l}. In order to show this claim we shall show that there is a vector z ∈ IRN\{l}

with z >> 0, z(N \ {l}) = e(N \ {l}, x, v) and x(Q) + z(Q \ {l}) > v(Q) for all coalitions
Q ∈ Tlk.

With player set N ′ = N \ {k, l} we define the following “excess” game (N ′, u) by

u(S) =


(
e(S ∪ {l}, x, v)

)
+
, if S 6= N ′

e(N \ {l}, x, v), if S = N ′
.

If there exists a core element ẑ of (N ′, u) satisfying ẑ(S) > u(S) for all ∅ 6= S ⊂ N ′,
then there is z ∈ IRN\{l} with zN ′ ≤ ẑ and z(S) > u(S) for all ∅ 6= S ⊂ N ′ such that
z(N ′) < ẑ(N ′) and z(N \ {l}) = u(N ′), thus z >> 0. Indeed, zk = ẑ(N ′) − z(N ′) =
u(N ′)− z(N ′) > 0. Then (N \ {l}, xN\{l} + z) is a justified objection of k against l.

Therefore, it remains to prove that the interior of the core of (N ′, u) is nonempty. By a
slight modification of the Bondareva-Shapley Theorem (see Bondareva (1963) or Shapley
(1967)) this is equivalent with∑

S⊂N ′
λSu(S) < u(N ′) whenever λS ≥ 0 ∀S ⊆ N ′, S 6= ∅, N ′ and

∑
S⊂N ′

λS1S = 1N ′ .

(Here 1S denotes the indicator function of S in N ′.) In order to show this assertion let
(λS)S⊂N ′ satisfy λS ≥ 0 and

∑
S⊂N ′ λS1S = 1N ′ . Then Q = {S ∪ {l} | S ⊂ N ′, λS >

0, u(S) > 0} ∈ Tl(x) by definition. Moreover, k /∈ D(Q). With λQ := λS, whenever
Q = S ∪ {l} for any S ⊂ N ′, we obtain

∑
Q:j∈Q,Q∈Q λQ ≤ 1 for all j ∈ N \ {l}. By our

assumption Q is not less satisfied than N \ {l}, thus the observation

∑
S⊂N ′

λSu(S) =
∑
Q∈Q

λQu(Q \ {l}) =
∑
Q∈Q

λQe(Q, x, v) < e(N \ {l}, x, v) = u(N ′)

finishes the proof. q.e.d.

Corollary 5.3 The (pre)bargaining set satisfies SGS1.
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The new version of subgrand stability is used to define the suitable version of the converse
reduced game property. Indeed, CRGP1 is defined as CRGPsr (see Definition 2.5), unless
the expression “if x ∈ I∗(N, v) satisfies subgrand stability” is replaced by “if x ∈ I∗(N, v)
satisfies SGS1”. Moreover, CRGP1 is the property which arises from CRGP1 by replacing
the reduced game by the imputation saving reduced game.

Lemma 5.4 The prebargaining set satisfies CRGP1 and the bargaining set satisfies
CRGP1.

Proof: In order to show that the (pre)bargaining set satisfies the asserted version of the
converse reduced game property, let (N, v) be a game and x ∈ I∗(N, v) satisfy SGS1. If
player k has a justified objection (P, y) against some other player l at x in the sense of
the bargaining set, then P 6= N \ {l} by Lemma 5.2. Take j ∈ N \ (P ∪ {l}), denote by
S = N \ {j} the set of remaining players, and let w = vS,x denote the coalitional function
of the reduced game. The fact that e({j, l}, x, v) < 0 directly implies w({l}) < xl, thus
(P, y) is a justified objection against l even w.r.t. the reduced game. The imputation
saving reduced game (S, vS,x) can be treated in the same way. q.e.d.

Remark 5.5 A solution σ that satisfies CRGP1 or CRGP1 also satisfies CRGPsr or
CRGPsr, respectively, because SGS implies SGS1. Hence, by Lemma 5.4, M∗ and M
satisfy CRGPsr and CRGPsr, respectively.

Theorem 5.6 (1) The prebargaining set M∗ is the unique solution that satisfies NE,
PO, SGS1, RGP and CRGP1.

(2) The bargaining set M is the unique solution on ΓIU that satisfies NE, PO, IR,
SGS1, RGP, and CRGP1.

Proof: Both solutions satisfy SGS1 by Lemma 5.2. Lemma 5.4 shows that they satisfy
the asserted versions of the converse reduced game property. It is well-known that the
remaining properties are satisfied.

Uniqueness can be proved as uniqueness was shown in the proofs of Theorem 3.1 and
Theorem 3.3. q.e.d.

Note that OPR can be used to replace PO and NE in assertion (1) of Theorem 5.6. Suit-
able modifications of the examples presented in Section 3 show the logical independence
of the axioms in both assertions.

6 Concluding Remarks

Remark 1: It is possible to extend the definition of the semireactive prebargaining set to
TU games with coalition structures. In order to do so the set of (pre)imputations (with
respect to the grand coalition) has to be replaced by the set of (pre)imputations with
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respect to the coalition structure (see, e.g., Granot and Maschler (1997)). For simplicity
reasons we only considered the case in which the coalition structure is trivial, i.e., consists
of the grand coalition.

Remark 2: There is a set-valued dynamic system leading to the semireactive (pre)bar-
gaining set. In view of the fact that Section 8 of Granot and Maschler (1997) can suitably
be modified in order to generate analogous results for the semireactive bargaining set, we
only present a very brief description of the dynamic system. Let (N, v) be a TU game
and x ∈ I∗(N, v) be a preimputation. For coalitions P,Q ⊆ N define

dP,Q(x) =


(min{e(P, x, v),−e(Q, x, v)})+, if P ∩Q = ∅(
1/2 · (e(P, x, v)− e(Q, x, v))

)
+
, otherwise

and for k, l ∈ N with k 6= l define

dkl(x) = max
P∈Tkl

min
Q∈Tlk

dP,Q(x).

Moreover, y ∈ IRN is said to arise from x by a d-bounded transfer (from l to k), if there
exists 0 ≤ α ≤ dkl(x) such that

yi =


xk + α, if i = k

xl − α, if i = l

xi, otherwise

.

The dynamic system ϕ is the correspondence on I∗(N, v) defined by

ϕ(x) = {y ∈ IRN | y arises from x by a d-bounded transfer}.

By (1.4) the semireactive prebargaining set coincides with the set of endpoints, i.e.,

M∗
sr(N, v) = {x ∈ I∗(N, v) | ϕ(x) = {x}}.

A trajectory is a sequence (xm)m∈IN such that xm+1 arises from xm by a d-bounded transfer.
The trajectory is maximal, if infinitely often the size of the transfer from xm to xm+1 is
at least δ · maxk,l∈N, k 6=l dkl(x

m) for some δ > 0. Applying some results of Maschler and
Peleg (1976) (see also Stearns (1968)) we obtain the following assertions. Every maximal
trajectory converges to an element of the semireactive prebargaining set. Moreover, if
the attention is restricted to imputations only (and if there are imputations), then every
maximal trajectory converges to an element of the semireactive bargaining set.

Remark 3: It should be noted that the definition of the semireactive (pre)bargaining set
can be extended to cooperative games without transferable utility. Indeed, if the notion
of objections and counter objections is taken from, e.g., Asscher (1976), then it is obvious
how to generalize Definition 1.1.
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