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Abstract

We discuss large but finite linear production games or market
games. These games represent markets such that the agents de-
compose into finitely many disjoint groups each of which holds a
corner of the market. In such a market most solution concepts like
the core, the Shapley value, or the Walrasian equilibrium tend to
favor the short side of the market excessively. That is, in the repli-
cated limit or in the continuum version, the short side is awarded
all the possible profits even though cooperation within the grand
coalition is required. This kind of behavior is also observed with
the Walrasian equilibrium. We show that vNM–Stable Sets differ
markedly. For large but finite player sets we demonstrate that
this concept is capable of assigning considerable profits towards
the long side of the market. Also, it turns out that the shape of
the generic vNM–Stable Set suggests cartelization of the market.
Thus, it turns out that the long side first agrees to form a cartel
and then forces the short side to make concessions. This way the
long side profits from the game as well.
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1 Introduction

Within this paper we attempt to explain the endogenous formation of cartels
in large but finite markets or economies. We assume that contracts generating
cartels are legally permissible and can be enforced. This is not all together
unusual. While anti trust laws prevail in many western states, it is also
observed that cartels are legal (e.g., in Switzerland in previous decades the
formation of cartels was legally permitted). Also, we may consider a union
representing a group of workers with (approximately) equal characteristics
to be a cartel in the technical sense. Then obviously at least parts of the
society are legally cartelized in most western countries.

General equilibrium theory or related approaches via coalition formation in
exchange economies are apparently unable to predict the endogenous forma-
tion of cartels, even in simple situations which seem to call for such kind of
organization. A simple version of such a situation is what is called the glove
market or glove game.

In such an economy the traders may be seen to command corners of different
(nonoverlapping) sets of commodities. When contracts are feasible – and
can be legally enforced – there seems to be a strong incentive for agents
to form (at least intermediately) cartels ot syndicates by joining forces in
subcoalitions. These cartels may then act as players or agents themselves, so
that the responsibility for bargaining is delegated to them and the result is
implemented to the grand market accordingly.

This procedure points to a different game in which few players act to the
benefit of those they represent. If we consider the game in which the various
cartels act as players, then their bargaining power may be quite different
from the one in the original market and they may force (members of) oppos-
ing cartels to accept a distribution of profits (allocations, imputations) that
is much more favorable compared to the result obtained without carteliza-
tion. The latter situation might be represented by the core. Results from
bargaining via cartels cannot be seen as consistent with the concept of the
core.

In view of equivalence theorems for large markets, the result of cooperation
within cartels also differs from what it turns out to be if agents show price
taking behavior. The same is true, to mention a further concept of Game
Theory, for the Shapley value. This concept measures the marginal contri-
bution of traders on average. For large games, as all coalitions look almost
like the grand coalition, the Shapley value represents eventually the marginal
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contribution of traders to the grand coalition – which is zero for agents living
in an excess supply corner.

In a paper “Formation of Cartels in Large Markets” [4] Sergiu Hart discusses
this situation from the viewpoint of a different solution concept, the vNM–
Stable Set. He argues that in markets with disjoint corners, the formation
of cartels has to be a result of the solution concept employed, it should be
an endogenous concept. And he points to the vNM–Stable Set which (for
the non-atomic case and other than the core etc.) does indicate this kind of
behavior.

Hart’s argument essentially is that there are vNM–Stable Sets which are
obtained from finite vNM–Stable Sets in a symmetric way (treating all players
of the same type alike). This, he goes on, shows that coalition of types have
been formed, acted as players (in the finite game) and distributed the profits
obtained this way symmetrically among their members. As all the solutions
in the continuous case are of this shape (his main result) he goes even further
in holding that society has to organize itself this way.

Hart’s cartels consist essentially of types. His arguments reflects the fact
that continuous solutions can be obtained from finite ones by an embedding
procedure. This he interprets as a representation of the continuous mass of
traders of a cartels by their representative, a player in the finite game.

Hart does not explicetely construct vNM–Stable Sets. Rather he exploits the
similarities (symmetries) between the continuous non-atomic version and the
finite one.

Also, there seems to be a tendency in his arguing that the actual shape of a
vNM–Stable Set essentially does not matter. Rather he points out that the
coalitions predicted by this solution concept do indeed reflect cooperation
within cartels – which the core does not.

Thus, the claim that society organizes itself in cartels again fails in pointing
out the result of this organization. But, after all, it is the distribution of
wealth that matters in the public discussion. The formation of cartels as
such is only the first step. Certainly, one would like to see the the actual
nature of the resulting distribution of wealth as well.

In a more recent paper [10], Rosenmüller and Shitovitz classify all vNM–
Stable Sets in the non-atomic context. There appears a further version of
cartelization of the market: it is seen that in each corner of the market
a distribution of wealth is agreed upon which, to some extent, reflects the
initial holdings of the agents within this corner. Indeed, cartels distribute
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the result of their “internal game” symmetrically among their members in
a most plausible fashion: on the short side each trader gets a share exactly
proportional to his holdings, and on the long side a share is not exceeding
the holdings.

Thereafter the various cartels agree about some mixture of these distribu-
tions. This may be seen as the result of cooperation within the representa-
tives of the cartels.

The result in [10] bears a consequence to the finite case only if we assume
uniform distribution of commodities in each corner. So it does imply the
construction of finite games representing the cartels in Hart’s sense – but
only for a very limited (fully symmetric) class of glove games.

In this paper we construct much more general vNM–Stable Sets for games
that are large but finite. Thus, we actually finish the discussion initiated by
Hart by pointing to the finite case and indicating solutions. This is achieved
for a reasonable class of large games: necessarily, there has to be a sufficient
number of small players located in each corner of the market. But players
with large chunks of initial holdings are allowed and may also be arbitrarily
many – a result which also permits an interpretation which does not exclude
“atoms” in the market.

The construction we are dealing with offers some further insight into the for-
mation of stable situations or cartels. We point to some type of “bandwagon
process” which is used to block off assignments that are outside the solution.

We would like to argue that the situation has greatly improved since Hart’s
paper. There are now existence results concerning vNM–Stable Sets which
support his view. But much more has been achieved: the endogenous for-
mation of cartels representing each corner is explained as well. We can see
that finite games allow for the actual construction of vNM–Stable Sets which
reflect the same situation as in the continuum. Thus, agents on the short
side of the market benefit exactly in accordance with their initial holdings
and the long side has a certain freedom to distribute payoffs in accordance
with boundedness by the holdings.
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2 Definitions, Simple Properties

We start out with a finite set I = {1, . . . n}, the set of agents or players.
The power set P = P(I) describes the system of coalitions. If v : P →
R+ is a real valued function satisfying v(∅) = 0, then the triple (I,P,v)
constitutes a game ; however, we shall also apply the term to the function v
as such. v is otherwise also called the coalitional function . The quantity
v(S) is the (monetarian) worth a coalition S ∈ P may achieve by cooperation
(and distribute among its members according to agreement).

An additive (and nonnegative) set function or measure µ on P is tanta-
mount to a vector µ = (µ1, . . . , µn) via the convention

µ(S) =
∑
i∈S

µi (S ∈ P) .

We regard additive functions as distributions of wealth coalitions may agree
upon rather than games. The set of measures is denoted byA+. The carrier
of µ ∈ A+ is the set C(µ) = {i ∈ I | µi > 0}.

The core of a game (I,P,v) (or of v) is the set of all distributions of the
wealth of the grand coalition that cannot be improved upon by any smaller
coalition, formally:

C(v) :=
{
µ ∈ A+ µ(I) = v(I), µ(S) ≥ v(S) (S ∈ P)

}
The class of market games results from exchange economies and accord-
ing to Shapley – Shubik [14] is equivalent to the class of totally balanced
games. This class can be described as to be the set of all games such that
the restriction to every (nonempty) coalition has a nonempty core (the Bon-
dareva – Shapley Theorem, [2], [13]). A further observation (Kalai – Zemel,
[5]) establishes the fact that this class can as well be described as the class
of linear production– or LP.–games . As this is the version we shall be
concerned with, we provide the following description.

LP.–games are games which can be represented as minima of finitely many
nonnegative additive set functions (measures) λ1, · · · ,λr ∈ A+ via

v(S) = min {λρ(S) ρ = 1, . . . , r} .(1)

We write this

v =
∧{

λ1, · · · ,λr
}
,(2)
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thus indicating a min-operation within games.

Regardless of the representation we choose for the coalitional function, our
view is that we are dealing with market games. The most notorious example
is the one of the glove game. There are two orthogonal measures λ1, λ2

involved, each of them representing “uniform distribution”, that is, as a
vector each of them equals (1, . . . , 1). The well known interpretation is that
owners of right hand gloves and left hand gloves occupy different “corners”
of the market. By cooperation it is possible to sell pairs of gloves profitably,
but each of the corners on its own is unprofitable.

We deal with a generalization of this version and, by various reasons restrict
our discussion to the orthogonal case. This means that with respect to a
game represented as in (2), we assume that the measures λ1, · · · ,λr ∈ A+

are orthogonal. In this case, the game or the coalitional function will also be
called orthogonal. Note that the representation of v by means of orthogonal
measures is actually unique (see [9], Chapter 5 for a discussion of this topic)

The carrier of λρ is denoted by C(λρ) = Cρ, (ρ = 1, . . . , r), orthogonal-
ity means that I =

∑r
ρ=1 C

ρ describes a partition of I (disjoint unions are
written as sums).

Also, we shall generally assume that each λρ is integer-valued. By reasons of
continuity, this assumption is not too strong; rational–valued measures are
dense inA+ anyway. We identify the carriers with the various corners of the
market. Each commodity in one of the corners is indispensable for profitable
exchange (or efficient production, when seen as a production game). For,
if one corner of the market is missing, then a coalition obtains zero worth.
Thus, the orthogonal game is a game with distinct corners of the market.

While we focus on orthogonal games, we do not intend to restrict our discus-
sion to glove markets. The agents in the various corners may own different
quantities of the commodity available. Thus we introduce the notion of types
as follows:

Each corner (carrier) Cρ is decomposed into finitely many sets, the sets of
types via

Cρ =
T ρ∑
ρ=1

Kρ
τ (τ = 1, . . . , T ρ)(3)

(recall that the sum indicates the union of disjoint coalitions). Within each
type (each set Kρ

τ representing a type), all players have the same weight ,
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i.e.,

λρi = wρτ (i ∈ Kρ
τ ).(4)

Thus, in corner ρ player i is of type τ whenever he owns a quantity of λρi = wρτ
units of commodity ρ.

Equivalently, this can be written

λρ(•) =
T ρ∑
τ=1

| • ∩Kρ
τ |wρτ , (ρ = 1, . . . , r).(5)

Within each corner we assume the weights to be ordered increasingly and
the smallest weight to be 1,

i.e.,

1 = wρ1 ≤ . . . ≤ wρT ρ (ρ = 1, . . . , r).(6)

The size of type τ in corner ρ is denoted by kρτ = |Kρ
τ |, thus the vector

kρ = (kρ1 , . . . , k
ρ
T ρ) reflects the size of the type and k = (k1, . . . , kr) can be

seen as to indicate the distribution of the players over the types.

Every coalition S ∈ P decomposes naturally into

S =
r∑

ρ=1

Sρ with Sρ = S ∩ Cρ (ρ = 1, . . . , r),(7)

we call the-members of Sρ the partners of coalition S in corner ρ.

Clearly we have λρ(S) = λρ(Sρ) = wρsρ (S ∈ P, ρ = 1, . . . , r). We use
the abbreviation Mρ in order to indicate the total amount of commodity or
mass available in corner ρ, that is,

Mρ := λρ(I) = λρ(Cρ) =
∑
i∈Cρ

λρi =
T∑
τ=1

kρτw
ρ
τ = kρwρ.(8)

We shall also assume that the groups are ordered according to total mass,
i.e., M1 ≤ . . . ≤M r.

An important system of coalitions is provided by the diagonal which is

∆ := {S ∈ P|λρ(S) = v(S) (ρ = 1, . . . , r)}.(9)

We call the elements of ∆ diagonal sets as the vector–valued measure pro-
vided by the representation (2), i.e., λ = (λ1, · · · ,λr) maps such sets into
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diagonal vectors in Rr. On diagonal sets, v behaves additively, that is, for
S, T ∈ ∆ it follows that

v(S) + v(T ) = v(S + T )

holds true. As a consequence, it is observed that the behavior of v on the di-
agonal has a strong influence on the core. Indeed, suppose the carrier C1 can
be matched by partners in each corner, i.e., there is, for every (ρ = 2, . . . , r),
a coalition Dρ satisfying λρ(Dρ) = λ1(C1). Then it follows immediately,
that v equals any core element on ∆, formally:

v(S) = µ(S) (S ∈ ∆, µ ∈ C(v) ) .(10)

Diagonal coalitions can be seen as efficient: no input is wasted and the
exact quantity of commodity ρ necessary to achieve v(S) is available from
every corner ρ of the market. Also (this is the meaning of additivity), the
result of cooperation in the grand coalition or within a system of smaller but
diagonal coalitions is the same. The worth achieved in diagonal coalitions
decomposing the grand coalition is just added up.

Therefore, diagonal coalitions play an important role. With increasing size
of the market or game, the core is eventually determined by the diagonal
coalitions: if there are “sufficiently many” diagonal coalitions the equations
suggested by (10) will precisely characterize the core elements. This can as
well be formulated as an “equivalence theorem” between the core and the set
of shadow price–generated imputations, see [7], [8], [9] for the details.

In our present context, the shadow price–generated imputations are given by
the convex hull of those measures in the representation (2) that have minimal
mass (the minimizing measures). For simplicity, we shall always assume that
the extreme points of the core are among the measures used in (2), that is,
that the equivalence theorem is satisfied. We refer to this fact (sometimes
sloppily) by saying that we deal with a large game .

This property could be achieved by just adding the extremals of the core to
the representation. But this might disturb orthogonality. Thus, we have to
assume that “sufficiently many players” are present in order to achieve an
equivalence theorem. It is not hard to see that an equivalence theorem holds
true if there are sufficiently many players of the smallest weight (wρ1 = 1)
available in each corner ρ. More precisely, given the weights of the larger
players, there is an integer N 0 (depending on these weights only) such that,
whenever kρ1 ≥N 0(ρ = 1, . . . , r) is satisfied, then the core is the convex hull
of the minimizing measures. This can be verified by a small change of an
equivalence theorem as presented in Theorem 3.23 in Chapter 5 of [9].
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Eventually we shall argue that the core is a significant solution concept for
orthogonal games only for exact games. A game v is called exact if, for
every coalition S ∈ P, there exists a measure µ ∈ C(v) such that

µ(S) = v(S)

holds true. An exact game is totally balanced and it is not hard to see that
a totally balanced game is exact if and only if there exists a representation
(2) of v by means of finitely many measures such that each of them has the
same total mass, i.e.,

λ1(I) = . . . = λr(I) = v(I)

holds true. In other words, for an exact game, the grand coalition is diagonal.

In the continuum, the core of the exact game is exactly the convex hull
of the measures establishing the representation (Billera and Raanan [1], a
continuous game is large in the sense explained above). In this case the core
seems to derive an additional strength from the fact that it has a tendency to
be a vNM-Stable Set . This means that the core dominates all imputations
outside of itself. For a continuum of players, this has been established by
Einy et. al. [3].

Again it turns out that diagonal coalitions play an important role in order
to establish this property for certain large but finite games. We describe this
result in Section 3.

The concept of a vNM–Stable Set is due to von Neumann-Morgen-
stern([15]). This is a set S of imputations such that no internal domination
occurs while any feasible payoff measure outside of S can be dominated from
inside. For completeness, we offer a definition of the concept as follows.

Definition 2.1. 1. Let (I,P,v) be a game. An imputation is a mea-
sure ξ such that ξ(I) = v(I) and ξi ≥ v({i}), (i ∈ I) holds true.

2. An imputation ξ dominates an imputation η w.r.t a coalition S ∈ P
if ξ is effective for S, i.e.,

ξ(S) ≤ v(S)(11)

and if

ξ(T ) > η(T ) (T ∈ P, T ⊆ S)(12)

holds true, that is, every sub-coalition of S (every player in S) strictly
improves its payoff at ξ versus η. We write ξ domS η to indicate
domination.
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3. An imputation ξ dominates an imputation η (written ξ dom η) if
there is a coalition S ∈ P such that ξ dominates η with respect to S.

4. Let v be a game. A set S of imputations is called a vNM–Stable Set
if

• there is no pair ξ,µ ∈ S such that ξ dom µ takes place,

• for every imputation η /∈ S there exists ξ ∈ S such that ξ dom η
holds true.

The interpretation of vNM–Stable Sets generally is quite involved. A well
known quotation from [15] states that it is a “standard of behavior.” In our
context, Hart emphasizes that vNM–Stable Sets predict the coalitions that
will actually form.

In Section 2 we show that for large but finite exact games the core is a (the
unique) vNM–Stable Set. This is the finite version of the result of Einy et
al. [3].

Eventually we want to deal with non-exact games. Here, the result available
for a continuum of players states that all (convex, polyhedral) vNM–Stable
Sets can be characterized and (other than the core) indicate the bargaining
power of the long side of the market via cartelization (see Rosenmüller and
Shitovitz [10]). We obtain this result (partially) for the case of a finite but
large game (Section 4). In this situation, the difficulties of interpreting
vNM–Stable Sets are nicely overcome. For, the convex polyhedral type we
exhibit obviously admits of the interpretation Hart had in mind: the forma-
tion of cartels. We see clearly, that all players in a corner of the market derive
a certain strength from cartelization: on one hand (first off all ?) they agree
about a distribution of worth inside their corner, this way establishing the
cartel. On the hand (thereafter ?), the cartels bargain (via representatives ?)
on an equal footing since all of them are absolutely necessary for generating
wealth at all.

Thus, the concept of vNM–Stable Sets all of a sudden appears to be most
successful: other that the core (or the Shapley value or the Walrasian equi-
librium) they provide an (endogenously justified) successful participation of
the long side of the market in bargaining process.



? Section 3: Exact Games and vNM--Stability of the Core ? 11

3 Exact Games and vNM–Stability of the Core

Within this section we focus on large exact (totally balanced) games. The
solution concept we are dealing with is the core - but only tentatively so:
eventually we want to deal with vNM–Stable Sets. Our present aim is to
obtain the finite version of a theorem which is provided by Einy et al. ([3])
within the continuous context. It states that the core is vNM–stable.

We cannot expect this statement to hold true quite generally in the finite
case (it is not true). Rather, we are going to show that, in some well defined
case, the theorem is true for large games. Thus, eventually we shall exhibit a
class of exact games generated by integer (orthogonal) measures and having
many members of the smallest type in each corner: this class allows for a
core that is a vNM–Stable Set.

To begin with, consider an exact game, i.e., a totally balanced game repre-
sented as

v =
∧{

λ1, · · · ,λr
}

such that the total mass of each of the measures λρ is the same,

M1 = λ1(I) = Mρ = λρ(I) (ρ = 1, . . . , r).(1)

As has been emphasized, we assume the game to be large, so the core is
the convex hull of the measures used for the representation. Within the
framework of exact games, the diagonal again plays an important role. Our
first task is to describe a subsystem of diagonal sets which partitions the
player set I in a most delicate way. We may think of this system as of a
coalition formation process. Coalitions form successively by the introduction
of new players who organize themselves in partnerships within the various
corners of the market.

More specifically, consider a system S ⊆ ∆ of diagonal sets which constitutes
a partition of I. Assume that there is an ordering � defined on S. For
every corner ρ and any S ∈ S consider the partners of S in Cρ given by
Sρ = S ∩ Cρ. Clearly, the ordering of S induces a consistent ordering on
each system Sρ = {Sρ}S∈S. This means that, whenever the partners Sρ of
S precede the partners T ρ of T within one corner ρ, then the same holds true
for any other corner ρ ′ . This way we obtain as well an ordering within each
corner. Clearly we write Sρ � T ρ for the induced ordering; the same symbol
� is used for the ordering on any Sρ as well as the one on S. There is little
danger that this will cause confusion.
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Formally we supply the following definition:

Definition 3.1. A system of diagonal coalitions S ⊆ ∆ is consistently
ordered if

1. S constitutes a partition of I, i.e.,
∑

S∈S S = I, and

2. there is a total ordering � defined on S which consistently induces a
total ordering on every Sρ (ρ = 1, . . . , r), that is,

S � T ⇐⇒ Sρ � T ρ (ρ = 1, . . . , r)

holds true.

Intuitively, if we adopt the idea that diagonal coalitions produce or trade
most efficiently, then the above definition means that we have to arrange
the players in each corner to form coalitions with partners in every other
corner such that coalitions with equal weight join across the corners to reach
maximal efficiency. This kind of arrangement will proceed in a certain or-
dering which, eventually, reflects the fact that smaller players “support the
introduction of larger players into the system’. The introduction of larger
players is more difficult because these players, owing a large chun of com-
modity in some corner, are more problematically to arrange into efficiently
producing coalitions. On the other hand they are “stronger” in some obvious
sense. The problem is to arrange for an “adjusted” worth of these large play-
ers with respect to a core distribution. This reflects a “coalition formation
process”.

Consequently, we want this partition to satisfy some additional conditions.
Let us describe how large players have to be introduced by smaller ones into
the groups of efficiently producing coalitions. To this end we use the ordering
� in a slightly extended way: if S̄ρ = S̄ ∩ Cρ represents the ρ−partners
of some S̄ ∈ S and T ρ ⊆ Cρ is an arbitrary coalition in corner ρ, then we
write T ρ � S̄ρ if all members of T ρ belong to coalitions Sρ that precede S̄ρ,
formally

T ρ � S̄ρ iff T ρ ⊆
⋃

Sρ∈Sρ, Sρ�S̄ρ
Sρ holds true .

Definition 3.2. Let S ⊆ ∆ be a system of diagonal coalitions which is con-
sistently ordered (cf. Definition 3.1). Let S ∈ S and let Sρ = S ∩ Cρ be
the partners of S in corner ρ. We shall say that T ρ ⊆ Cρ supports the
introduction of i ∈ Sρ, if the following conditions are satisfied:
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1. T ρ � Sρ.

2. All players in T ρ are of the same type as i.

3. T ρ and Sρ have the same weight, i.e., λρ(T ρ) = λρ(Sρ).

For short we shall say that the introduction of Sρ is “supported by predeces-
sors” if, for every i ∈ Sρ, a suitable T ρ supports its introduction. Sloppily,
we shall also say that i “is introduced by predecessors”.

Note that the coalition T ρ that appears in the above definition is not neces-
sarily the partnership of some T ∈ S. All we require is that T ρ precedes Sρ

in the above mentioned sense. Also, the third requirement essentially states
that, whenever Sρ consists of a singleton, then the type of this player must
have appeared “earlier” - again in the above mentioned sense.

A first vague idea concerning this definition is described as follows. Sup-
pose that with respect to the formation of S ∈ S, the partners in corner ρ

consider how to justify their claims (vs. the other corners and inside their
coalition). Now, by some (inductive) procedure, player i ∈ Sρ can point to
a coalition T ρ of players that are already “in the system” and which are all
of his type. These players may belong to various coalitions which appeared
during the process of forming the system so far. But as the game along di-
agonal coalitions is additive, this may not matter to much: they could now
form a coalition which has the same power (initial assignment) as Sρ and
in which their share already has been established. Then they could joint
the large coalition of all players players “preceding” S - which is diagonal
and produces efficiently. This way the share of player i is considered to be
established by the previous bargaining successes of all players of his type in
his corner.

Now the successive introduction of players is formally described as follows:

Definition 3.3. Let S ⊆ ∆ be a partition of I. We shall say that S is
universally ordered by �, if S is consistently ordered (c.f. Definition 3.1
) and, in addition, the following conditions are satisfied.

1. Let R be the �-first coalition. Then, for every corner ρ, the partnership
Rρ = R ∩ Cρ consists of just one player of the smallest type.

2. Let S ∈ S, S 6= R. Then, for any Sρ which is not a singleton, intro-
duction is supported by predecessors. (cf. Definition 3.2).
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3. For every S ∈ S, S 6= R there exists ρ ∈ {1, · · · , r} such that introduc-
tion of Sρ is supported by predecessors (cf. Definition 3.2).

This definition is interpreted as to incorporate the idea of successive intro-
duction as follows: the � −first coalition consists of just one of the smallest
players in each corner. They are starting the coalition formation process
represented by S and their “introduction” is immediate.

For every coalition following later, consider the partners in corner ρ : if this is
not a singleton, their introduction is necessarily supported by predecessors. If
it is a singleton, then this requirement is not necessary. However, it cannot
happen that all partner coalitions are singletons that have not been sup-
ported by predecessors. Rather, in at least one corner, there is a partner set
the introduction of which by predecessors is guaranteed. This way we have
explained the way that singletons are introduced by partners: they are
not directly linked to the predecessors in the process, but they are partners
to at least one coalition that is linked to players already in the system.

Example 3.4. In the following figure we represent each S ∈ S by a block.
There are three corners which correspond to the rows in each block. The
first coalition contains a player of weight 1 from each corner, hence for the
next two blocks introduction is trivially feasible.

In order to introduce a player with weight 3 in the middle corner of the third
block, three players of weight 1 in each of the other corners are available,
introduction for each of these coalitions is feasible, since the 1 appears three
times previously on both levels.

1
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1
1

1
1
1

111
3

111

111
3

111

3
3
3

3
3
3

6
33

111111

6
33
33

9
333
333

66
12

3333

66
12

3333

6666
12 3333

24

Consider the last block: in order to introduce the player with weight 24 in
the lowest corner, we need four times a preceding 6 in the uppermost corner
so as to generate a total of 24. This way, the introduction of the coalition
in the uppermost corner is supported by predecessors. In the middle corner
we need twice the 12 and eight times the 3 in the preceding coalitions; hence
again the introduction is supported by predecessors. Eventually we see that
the introduction of the player with weight 24 is supported by his partners in
the other corners because they are all linked to previously introduced players
/ coalitions.
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We shall now make a further effort to interpret this definition, viewing the
solution concept we have in mind.

As v is additive on the diagonal, it is clear that efficient production can as
well be organized in the grand coalition I of the exact game as in any decom-
position of I into diagonal sets. The above definition is meant to stabilize
the core in the sense of vNM–stability (see the Theorem below). In order
to achieve this, players must be successively “introduced” into the diagonal
system. This process is now seen with a particular regard towards blocking
an imputation which is outside the solution concept, hence considered to be
“illegal” in the sense of vNM–Stability.

To this end, first of all the smallest players in each corner organize themselves
into an efficiently producing (diagonal) coalition by joining in the ≺ −first
coalition R which contains one player of this smallest type in each corner.

Now suppose a certain number of diagonal coalitions has already been formed.
Then typically a player with considerable weight which so far was not in the
system is “introduced”. The player (as a singleton) is matched by smaller
players in the various corners other than his own so that they form a efficiently
producing (i.e., diagonal) coalition. Each of these partners has a smaller
weight. The introduction of players of this weight has been supported earlier
– so now his introduction can easily be supported.

This procedure now permits to compute the suitable share (in the core and
with the aim to block an imputation outside the core) of the partners by “pre-
vious” agreements and to compare it with the suitable share of the new player
to be introduced. This way it must be possible to introduce successively all
players via efficiently trading / producing coalitions and to determine their
proper share when an element outside the core (an illegal proposition in the
sense of vNM) has to be dominated. The result of the process is nevertheless
an imputation, i.e., a distribution of profits that suggests the grand coali-
tion. However, producing / trading in the grand coalition and in a system of
diagonal ones has the same effect. The final result will be that the “legal”
propositions (in the sense of vNM) obtained essentially by this procedure
point (in the non-exact case) to the endogenous formation of cartels.

Now it turns out that the possibility to arrange cooperation simultaneously
in small but efficient coalitions as described above renders the core to be
vNM-stable. We borrow this theorem from [9].

Theorem 3.5. Let v =
∧{

λ1, · · · ,λr
}

be a large exact game. If λ admits
of a universally ordered system S ∈ D, then the core of v is a vNM-Stable
Set.
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We do not want to enter into the details of the proof of the above theorem.
The point is, that, for any imputation outside the core, there exists a rear-
rangement of the coalitions of the universally ordered system which uniquely
determines a core element. This core element dominates the outside impu-
tation; hence the core is vNM–stable.

The main result of this section is that we can construct universally ordered
systems if there are sufficiently many small players present in every corner.
More precisely, given an exact game v =

∧{
λ1, · · · ,λr

}
, we can point

out certain bounds N ρ (ρ = 1, . . . , r), depending on the large weights wρτ
only, with the following property. Whenever the number of players of weight
1 in corner ρ is at least N ρ, then there exists a universally ordered system
partitioning I, hence C(v) is stable.

Necessarily we have to introduce some notation. We denote tentatively the
set of types of corner ρ without the smallest one by Tρ = {2, . . . , Tρ}.
Following tradition, τ−ρ indicates the coordinates of a vector (τ1, . . . , τr)
without coordinate ρ. The analogous notation for taking away two indices
is τ{ρσ}. The same is used for index sets and their Cartesian product, say
T1 × . . .× Tr.

Also, we introduce the products of weights

Wτ1,... ,τr := w1
τ1
· . . . · wrτr(2)

and the greatest common divisor of weights

dτ1,... ,τr := g.c.d.{w1
τ1
, . . . , wrτr}.(3)

These quantities are now used in order to define our lower bounds for the
number of small players. For σ = 1, . . . , r and τσ ∈ Tσ we define

Hσ
τσ := max

ρ6=σ

Tρ∑
τρ=2

max
τ−{ρ,σ}∈T−{ρ,σ}

Wτ1τ2...τr

dτ1τ2...τrw
σ
τσ

.(4)

Then our bounds are given by

N ρ := max
{
wσTσ σ = 1, . . . , r

}
+ max

{
min

{
kρτρ ,H

ρ
τρ

}
τρ ∈ Tρ

}
.(5)

Let us shortly consider this expression. The essential clue is that these
bounds depend on the weights wρτ only. Indeed, for the first term this is
obvious. As to the second term, the products of the weights are involved
(the reader who wishes to skip the details may as well exchange the term for
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the maximum product of all weights). The minimum to be taken between
the number of players kρ• and the quantities Hρ

τρ as well as the combinatorial
niceties of involving the g.c.d.’s are technical and not too important for the
interpretation. The point is that, given the weights of the large types, the
number of players of the smallest type which is necessary for the core to be
a vNM-Stable Set, can be determined. In this sense, the core is vNM-stable
for large games. The precise version is as follows:

Theorem 3.6. Let v =
∧{

λ1, · · · ,λr
}

be a large exact game. Assume
that, for every corner ρ the number of players of weight 1, i.e. kρ1, exceeds
N ρ. Then the core of the game C(v) is a vNM-Stable Set.

Proof:

The proof rests on Theorem 3.5. We are going to construct a universally
ordered system S ⊆ ∆ of diagonal coalitions. To this end we arrange the
players in “blocks’, each “block” representing a diagonal coalition S such
that the members of the various corners are represented by their weights.
The first set of blocks is given as follows:

1
...

1

1
...

1

. . . . . .

1
...

1

(6)

Thus we see, that from each corner a player of weight 1 joins a block (diagonal
coalition) S, these weights are listed horizontally each row indicating a corner.
The (vector-valued) measure of such a block is of course

λ(S) = (1, . . . , 1).

As for the number of these blocks we take

max
ρ=1,... ,r

max
τ=1,... ,T

wρτ = max
ρ=1,... ,r

wρTρ(7)

(the weights are ordered increasingly). There are enough players of weight 1
in each corner available for this construction, this is just ensured by the first
term that appears in the definition (5) of N ρ.

Note also that the blocks introduced so far satisfy the conditions to be im-
posed on a universally ordered system. The first block starts the procedure
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of introduction and the next blocks obviously consist of partner sets the
introduction of which is supported by predecessors.

The next type of blocks is obtained as follows: from some corner ρ we take
a player of weight wρτ and from each other corner we take just wρτ players of
weight 1. One block of this type is represented by

1 . . . 1
...

...
...

1 . . . 1

wρτ
1 . . . 1
...

...
...

1 . . . 1

.(8)

This way we introduce successively the players with weights wρτ into our
system, again this is compatible with the requirement of a universally or-
dered system. For, the partner sets that are non-singletons are introduced
by predecessors. Hence the singleton, consisting of one player of weight wρτ ,
is introduced by its partners.

As for the number of such blocks, we require that

the number of blocks (8) is Hρ
τ .(9)

This is feasible by our assumption regarding the numbers of small players
available: indeed, whenever it occurs that the number of players with the
large weight wρτ is exhausted, then all players of this weight appear already
in our system and can be disregarded henceforth. In this case we save a
few players of weight 1 as well, as only kρτ of them are necessary. On the
other hand, if there are more players of the large weight wρτ , the fact that
enough small players are available in each corner is exactly ensured by the
appearance of the term Hρ

τ in the second part of the definition of N ρ
τ as

spelled out in (5).

Thus there is now a huge number of blocks of shape (8) in our system, all
of them are diagonal (with measure λ(S) = (wρτ , . . . , w

ρ
τ )) and so is their
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union. We may represent the part of the system S constructed thus far by

1
...
...

.

...

...

1

1
...
...

.

...

...

1

. . . . . .

1
...
...

.

...

...

1

w1
1

1 . . . 1
...

...
...

1 . . . 1

1 . . . 1
...

...
...

1 . . . 1

. . .

1 . . . 1
...

...
...

1 . . . 1

wρτ
1 . . . 1
...

...
...

1 . . . 1

. . .

1 . . . 1
...

...
...

1 . . . 1

1 . . . 1
...

...
...

1 . . . 1

wrTr

(10)

At this stage we observe, that players of every weight have been introduced
by predecessors in sufficient numbers.

3rdSTEP : Therefore, further players with weight 1 are not necessary, it is
now possible to introduce all other players still remaining into the the system.
To explain this procedure we proceed as follows.

The sum (disjoint union) of all blocks collected so far and indicated in (10)
is a diagonal coalition. As we are presently dealing with an exact game,
the complement or remainder coalition is a diagonal coalition as well. This
remainder at this stage is a coalition containing players of all possible weights,
let us represent it by a block

1 . . . 1 w1
2 . . . w1

2 . . . w1
T1

. . . w1
T1

...
...

...
...

...
...

...
...

1 . . . 1 wρ2 . . . wρ2 . . . wρTρ . . . wρTρ
...

...
...

...
...

...
...

...

1 . . . 1 wr2 . . . wr2 . . . wrTr . . . wrTr

.(11)

The number of weights 1 does not have to be equal in each row. In some
rows these weights may be missing. Also, in some rows certain other weights
greater that 1 may be missing. All of this does not change the argument we
are now presenting. This argument is provided for the case that there are no
weights 1 in the above list and that all the other weights are present. This
induces a simplified notation and has no serious consequences. Therefore, in
what follows, the weights in each corner start out with an index 2 for each
type.

Let us assume that the number of weights wρτ that appears in the above list
(11) is aρτ . Since the coalition represented by the sum of all blocks in (11)
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is a diagonal one, the mass accumulated in every corner is the same, say Λ.
This means that we have a set of equations

Tρ∑
τ=1

aρτw
ρ
τ = Λ (ρ = 1, . . . , r).(12)

Now we want to show that we can introduce all members of this remainder
coalition into our system S without the help of further elements of weight 1
just by using the weights wρτ that are already present.

We fix an index in {1, . . . , r}, say ρ = 1 (any other index would be treated
analogously, this is just for notational convenience).

Suppose that for some τ̄1 we find that

a1
τ̄1
≥ max

ρ=2,... ,r

Tρ∑
τρ=2

max
τ−{1,ρ}∈T−{1,ρ}

Wτ̄1τ2...τr

dτ̄1τ2...τrw
1
τ̄1

(13)

is the case. Then, for every σ not all indices τσ can satisfy

aστσ < max
ρ6=σ

Tρ∑
τρ=2

max
τ−{1,σ}∈T−{1,σ}

Wτ̄1τ2...τr

dτ̄1τ2...τrw
σ
τσ

.(14)

For, in this case (14) would imply∑
τσ∈Tσ

aστσw
σ
τσ

<
∑
τσ∈Tσ

max
τ−{1,σ}∈T−{1,σ}

Wτ̄1τ2...τr

dτ̄1τ2...τr

≤ max
ρ=2,... ,r

Tρ∑
τρ=2

max
τ−{1,ρ}∈T−{1,ρ}

Wτ̄1τ2...τr

dτ̄1τ2...τr

≤ a1
τ̄1
w1
τ̄1

(in view of (13))

≤ Λ in view of (12) .

(15)

This is clearly a contradiction to (12) and hence, for every σ there is at least
one τ̄σ ∈ Tσ such that

aστ̄σ ≥ max
τ−{1,σ}∈T−{1,σ}

Wτ̄1...τ̄σ ...τr

dτ̄1...τ̄σ ...τrw
σ
τ̄σ

(16)
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holds true. Hence we have obtained from every corner σ a type τ̄σ such that

aστ̄σ ≥
Wτ̄1...τ̄σ ...τ̄r

dτ̄1...τ̄σ ...τ̄rw
σ
τ̄σ

(17)

is satisfied. As a consequence, we can take from every corner of the remainder
coalition as indicated by (11) a number of

Wτ̄1...τ̄σ ...τ̄r

dτ̄1...τ̄σ ...τ̄rw
σ
τ̄σ

(18)

players of weight wστ̄σ , the total weight being in each case

Wτ̄1...τ̄σ ...τ̄r

dτ̄1...τ̄σ ...τ̄r
.(19)

This defines indeed a sub-coalition of the remainder coalition (11). We may
indicate this sub-coalition by a block

w1
τ̄1

. . . w1
τ̄1

...
...

...

wrτ̄r . . . wrτ̄r

(20)

each row σ of which (representing a corner of the corresponding coalition)
has the number of elements indicated in (18) and hence represents a weight
as given in (19).

By taking out this coalition (i.e., block (20)) from the remainder coalition
(i.e., from (11)) and adding it to system S that has been constructed, we
can effectively decrease the coefficient a1

τ̄1
that we have focused upon by

considering (13) (the same can be done, of course if the index specified is not
ρ = 1). And adding (20) to the system constructed so far is indeed permitted
because the blocks (10) describing the “preceding” coalitions show enough
players in order to support the introduction of every player of (20); this is
guaranteed by the requirement (9).

After repeating this procedure as often as necessary we may eventually as-
sume that no inequality like (13) prevails. That is, we may eventually assume
that

aστσ ≤ max
ρ 6=σ

Tρ∑
τρ=2

max
τ−{σ,ρ}∈T−{σ,ρ}

Wτ1...τr

dτ1...τrw
1
τ̄1

(21)
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holds true.

But in view of (12), this means exactly that the remainder coalition (11)
can be introduced by predecessors, i.e., by the members of the previously
constructed system (10).

q.e.d.

This completes our treatment of the exact case. If there are sufficiently
many players of the smallest type available, then the procedure of “successive
introduction of players” as described by the notion of a universally ordered
partition of I into diagonal sets ensures the core to be stable in the vNM
sense. Therefore, proposals from outside the core can be dominated from
inside.

Now we leave the territory of exact games. The cores loses its property of
external stability. However, we believe that external domination is quite im-
portant in the general context and that it helps to understand the formation
of cartels as will be argued in the following section.
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4 The Formation of Cartels in Large Games

Within this section we turn to the general totally balanced and orthogo-
nal game; explicitly we want to deal with non-exact games. Thus we as-
sume that we are given a representation by means of finitely many measures
λ1, · · · ,λr ∈ A+ via

v =
∧{

λ1, · · · ,λr
}
.(1)

Again we assume that the measures are integer valued and ordered according
to mass, i.e.,

v(I) = M1 = λ1(C1) ≤ . . . ≤ M r = λr(Cr);(2)

at least one of the inequalities in (2) is a strict one.

In this case, and for a sufficiently large game, the core consists of the convex
hull of all the measures with minimum mass, i.e., of the measures

{λρ | λρ(I) = λ1(I) = v(I)} .(3)

Thus, the payoffs in the core favors the short side of the market excessively
and the bargaining power of the long side is regarded to be neglectable. The
reason behind this extreme behavior is the ability of the coalition of short-
siders to pick a suitable proper sub-coalition of the long side for cooperation
and to thereby exploit the members of the long side arbitrarily.

More precisely, assume for the moment that we argue for the case of just
two corners in the market, the second (C2) reflecting the long side. Given a
core element x ∈ C(v), every sufficiently small coalition T ⊆ C2 has the bad
luck that its complement contains a suitable subset, say I2 such that the pair
C1, I2 constitutes a diagonal coalition (i.e., λ1(C1) = λ2(I2)) the worth of
which in terms of the game is v(I).

This means that x yields the total payoff x(C1 + I2) = v(I) which equals
the total payoff x(I). Consequently, every sufficiently small coalition receives
zero-payment because the complement can cooperative efficiently with C1.

This way we observe that, at any core element, small coalitions on the long
side of the market receive zero because their complements cooperative ef-
ficiently with the short side. However, as everyone on the long side is a
member of a small coalition (assuming suitable conditions for to speak of a
’large game’), everyone gets zero payment. This way the short side of the
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market plays all the small coalitions on the long side off against each other
and this is why no one on the long side benefits from a core element.

The essential point is that the core derives its strength from the ability of
coalitions to achieve something (consider coalition I2 above). However, it
is also important to consider the ability of a coalition to prevent opposing
coalitions from achievements. The term ’blocking’, while it is generally not
considered to be justified in the context of the core, may be justified when
used for the preventive power of a coalition.

How can the preventive power of the long side of the market be exercised?
The bargaining procedure is obvious: Let the long side form a tentative
coalition which agrees that no smaller coalition will join the short side unless
there is a general agreement. They may also agree on the distribution of the
resulting benefits among their members respecting in some sense or other the
initial assignments.

Then the long side bargains (say by some representatives) with the short side
regarding a distribution of the benefits between both sides. Thereafter these
benefits are distributed inside the rank and file.

This is what is meant by the formation of cartels. Can we recognize this
kind of bargaining behavior by the predicting power of a solution concept?
This would be the case if a solution concept typically proposes a distribution
of wealth for each corner of the market which yields the same total wealth
for both sides. More precisely, there should be a set of mutually orthogonal
measures each of them absolutely continuous and with bounded density with
respect to the distribution of the initial assignments.

If these measures are specified in order to represent the the distribution of
wealth inside each corner, then convex combinations to be taken between
these wealth distributions would reflect the bargaining procedure within the
cartels.

It turns out that vNM-Stable Sets reflect just this procedure. It is a strength
of the vNM-Stable Set that it requires not only internal stability (which
the core achieves as well) but also external stability (which the core cannot
guarantee when there is a long side on the market as it is not vNM stable in
this case). That is, the vNM-Stable Sets seem to reflect some prevention or
blocking power by the very definition of external stability.

It is therefore the most interesting fact that vNM-Stable Sets reflect carteliza-
tion of the market in the above mentioned sense.

This is now demonstrated by the construction of such kind of solutions as
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follows.

Theorem 4.1. Let v =
∧{

λ1, · · · ,λr
}

be a totally balanced and orthogo-
nal game and let µ1, . . . ,µr be normalized measures, i.e., satisfy µρ(I) =
v(I) (ρ = 1, . . . , r). Assume that

µρ ≤ λρ (ρ = 1, . . . , r)(4)

is satisfied. Then there exist numbers N̂
ρ

(ρ = 1, . . . , r), depending on the
weights wρτ (ρ = 1, . . . , r; τ = 2, . . . T ρ) of µ = (µ1, . . . ,µr) only, with the
following property: whenever the number of players of weight 1 in corner ρ
exceeds N̂

ρ
, then the convex hull S = CnvH{µ1, . . . ,µr} is an externally

vNM–Stable Set for v.

Proof:

The proof rests on Theorem 3.6 and hence uses the result in [9] concerning
the vNM-stability of the core for large exact games.

Given the measures µρ (ρ = 1, . . . , r), we consider the new game u given
by

u =
∧{

µ1, . . .µr
}
.(5)

It follows from µρ ≤ λρ and from λ1(I) = v(I) = µ1(I) = . . . = µr(I)
that

u ≤ v, u(I) = v(I).(6)

holds true. Clearly, the game u is exact and orthogonal. In addition, we can
assure that u is large. To this end, we have to take sufficiently many players
of the smallest type in each corner. The bound N 0 which has to be exceeded
depends on the larger weights of µ only (see Section 2). Therefore, we take

the number N̂
ρ

to be the maximum of N 0 and the number N ρ which is
determined by Theorem 3.6 with regard to the game u.

Obviously the imputations for both games, u and v, are the same. Moreover,
for two imputations x and ξ′, we can infer that

x domu ξ′ implies x domv ξ′,(7)

this is a rather immediate consequence of (6).
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Now, according to Theorem 3.6, S = CnvH{µ1, . . . ,µr} is the unique
vNM–Stable Set of u. Therefore, the imputations in S dominate all impu-
tations outside of S with respect to u. In view of the above observation it
follows that the imputations in S a fortiori dominate everything outside of
S with respect to v. q.e.d.

Corollary 4.2. Let v =
∧{

λ1, · · · ,λr
}

be a totally balanced and orthogonal
game and let µ1, . . . ,µr be normalized measures. Let µρ have the same
weights as λρ (ρ = 1, . . . , r) and let

µρ ≤ λρ (ρ = 1, . . . , r)(8)

be satisfied. Then there exist numbers Ñ
ρ

(ρ = 1, . . . , r), depending on the
weights wρτ (ρ = 1, . . . , r; τ = 2, . . . T ρ) of λ = (λ1, · · · ,λr) only, with the
following property: whenever the number of players of weight 1 with respect
to µρ exceeds Ñ

ρ
, then the convex hull S = CnvH{µ1, . . . ,µr} is an

externally vNM–Stable Set for v.

The proof follows immediately from the previous theorem. The advantage
is, that the bounds are “universal“. They depend, in this case, on the rep-
resentation given by (λ1, · · · ,λr) only. Hence, an externally vNM–Stable
Set is constructed by taking the weights available for the large players and
sufficiently many players from the smallest type in each corner. Note that
each µρ equals the corresponding λρ whenever the latter one in minimizing,
i.e., yields λρ(I) = v(I).

We are now going to show that the type of solution introduced by the previous
theorem is indeed a vNM–Stable Set. More precisely, we obtain the following
theorem:

Theorem 4.3. Let v =
∧{

λ1, · · · ,λr
}

be totally balanced and orthogonal
and let µ1, . . . ,µr be normalized measures such that µρ ≤ λρ, (ρ = 1, . . . , r)
holds true. Then S = CnvH{µ1, . . . ,µr} is internally stable. Hence, if
there are sufficiently many small players in each corner of the market, then
S is a vNM–Stable Set.

Proof: We have to prove internal stability only, as external stability follows
from Theorem 4.1 or Corollary 4.2.

Let µ =
∑r

ρ=1 cρµ
ρ and Let ν =

∑r
ρ=1 dρµ

ρ be imputations in S and assume
that we have

µ domS ν
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with a suitable coalition S. Because of

v(S) ≥ µ(S) > ν(S)

we know that λρ(S) > 0 (ρ = 1, . . . , r) holds true, this follows from the
representation of v in view of

v(S) = min{λρ(S) ρ = 1, . . . , r}.

Consequently we obtain

S ∩ Cρ 6= ∅ (ρ = 1, . . . , r).

For every ρ we choose i ∈ S ∩ Cρ. Then, using the fact that our measures
are orthogonal, we obtain

cρµ
ρ
i =

s∑
σ=1

cσµ
σ
i = µi

> νi =
s∑

σ=1

dσµ
σ
i = dρµ

ρ
i

and hence

cρ > dρ (ρ = 1, . . . , r).

This obviously contradicts

1 =
r∑

ρ=1

cρ =
r∑

ρ=1

dρ.

q.e.d.

The reader may wish to compare the corresponding proofs in the continuous
case, these are provided in [10]. Of course, the continuous result so far is much
stronger: there we obtain a complete characterization of convex (polyhedral)
vNM–Stable Sets. Presently we claim that the situation is not so different
in the large but finite case. Nevertheless, a complete characterization seems
to be out of the question: Ljapunovs Theorem is crucial for the proof of
Theorem 4.6. of [10] (and hence for the Characterization Theorem). On the
other hand, the continuous result allows for conclusions with respect to the
discrete version only if all measures λρ represent uniform distribution – this
we have surpassed in our present treatment.
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