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Abstract

In this paper the egalitarian solution for convex cooperative

fuzzy games is introduced. The classical Dutta-Ray algorithm for

finding the constrained egalitarian solution for convex crisp games

is adjusted to provide the egalitarian solution of a convex fuzzy

game. This adjusted algorithm is also a finite algorithm, because

the convexity of a fuzzy game implies in each step the existence
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of a maximal element which corresponds to a crisp coalition. For

arbitrary fuzzy games the equal division core is introduced. It

turns out that both the equal division core and the egalitarian

solution of a convex fuzzy game coincide with the correspond-

ing equal division core and the constrained egalitarian solution,

respectively, of the related crisp game.
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1 Introduction

The concept of egalitarianism, mainly based on Lorenz domination, has gen-

erated several core-related solution concepts on the set of cooperative crisp

games with transferable utility (cooperative TU-games): the constrained

egalitarian solution (Dutta and Ray (1989)), the Lorenz solution (Hougaard

et al. (2001)), the Lorenz stable set and the egalitarian core (Arin and Inarra

(2001)). The class of convex crisp games is the only standard class of coop-

erative TU-games for which the constrained egalitarian solution exists and,

moreover, it belongs to the core and Lorenz dominates every other core allo-

cation. It turns out that all the other egalitarian solutions mentioned above

coincide for convex crisp games with the constrained egalitarian solution.

On this class of cooperative TU-games alternative axiomatic characteriza-

tions of the constrained egalitarian solution are provided by Dutta (1990),

Hokari (2000), Klijn et al. (2000). This solution for a convex crisp game can

be obtained using the algorithm proposed by Dutta and Ray (1989) or the
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formula suggested by Hokari (2000).

Another solution concept related to the norm of equity is the equal di-

vision core proposed by Selten (1972). He introduces it in order to explain

outcomes in experimental cooperative games and notes that in 76 % of 207

experimental games the outcomes have a ”strong tendency to be in the equal

division core”. Axiomatic characterizations of this solution concept on two

classes of cooperative TU-games are provided by Bhattacharya (2002).

The main purpose of this paper is to introduce on one hand the egalitarian

solution in the context of convex fuzzy games as proposed by Branzei et al.

(2002a), and on the other hand the equal division core for arbitrary fuzzy

games.

Cooperative fuzzy games have proved to be suitable for modelling coop-

erative behavior of agents in economic situations (Billot (1995), Nishizaki

and Sakawa (2001)) and political situations (Butnariu (1978), Lebret and

Ziad (2001)) in which some agents do not fully participate in a coalition but

only to a certain extent. For example in a class of production games, partial

participation in a coalition means to offer a part of the resources while full

participation means to offer all the resources. A coalition including players

who participate partially can be treated in the context of cooperative game

theory as a so-called fuzzy coalition, introduced by Aubin (1974, 1981).

The theory of cooperative fuzzy games started with the cited work of

Aubin where the notions of a fuzzy game and the core of a fuzzy game are

introduced. In the meantime many solution concepts have been developed

(cf. Branzei et al. (2002a, b), Butnariu (1978), Molina and Tejada (2002),

Nishizaki and Sakawa (2001), Sakawa and Nishizaki (1994), Tsurumi et al.

(2001)).

The outline of the paper is as follows. Sections 2 and 3 provide the nec-
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essary notions and facts for cooperative crisp and fuzzy games, respectively.

Section 4 introduces an egalitarian solution for convex fuzzy games by adjust-

ing the classical Dutta-Ray algorithm for convex crisp games. Three exam-

ples illustrate that requiring only supermodularity of a fuzzy game does not

assure the existence of such an egalitarian solution. It is proved that adding

coordinate-wise convexity to supermodularity guarantees the existence of a

maximal fuzzy coalition corresponding to a crisp coalition, at each step of

the adjusted Dutta-Ray algorithm. It turns out that the introduced egalitar-

ian solution lies in the core of the convex fuzzy game and coincides with the

Dutta-Ray egalitarian solution of the corresponding crisp game. In Section

5 the equal division core of an arbitrary fuzzy game is introduced and it is

shown that for any convex fuzzy game the egalitarian solution is an allocation

in the equal division core of the game, and the equal division core of a convex

fuzzy game coincides with the equal division core of the corresponding crisp

game. Section 6 concludes with some final remarks.

2 Cooperative crisp games

A cooperative crisp game hN,wi consists of a finite set of players N , N =

{1, 2, . . . , n} and a map w : 2N → < with w(∅) = 0. For S ∈ 2N , w(S) is
called the worth of coalition S and it is interpreted as the amount of money

(utility) the coalition can obtain, when the players in S work together. The

class of crisp games with player set N is denoted by GN .

A game hN,wi ∈ GN is called convex if for each S, T ∈ 2N

w(S ∪ T ) + w(S ∩ T ) ≥ w(S) + w(T ).
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The core of a game hN,wi ∈ GN is the convex set

C(N,w) =

(
x ∈ <N |

X
i∈N

xi = w(N),
X
i∈S
xi ≥ w(S) for each S ∈ 2N

)
,

consisting of efficient vectors with sum of the coordinates equal to w(N)

and with the property that no coalition S can obtain more than
P

i∈S xi in

splitting off.

An interesting element of the core of a convex crisp game hN,wi is the
Dutta-Ray egalitarian allocation E (N,w) which can be described in a simple

way and found easily in a finite number of steps. Let |S| be the number of
players in the coalition S, S ∈ 2N . For any coalition S, we denote its average
worth with respect to the characteristic function w by a (S,w) := w(S)

|S| .

In Step 1 of the Dutta-Ray algorithm one considers the game hN1, w1i
with N1 := N , w1 := w, and the per capita value a (T,w1) for each non-

empty subcoalition T of N1. Then the largest element T1 ∈ 2N1 \ {∅} in
argmaxT∈2N1\{∅} a (T,w1) is taken and Ei (N,w) = a (T1, w1) for all i ∈ T1
is defined. For a convex crisp game hN1, w1i it is well known that the finite
set argmaxS∈2N1\{∅} a (S,w1) is closed w.r.t. the union operation, that is if

S1, S2 ∈ argmaxS∈2N1\{∅} a (S,w1), then S1 ∪ S2 ∈ argmaxS∈2N1\{∅} a (S,w1).
This implies that argmaxS∈2N1\{∅} a (S,w1) has a largest element w.r.t. the

partial order of inclusion on sets, namely ∪©T | T ∈ argmaxS∈2N1\{∅} a (S,w1)ª.
If T1 = N , then we stop.

In case T1 6= N , then in Step 2 of the algorithm one considers the convex
game hN2, w2i where N2 := N1 \ T1 and w2(S) = w1 (S ∪ T1) − w1 (T1) for
each S ∈ 2N2 \ {∅}, takes the largest element T2 in argmaxT∈2N2\{∅} a (T,w2)
and defines Ei (N,w) = a (T2, w2) for all i ∈ T2. If T1 ∪ T2 = N we stop;

otherwise we continue by considering the game hN3, w3i with N3 := N2 \ T2
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and w3(S) = w2 (S ∪ T2)−w2 (T2) for each S ∈ 2N3 \ {∅}, etc. After a finite
number of steps the algorithm stops, and the obtained allocation E (N,w) is

called the constrained egalitarian solution of the game hN,wi.
Since the constrained egalitarian solution is in the core of the correspond-

ing convex game, it is interesting to study the interrelation between E(N,w)

and every other core allocation in terms of a special kind of domination which

can be introduced as follows.

Consider a society of n individuals with aggregate income fixed at I units.

For any x ∈ <n+ denote by bx = (bx1, . . . , bxn) the vector obtained by rearrang-
ing its coordinates in a non-decreasing order, that is, bx1 ≤ bx2 ≤ . . . ≤ bxn. For
any x, y ∈ <n+ with

Pn
i=1 xi =

Pn
i=1 yi = I, we say that x Lorenz dominates

y, and denote it by x ÂL y, iff
Pp

i=1 bxi ≥Pp
i=1 byi for all p ∈ {1, . . . , n− 1},

with at least one strict inequality.

As mentioned in the Introduction, Dutta and Ray (1989) prove that for

convex crisp games the constrained egalitarian solution Lorenz dominates

every other core allocation.

Another core-like solution concept which is related to the norm of equity

is the equal division core introduced by Selten (1972). Given a cooperative

crisp game hN,wi, the equal division core EDC(N,w) is the set(
x ∈ <N |

X
i∈N

xi = w(N), @S ∈ 2N \ {∅} s.t. a (S,w) > xi for all i ∈ S
)
,

consisting of efficient pay-off vectors for the grand coalition which can not be

blocked by the equal division allocation of any subcoalition. It is clear that

the core of a cooperative crisp game is included in the equal division core of

that game.
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3 Cooperative fuzzy games

Given the set N = {1, 2, . . . , n} of players, a fuzzy coalition is a vector
s ∈ [0, 1]N . The i-th coordinate si of s is called the participation level of
player i in the fuzzy coalition s. Instead of [0, 1]N we will also write FN for
the set of fuzzy coalitions. A crisp coalition S ∈ 2N corresponds in a canonical
way to the fuzzy coalition eS, where eS ∈ FN is the vector with ¡eS¢

i
= 1

if i ∈ S, and ¡eS¢
i
= 0 if i ∈ N \ S. The fuzzy coalition eS corresponds to

the situation where the players in S fully cooperate (i.e. with participation

level 1) and the players outside S are not involved at all (i.e. they have

participation level 0). We denote by ei the fuzzy coalition corresponding

to the crisp coalition S = {i}. The fuzzy coalition eN is called the grand

coalition, and the fuzzy coalition (the n−dimensional vector) (0, 0, . . . , 0)
corresponds to the empty crisp coalition. We denote by FN0 the set of non-

empty fuzzy coalitions.

A fuzzy game hN, vi consists of the player set N and a map v : FN → <
with the property v(0) = 0. The map v assigns to each fuzzy coalition a

number, telling what such a coalition can achieve in cooperation. In the

following the set of fuzzy games with player set N will be denoted by FGN

and in the next sections we will consider the crisp operator cr : FGN → GN .

For a fuzzy game hN, vi ∈ FGN , the corresponding crisp game hN, cr(v)i ∈
GN is given by cr(v)(S) = v(eS) for each S ∈ 2N .
The core of a fuzzy game hN, vi (Aubin, 1974) is defined by

C(N, v) =

(
x ∈ <N |

X
i∈N

xi = v(e
N),
X
i∈N

sixi ≥ v(s) for each s ∈ FN
)
.

So, x ∈ C(N, v) can be seen as a distribution of the value of the grand
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coalition eN , where for each fuzzy coalition s, the total payoff is not smaller

than v(s), if each player i ∈ N with participation level si is paid sixi.

A special class of fuzzy games with a non-empty core is the class of convex

fuzzy games introduced in Branzei et al. (2002a). Here hN, vi ∈ FGN is

called convex iff v satisfies the increasing average marginal return (IAMR)

property, i.e. for each s1, s2 ∈ FN with s1 ≤ s2, each i ∈ N and all ε1, ε2 ∈
<++ with s1i + ε1 ≤ s2i + ε2 ≤ 1 it holds that

ε−11
¡
v
¡
s1 + ε1e

i
¢− v ¡s1¢¢ ≤ ε−12

¡
v
¡
s2 + ε2e

i
¢− v ¡s2¢¢ .

The IAMR property is equivalent to the following pair of properties (cf.

Theorem 6 in Branzei et al. (2002a)):

(i) Supermodularity (SM):

v (s ∨ t) + v (s ∧ t) ≥ v(s) + v(t) for all s, t ∈ FN ,

where s ∨ t and s ∧ t are those elements of [0, 1]N with the i−th coordinate
equal to max {si, ti} and min {si, ti}, respectively;
(ii) Coordinate-wise convexity (CwC):

For each i ∈ N and each s−i ∈ [0, 1]N\{i} the function gs−i : [0, 1] → <
with gs−i(t) = v(s−i k t) is a convex function. Here (s−i k t) is the element
in [0, 1]N with (s−i k t)j = sj for each j ∈ N \ {i} and (s−i k t)i = t.
Hereafter we will denote the class of convex fuzzy games with player set

N by CFGN .

4 An egalitarian solution for convex fuzzy games

We will introduce here an egalitarian solution for a convex fuzzy game by

adjusting the classical Dutta-Ray algorithm for a convex crisp game.
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As mentioned in Section 2, at each step of the Dutta-Ray algorithm for

convex crisp games a largest element exists. Note that for the crisp case

supermodularity of the characteristic function is equivalent to convexity of

the corresponding game.

However, when a cooperative fuzzy game is convex, convexity of the game

is equivalent to supermodularity and coordinate-wise convexity of the charac-

teristic function. As we show in Lemma 1, supermodularity of a fuzzy game

implies a semilattice structure of the corresponding (possibly infinite) set of

fuzzy coalitions with maximal average worth, but it is not enough to ensure

the existence of a maximal element as it is illustrated by three examples.

According to Lemma 4 it turns out that adding coordinate-wise convexity

to supermodularity is sufficient for the existence of such a maximal element.

Moreover, this element corresponds to a crisp coalition.

For each s ∈ FN , let dsc := Pn
i=1 si. Given hN, vi ∈ FGN and s ∈ FN0

we denote by α (s, v) the average worth of s with respect to the aggregated

participation level of players in N , that is

α (s, v) :=
v (s)

dsc .

Note that α (s, v) can be viewed as a per participation-level-unit value of

coalition s.

Lemma 1 Let hN, vi ∈ FGN be a supermodular game. Then the set

A (N, v) :=

(
t ∈ FN0 | α (t, v) = sup

s∈FN0
α (s, v)

)
is closed w.r.t. the join operation ∨.

Proof. Let α = sups∈FN0 α (s, v). If α =∞, then A(N, v) = ∅, so A(N, v)
is closed w.r.t. the join operation.
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Suppose now α ∈ <. Take t1, t2 ∈ A (N, v). We have to prove that
t1 ∨ t2 ∈ A (N, v), that is α (t1 ∨ t2, v) = α.

Since v (t1) = α dt1c and v (t2) = α dt2c we obtain

α
§
t1
¦
+ α

§
t2
¦
= v

¡
t1
¢
+ v

¡
t2
¢ ≤ v ¡t1 ∨ t2¢+ v ¡t1 ∧ t2¢

≤ α
§
t1 ∨ t2¦+ α

§
t1 ∧ t2¦ = α

§
t1
¦
+ α

§
t2
¦
,

where the first inequality follows from the (SM) property and the second

inequality follows from the definition of α and the fact that v(0) = 0. This

implies that v (t1 ∨ t2) = α dt1 ∨ t2c, so t1 ∨ t2 ∈ A (N, v).
We can conclude from the proof that in case t1, t2 ∈ A(N, v) not only

t1 ∨ t2 ∈ A (N, v) but also t1 ∧ t2 ∈ A (N, v) if t1 ∧ t2 6= 0. Further, A (N, v)
is closed w.r.t. finite ”unions”, where t1 ∨ t2 is seen as the ”union” of t1 and
t2.

If we try to introduce in a way similar to that of Dutta and Ray (1989)

an egalitarian rule for supermodular fuzzy games, then problems may arise

since the set of fuzzy coalitions is infinite and it is not clear if there exists

a maximal fuzzy coalition with ”maximum value per unit of participation

level”. To be more precise, if hN, vi is a supermodular fuzzy game then
crucial questions are:

(1) Is sups∈FN0 α (s, v) finite or not? Example 2 presents a fuzzy game for

which sups∈FN0 α (s, v) is infinite.

(2) In case that sups∈FN0 α (s, v) is finite, is there a t ∈ FN0 s.t. α (t, v) =

sups∈FN0 α (s, v)? A fuzzy game for which the set arg sups∈FN0 α (s, v) is empty

is given in Example 3. Note that if the set arg sups∈FN0 α (s, v) is non-empty

then sups∈FN0 α (s, v) = maxs∈FN0 α (s, v).

(3) Let ≥ be the standard partial order on [0, 1]N . If maxs∈FN0 α (s, v)

exists, does the set argmaxs∈FN0 α (s, v) have a maximal element in FN0 w.r.t.
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≥? That this does not always hold for a fuzzy game is shown in Example 4.

Example 2 Let N = {1} and

v(s) =

 tg πs
2

if s ∈ [0, 1)
0 otherwise

.

For this game sup
s∈F{1}0

α (s, v) =∞.

Example 3 Let N = {1} and

v(s) =

 s2 if s ∈ [0, 1)
0 otherwise

.

For this game sup
s∈F{1}0

α (s, v) = 1, and arg sup
s∈F{1}0

α (s, v) = ∅.

Example 4 Let N = {1, 2} and

v(s1, s2) =

 s1 + s2 if s1, s2 ∈ [0, 1)
0 otherwise

.

For this game max
s∈F{1,2}0

α (s, v) = 1, argmax
s∈F{1,2}0

α (s, v) = [0, 1)×[0, 1)\
{0}, but this set has no maximal element w.r.t. ≥.

One can easily check that the games in Examples 2, 3, 4 are supermodular,

but not convex (the (CwC) property is not satisfied). For convex fuzzy games

all three questions mentioned above are answered affirmatively in Theorem

6. By using this theorem, the following additional problems can also be

conquered: how to define the reduced games in the steps of the adjusted

algorithm, and whether this algorithm has only a finite number of steps.

The following Lemma 5 plays a key role in obtaining our main results

on egalitarianism in convex fuzzy games. In its proof we will use the no-

tion of degree of fuzziness of a coalition. For each s ∈ FN this degree is
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defined by ϕ (s) = |{i ∈ N | si ∈ (0, 1)}|. Note that ϕ (s) = 0 implies that

s corresponds to a crisp coalition, and that in a coalition with ϕ (s) = n no

participation level equals 0 or 1. Note further that for s ∈ FN0 with ϕ (s) = 0

we have α (s, v) ≤ maxS∈2N\{∅} α
¡
eS, v

¢
, because s is equal to eT , where

T = {i ∈ N | si = 1}.

Lemma 5 Let hN, vi ∈ CFGN and s ∈ FN0 . If ϕ (s) > 0, then there is a
t ∈ FN0 with ϕ (t) = ϕ (s) − 1, supp(t) ⊆ supp(s), and α (t, v) ≥ α (s, v); if

α (t, v) = α (s, v) then t ≥ s.

Proof. Take s ∈ FN0 with ϕ (s) > 0, and i ∈ N such that si ∈ (0, 1).
Consider t0 = (s−i, 0) and t1 = (s−i, 1). Note that ϕ (t0) = ϕ (t1) = ϕ (s)− 1
and supp(t0) ⊂ supp(t1) = supp(s).
If t0 = 0, then t1 = ei and then α (ei, v) ≥ α (sie

i, v) = α (s, v) follows

from (CwC). We then take t = ei.

If t0 6= 0 and α (t0, v) > α (s, v), then we take t = t0.

Now we treat the case t0 6= 0 and α (t0, v) ≤ α (s, v). From the last

inequality and from the fact that v(s)
dsc is a convex combination of

v(t0)
dt0c and

v(s)−v(t0)
ds−t0c , i.e.

α (s, v) =
v (s)

dsc =
dt0c
dsc .

v (t0)

dt0c +
ds− t0c
dsc .

v (s)− v (t0)
ds− t0c ,

we obtain

v (s)− v (t0)
ds− t0c ≥ v (s)dsc = α (s, v) . (1)

From the (CwC) property of hN, vi it follows then
v (t1)− v (s)
dt1 − sc ≥ v (s)− v (t

0)

ds− t0c . (2)

12



Now from (1) and (2) we have

v (t1)− v (s)
dt1 − sc ≥ v (s)dsc = α (s, v) . (3)

Then by applying (3) we obtain

α
¡
t1, v

¢
=

v (t1)

dt1c =
dt1 − sc
dt1c .

v (t1)− v (s)
dt1 − sc +

dsc
dt1c .

v (s)

dsc ≥

≥ dt1 − sc
dt1c .

v (s)

dsc +
dsc
dt1c .

v (s)

dsc =
v (s)

dsc = α (s, v) .

So, we can take t = t1.

From Lemma 5 it follows that for each s ∈ FN0 , there is a sequence
s0, s1, . . . , sk in FN0 , where s0 = s and k = ϕ (s) such that ϕ (sr+1) =

ϕ (sr) − 1, supp (sr+1) ⊆ supp (sr), and α (sr+1, v) ≥ α (sr, v) for each r ∈
{0, 1, . . . , k − 1}. Since ϕ ¡sk¢ = 0, sk corresponds to a crisp coalition, say
T . So, we have proved

∀s ∈ FN0 ∃T ∈ 2N \ {∅} s.t. T ⊆ supp(s) and α
¡
eT , v

¢ ≥ α (s, v) . (4)

From (4) it follows immediately

Theorem 6 Let hN, vi ∈ CFGN . Then
(i) sups∈FN0 α (s, v) = maxT∈2N\{∅} α

¡
eT , v

¢
;

(ii) T ∗ = max
¡
argmaxT∈2N\{∅} α

¡
eT , v

¢¢
generates the largest element in

arg sups∈FN0 α (s, v), namely eT
∗
.

In view of this result it is easy to adjust the Dutta-Ray algorithm to a

convex fuzzy game hN, vi. In Step 1 one puts N1 := N , v1 := v and considers
arg sups∈FN0 α (s, v1). According to Theorem 6, there is a unique maximal

element in arg sups∈FN0 α (s, v), which corresponds to a crisp coalition, say

S1. Define Ei (N, v) = α
¡
eS1, v1

¢
for each i ∈ S1. If S1 = N , then we stop.
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In case S1 6= N , then in Step 2 one considers the convex fuzzy game

hN2, v2i with N2 := N1 \ S1 and, for each s ∈ [0, 1]N\S1,

v2 (s) = v1
¡
eS1 y s

¢− v1 ¡eS1¢ ,
where

¡
eS1 y s

¢
is the element in [0, 1]N with

¡
eS1 y s

¢
i
=

 1 if i ∈ S1
si if i ∈ N \ S1

.

Once again, by using Theorem 6, one can take the largest element eS2 in

argmaxS∈2N2\{∅} α
¡
eS, v2

¢
and defines Ei (N, v) = α

¡
eS2, v2

¢
for all i ∈ S2.

If T1 ∪ T2 = N we stop; otherwise we continue by considering the convex

fuzzy game hN3, v3i, etc. After a finite number of steps the algorithm stops,
and the obtained allocation E (N, v) is called the egalitarian solution of the

convex fuzzy game hN, vi.

Theorem 7 Let hN, vi ∈ CFGN . Then
(i) E (N, v) = E (N, cr (v));

(ii) E (N, v) ∈ C (N, v);
(iii) E (N, v) Lorenz dominates every other allocation x ∈ C(N, v).

Proof. (i) This assertion follows directly from Theorem 6 and the ad-

justed Dutta-Ray algorithm given above.

(ii) Note that E (N, v) = E (N, cr(v)) ∈ C (N, cr (v)) = C (N, v), where
the first equality follows from (i), the second equality follows from Theorem

7(iii) in Branzei et al. (2002a), and the relation E (N, cr(v)) ∈ C (N, cr (v))
is a main result in Dutta and Ray (1989) for convex crisp games.

(iii) E (N, cr (v)) Lorenz dominates every other element of C (N, cr (v))

according to Dutta and Ray (1989). Since E (N, v) = E (N, cr (v)) and

C (N, cr (v)) = C (N, v), our assertion (iii) follows.
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5 The equal division core for convex fuzzy

games

Given a cooperative fuzzy game hN, vi, we define the equal division core
EDC(N, v) as the set(
x ∈ <N |

X
i∈N

xi = v(e
N), @s ∈ FN0 s.t. α (s, v) > xi for all i ∈ supp(s)

)
.

So x ∈ EDC(N, v) can be seen as a distribution of the value of the
grand coalition eN , where for each fuzzy coalition s, there is a player i with

a positive participation level for which the pay-off xi is at least as good as

the equal division share α (s, v) of v(s) in s.

Some interesting facts w.r.t. the equal division core for convex fuzzy

games are collected in

Theorem 8 Let hN, vi ∈ CFGN . Then
(i) C (N, v) ⊆ EDC (N, v);
(ii) E (N, v) ∈ EDC (N, v);
(iii) EDC (N, v) = EDC (N, cr (v)).

Proof. (i) Suppose x /∈ EDC(N, v). Then there exists an s ∈ FN0 s.t.

α (s, v) > xi for all i ∈ supp(s). Then
nX
i=1

sixi <
nX
i=1

α (s, v) si = v(s)

which implies that x /∈ C(N, v). So C (N, v) ⊆ EDC (N, v).
(ii) According to (i) and Theorem 7(ii), we have E (N, v) ∈ C (N, v) ⊆

EDC (N, v).

15



(iii) Suppose x ∈ EDC (N, v). Then by the definition of EDC(N, v) there
is no eS 6= 0 s.t. α ¡eS, v¢ > xi for all i ∈ supp(eS). Taking into account that
cr(v) (S) = v

¡
eS
¢
for all S ∈ 2N , there is no S 6= ∅ s.t. cr(v)(S)

|S| > xi for all

i ∈ S. Hence, x ∈ EDC (N, cr(v)).
Let x ∈ EDC (N, cr(v)). We prove that for each s ∈ FN0 there is an

i ∈ supp(s) s.t. xi ≥ α (s, v).

Take T as in (4). Since x ∈ EDC (N, cr(v)), there is an i ∈ T s.t.

xi ≥ α
¡
eT , v

¢
. Now, from (4) it follows that xi ≥ α (s, v) for i ∈ T ⊆ supp(s).

Remark 9 From the proof of Theorem 8(iii) it follows that for each arbitrary

fuzzy game hN, vi we have EDC(N, v) ⊆ EDC(N, cr(v)). But these sets are
not necessarily equal, as the following example shows.

Example 10 Let N = {1} and v(s) = √s for each s ∈ [0, 1]. For this game
EDC(N, cr(v)) = {e1} and EDC(N, v) = ∅.

Our last example is meant to illustrate the various interrelations among

the egalitarian solution, the core, and the equal division core for convex fuzzy

games as discovered in Theorems 7 and 8.

Example 11 Let N = {1, 2, 3} and T = {1, 2} ⊂ N . Consider the unanim-
ity fuzzy game hN, ueT i with

ueT (s) =

 1 if s1 = s2 = 1

0 otherwise
.

In Branzei et al. (2002a) it is proved (Proposition 9) that a fuzzy game of

this type is convex. Its core is given by

C (N, ueT ) = conv
©
e1, e2

ª
= conv {(1, 0, 0) , (0, 1, 0)} ,

16



and the egalitarian allocation is given by

E (N, ueT ) =

µ
1

2
,
1

2
, 0

¶
∈ C (N, ueT ) .

It is easy to see that E (N, ueT ) Lorenz dominates every other allocation in

C (N,ueT ). Moreover, the equal division core EDC (N,ueT ) is the set

conv

½
e1,
1

2

¡
e1 + e2

¢
,
1

2

¡
e1 + e3

¢¾ ∪ conv½1
2

¡
e1 + e2

¢
, e2,

1

2

¡
e2 + e3

¢¾
.

It is clear that C (N, ueT ) ⊂ EDC (N, ueT ) = EDC (N, cr (ueT )).

Given Theorems 7 and 8 it is not difficult to provide an axiomatic char-

acterization of the egalitarian solution on the class of convex fuzzy games.

Inspiring here is the paper of Klijn et al. (2000) where there are five axiom-

atizations of the classical Dutta-Ray egalitarian solution. By introducing in

a straightforward way the fuzzy counterpart of the max-consistency axiom

we obtain the analogue of Theorem 3.3 in Klijn et al. (2000) for the class of

convex fuzzy games

Theorem 12 There is a unique solution on CFGN with the properties effi-

ciency, equal division stability and max-consistency, and it is the egalitarian

solution.

Here equal division stability means that the solution assigns to any convex

fuzzy game an element of the equal division core.

6 Final remarks

In this paper we introduce the equal division core for fuzzy games and the

egalitarian solution for convex fuzzy games. With the aid of the key result
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in Lemma 5 we prove the coincidence of the egalitarian solution and the

equal division core for a convex fuzzy game with the corresponding solution

concepts for its related crisp game. This implies that we can calculate the

egalitarian solution of a convex fuzzy game by considering the corresponding

crisp game, and applying on it the classical Dutta-Ray algorithm.

It would be interesting to develop egalitarian solution concepts also for

non-convex fuzzy games. Inspiring in this could be the original constrained

egalitarian solution of Dutta and Ray (1989), the Lorenz solution (Hougaard

et al. (2001)), the Lorenz stable set and the egalitarian core (Arin and Inarra

(2001)) for cooperative crisp games.

Also other systems of axioms for the egalitarian solution than the one

indicated at the end of Section 5 could be developed (cf. Klijn et al. (2000)).
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