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Abstract

We discuss two support results for the Kalai-Smorodinsky bargaining solution in

the context of an object division problem involving two agents. Allocations of objects

resulting from strategic interaction are obtained as a demand vector in a specific mar-

ket. For the first support result games in strategic form are derived that exhibit a

unique Nash equilibrium. The second result uses subgame perfect equilibria of a game

in extensive form. Although there may be multiple equilibria, coordination problems

can be removed.
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1 Introduction

The task to obtain a non-cooperative foundation for a cooperative solution concept is widely

described by the term Nash program.2 Starting with an underlying cooperative game, one

needs to derive a non-cooperative game in normal or extensive form in such a way that equi-

librium payoffs coincide with (or belong to) the cooperative solution. The most prominent

example for a support result arguably is Nash’s simple demand game (see Nash (1953)).

There, each player picks a coordinate. If the resulting vector belongs to the players’ bargain-

ing problem, then it is the final payoff. Otherwise the status quo is enforced. Equilibrium

payoffs of this game are exactly the Pareto efficient utility allocations of the feasible set.

Hence, this game supports the (set-valued) solution that always selects the Pareto boundary

in Nash equilibria.

In this paper, we demonstrate how to support the Kalai-Smorodinsky (hereafter KS) bar-

gaining solution3. In effect, the bargaining solution can as well be obtained by strategic

interaction instead of signing an agreement. Regarded from the perspective of a social plan-

ner, one is interested in formulating a universal way to derive such non-cooperative games

that is independent of the underlying bargaining problem.

Apparently, there are striking similarities between the Nash program and the theory of im-

plementation, although the foci are slightly different. However, Trockel (2002) shows that

for solution concepts from cooperative game theory, a support result as discussed above can

be “transformed” into an implementation result in the spirit of implementation theory (see

also Serrano (1997), Dagan & Serrano (1998) and Bergin & Duggan (1999)). This is the con-

tent of the so-called embedding principle. In particular, any support result for a bargaining

solution readily yields an implementation result for this solution as well (see also discussion

at the end of Section 4).

Roughly, there are two ways, in which we could think of supporting a bargaining solution.

One way is to follow a purely welfaristic approach, which means that one only considers

the possible allocations of utility provided in the bargaining situation and takes this set

(together with the status quo point) as the primitives of the cooperative model. Along this

line, Trockel (1999) discusses support results for a class of bargaining solutions including the

KS solution (cf. also Haake (2000)).

In the second direction, there is an additional entity considered in the model; a set of physical

outcomes. This set may, for example, consist of allocations of goods or (lotteries over) alter-

natives. A bargaining problem is induced by evaluation of outcomes with individual utility

functions. Therefore, supporting a bargaining solution in such a setup means achieving a

2See Serrano (2005) for a recent survey.
3see Kalai & Smorodinsky (1975).
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certain outcome through strategic interaction and utilities in (Nash) equilibrium coincide

with the given bargaining solution. Such a non-welfaristic approach can cure an important

drawback: In practice it is not necessarily clear, how a specific utility allocation is actually

obtained, whereas it appears to be a much simpler task to select a certain (physical) outcome

(see also Serrano (2005)). In a seminal paper, Moulin (1984) discusses an implementation

of the KS solution, using a mechanism, in which “fractions of dictatorship are auctioned

off”. The winning bid in the auction later constitutes a probability distribution on the set

of (physical) alternatives, so that the KS solution is the expected payoff from this lottery.

In a similar spirit, Miyagawa (2002) obtains a subgame-perfect implementation result for a

class of bargaining solutions including the KS solution.

As Moulin’s (1984) work does, we follow the second approach. We investigate an object

division problem, in which a finite number of (divisible) objects may be distributed among

two agents. Our approach differs from Moulin’s in two respects. First, we obtain an ex-

act support result in the sense that deterministic payoffs in equilibrium coincide with the

KS solution. And second, instead of using an auction mechanism, we set up an exchange

market. Payoffs (in equilibrium) are the result of individual demand. Loosely speaking, a

strategy choice in the supporting games determines prices and income, that in turn yield

utility maximizing allocations of objects. So, we use the Walrasian equilibrium concept to

first derive an allocation as the result from strategic interaction and then evaluation of this

allocation with individual utility functions constitutes the payoffs in the game.

We present two support results in Section 3: First, we derive from any object division prob-

lem a non-cooperative game in strategic form, which has a unique Nash equilibrium. This

game gives rise to a second game in extensive form. There the payoff in any subgame per-

fect equilibrium coincides with the KS solution. Although we cannot guarantee uniqueness

of equilibria, no coordination problem occurs, as the resulting outcomes are (essentially)

unique. Section 4 discusses the results.

2 Notation and Framework

We investigate a market, in which finitely many desirable objects are distributed among two

agents. Let I = {1, 2} denote the set of agents and N := {1, . . . , n} the set of objects.

There is exactly one unit of each object in the market. Denote by e := (1, . . . , 1) ∈ R
n the

vector of total endowments. We assume that objects are divisible, so that an allocation (of

objects) is described by a pair x = (x1, x2) ∈ [0, 1]n × [0, 1]n satisfying x1 + x2 ≤ e and

denote the set of allocations by A. Neither agent is initially endowed with some object.

We assume that agents’ preferences are linear over divisions of an object and additively
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separable across objects. That means, agent i’s preferences may be represented by a vector

ui = (ui
1, . . . , u

i
n) >> 0.4 The quantity ui

j may be interpreted as agent i’s willingness to

pay for object j. Agent i’s utilities over bundles are given by a function U i : [0, 1]n −→ R,

defined by U i(xi) :=
∑

j∈N xi
j · u

i
j (i ∈ I) and we denote the set of all such pairs of utility

functions (U1, U2) by U . For presentational reasons we will assume that for each pair in U

the corresponding utility vectors u1, u2 satisfy u1
j/u

2
j > u1

j+1/u
2
j+1 for all j = 1, . . . , n − 1,

which means in particular that no two objects exhibit the same rate of substitution between

the two agents. To sum, we describe a market by a tuple M = (I, N, U) with U ∈ U .

In the sequel, we want to allocate objects by having agents demand the objects according

to specific income and prices. A price system is a vector p ∈ R
n
+. For given price system p

and income level m ∈ R+, we define the budget set B(m, p) := {y ∈ [0, 1]n | p y ≤ m} and

for i ∈ I agent i’s demand correspondence Di(m, p) := argmax {U i(y) | y ∈ B(m, p)}. In the

remainder, we make use of two specific price systems. Due to our assumption that utility

functions are representable by a vector ui ∈ R
n
++, we may also view ui as a linear function to

evaluate (bundles of) objects; hence, we may consider ui as a specific price system. Through-

out the paper, we set p̄i := ui (i ∈ I). Observe that a relatively “high” price ui
k = p̄i

k for

object k on the one hand means that it is highly valued by agent i and on the other hand it

is highly expensive, hence less attractive, to agent 3 − i.

Any market (I, N, U) induces a two person bargaining game in the following way. The

set of feasible utility allocations is given by V U := compH({U 1(y1), U2(y2) ∈ R
2 | y ∈ A}).5

Status quo utilities are (always) given by the origin 0 ∈ R
2 and so we identify the

game with its utility possibility set V U . It is easy to see that V U can be written as a

sum of utility possibility sets; one for each object separately, i.e., V U =
∑

j∈N V U
j with

V U
j := compH(

{

λ(u1
j , 0) + (1 − λ)(0, u2

j) | 0 ≤ λ ≤ 1
}

). Hence, the class V :=
{

V U |U ∈ U
}

of bargaining games generated by an object division problem is the class of games with

compactly generated, polyhedral utility possibility sets, which is dense6 in the class of all

two person bargaining games. For U ∈ U define M i = M i,U i

:= U i(e). M i reflects agent i’s

maximal possible utility in V U , as it is his utility of the entire set of objects. The Kalai-

Smorodinsky bargaining solution is the mapping K : V −→ R
2 that takes each V U to its

unique Pareto optimal utility allocation, in which both agents obtain the same fraction of

their maximal utility, i.e., K1(V U)/M1,U = K2(V U)/M2,U =: τ(V U).

We close with some important observation on the demand correspondence. Define a

parametrization h = hU : [0, 1] −→ R
2 of the Pareto boundary of V U through h(δ) :=

(t̄(δ), δ ·M2), with t̄(δ) := max
{

t ∈ R | (t, δ · M2) ∈ V U
}

. That means, to each δ ∈ [0, 1] the

4We use the following notation for vector inequalities in R
n: x >> y means xj > yj(j ∈ N); x > y means

xj ≥ yj(j ∈ N) and x 6= y; x ≥ y means x > y or x = y.
5Here compH(·) denotes the comprehensive hull operator.
6with respect to the Hausdorff metric on feasible sets
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point h(δ) is the unique Pareto efficient point in V U , in which agent 2 receives a δ share of

his maximal utility. As one easily sees, hU
1 is a concave, strictly decreasing function. The

following lemma shows that (certain) demand sets Di(m, p) are singletons. In such cases we

will identify the set with its single element.

Lemma 1. Let M = (I, N, U) be a market satisfying the above assumptions.

1. For i ∈ I and m ∈ [0, M 3−i], the demand set Di(m, p̄3−i) is a singleton.

2. To each Pareto optimal utility allocation (v1, v2) ∈ V U there exists a unique (Pareto

optimal) allocation (z1, z2) ∈ A with U i(zi) = vi. Clearly, z1 + z2 = e.

3. Any Pareto optimal allocation a = (a1, a2) takes the form a1 = (1, . . . , 1, λ, 0, . . . , 0),

a2 = (0, . . . , 0, 1 − λ, 1, . . . , 1) with a1 + a2 = e.

4. U i(e − D3−i(m, p̄i)) = M i − m holds for i ∈ I and m ∈ [0, M i].

5. For m ∈ [0, M 1] we have U1(D1(m, p̄2)) = h1(1 − m
M2 ).

Proof:

1) First note that for a price system p, Di(m, p) is obtained as follows. Order the objects

according to their utility/price ratio, i.e., ui
j/pj. Then agent i first demands the object

with the highest ratio, then the one with the second highest a.s.o. until his budget m is

used up. For p = p̄3−i = u3−i this means, we order the objects according to ui
j/u

3−i
j ,

i.e., according to their substitution rates. With our assumptions that objects are already

ordered in this way and different objects have different substitution rates, we conclude that

D1(m, p̄2) consists of a unique vector of the form (1, . . . , 1, λ, 0, . . . , 0) and D2(m, p̄1) is of

the form (0, . . . , 0, µ, 1, . . . , 1) with λ, µ ∈ [0, 1].

2) This immediately follows from our assumption that substitution rates are different across

objects. Therefore, to any allocation z of objects, the utility allocation of which is Pareto

optimal in V U , there does not exist a redistribution of z, so that every agent is equally well

off.

3) Note that any Pareto efficient utility allocation v ∈ V U =
∑

j∈N V U
j can be uniquely

written as the sum of utility allocations in V U
j , i.e., v =

∑

j vj. All utility allocations vj as

well as v have to exhibit the same normal vector of a supporting hyperplane and, with our

assumption on different substitution rates, it follows that for all but at most one j we have

either vj = (u1
j , 0) or vj = (0, u2

j). So, all but at most one object are completely allocated to

some agent. With the assumption on the order of objects according to substitution rates,

we conclude that the allocation of objects corresponding to v takes the asserted form.

4) We prove the case i=1. Let z2 :=D2(m, p̄1). At price system p̄1 we have u1
j/p̄

1
j = 1 for all

j ∈ N . Hence, D1(m′, p̄1) = {x ∈ [0, 1]n | p̄1 x = m′} collects all bundles, the worth of which
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under p̄1 is exactly m′. Since z2 ∈ B(m, p̄1) (and preferences are strictly monotonic), we

know that p̄1 z2 = m, hence p̄1 (e − z2) = M1 − m and therefore e − z2 ∈ D1(M1 − m, p̄1).

Note that (e − z2, z2) is a Pareto efficient allocation, since agent 2 maximizes his utility on

the budget set and agent i can only be better off, when obtaining a higher income than

M1 − m.7 Therefore U1(e − z2) = M1 − m.

5) With part 4, we obtain U 2(e−D1(m, p̄2))=M2−m = (1− m
M2 ) M2 and since (D1(m, p̄2), e−

D1(m, p̄2)) is Pareto efficient, we conclude U 1(D1(m, p̄2)) = h1(1 − m
M2 ).

Note that as a consequence of part 1 of the lemma, we can conclude Di(m, p̄3−i) ≥

Di(m′, p̄3−i) (vector inequality), if m ≥ m′.

Another consequence of the lemma (part 3) is that, although objects are assumed to be

divisible, at most one object has to be split in any Pareto efficient allocation.

3 Support Results

Achieving a support result for a bargaining solution means performing the following task:

Derive from each bargaining game V U a non-cooperative game ΓU , so that payoffs in equi-

librium coincide with the bargaining solution applied to the bargaining game at hand. For

this, one shall specify general rules that describe how ΓU is derived from V U . Clearly, the

“strength” of a support result is connected to the strength of the equilibrium concept that

is used.

In this section, we provide two support results for the KS solution in the present context.

First, we describe rules for deriving a game in strategic form having exactly one Nash equi-

librium. The equilibrium payoff coincides with the KS solution of the underlying bargaining

game. Second, we derive a game in extensive form, which has multiple subgame perfect

equilibria. However, there are no coordination problems involved, as all equilibria have s the

same payoff; again the KS solution.

Payoffs in both games, and hence the final allocations of objects, are achieved by endowing

agents with a specific amount of money and assuming that they behave as utility maximizers

in a market for the objects with prices p̄1 or p̄2. Thereby, incomes are determined by play-

ers’ strategy choices. Put in another way, payoff functions can be decomposed into (a) an

allocation function that describes the assigned bundles resulting from strategic interaction

and (b) the evaluation of these bundles with utility functions.

Sections 3.1 and 3.2 present the two supporting results, which are then discussed in Section 4.

7In fact, the pair (p̄1; (e−z2, z2)) constitutes a Walrasian equilibrium of the underlying economy w.r.t. to

the given income distribution. See Haake (2006) for further details.
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3.1 Unique Nash equilibrium support

For U ∈ U we construct a game ΓU = (S1, S2, F 1, F 2) as follows: Strategy spaces are

S1 = S2 = [0, 1]. For any pair of strategies γ = (γ1, γ2) ∈ S1 × S2, we first determine an

allocation g(γ) = (g1(γ), g2(γ)) ∈ A of objects as follows:

(g1) Determine for i ∈ I agent i’s demand at income level (1 − γ3−i) · M3−i, at prices

p̄3−i = u3−1, i.e., determine xi(γ) := Di((1 − γ3−i) · M3−i, p̄3−i).

Set zi(γ) := e − x3−i(γ). If z1(γ) + z2(γ) ≤ e holds, then define g(γ) := (z1(γ), z2(γ)).

(g2) Otherwise (z1(γ) + z2(γ) 6≤ e), determine ẑi(γ) := Di((1 − γi) · M3−i, p̄3−i) and set

gi(γ) :=

{

zi(γ) , if zi(γ) + (e − ẑi(γ)) ≤ e

ẑi(γ) , otherwise.

Payoffs in ΓU are given by evaluation of the resulting allocation, i.e., F i(γ) = U i(gi(γ)) (i∈I).

Proposition 1. For each U ∈U the game ΓU has a unique Nash equilibrium γ̄. This is given

by γ̄1 = γ̄2 = τ(V U). Furthermore, F (γ̄) = K(V U).

Proof: Fix U ∈ U and set τ := τ(V U), hence we examine γ̄ = (τ, τ).

Step 1: Note first, that g(γ̄) is determined according to (g1). With part 4 of Lemma 1,

we know U i(zi(γ̄)) = U i(e − D3−i((1 − τ)M3−i, p̄3−i)) = τM i (i = 1, 2) and hence

(U1(z1(γ̄)), U2(e − z1(γ̄))) = K(V U) = (U1(e − z2(γ̄)), U2(z2(γ̄))), which implies z1(γ̄) =

e − z2(γ̄). Therefore g(γ̄) = (z1(γ̄), z2(γ̄)) and F i(gi(γ̄)) = K i(V U) (i∈I).

Step 2: Next, we show that γ̄ is a Nash equilibrium in ΓU . Suppose agent 1 deviates to σ1 < τ .

Since e−D2((1− τ) ·M1, p̄1) ≥ e−D2((1− σ1) ·M1, p̄1) holds8, the function g is still deter-

mined according to (g1) and hence F 1(σ1, τ) = U1(g1(σ1, τ)) ≤ U1(g1(τ, τ)) = F 1(σ1, τ).

If agent 1 deviates to ρ1 > τ , we conclude that g is determined by (g2). Suppose

z1(ρ1, τ) + (e− ẑ1(ρ1, τ)) ≤ e were true. Then (z1(ρ1, τ), e− ẑ1(ρ1, τ)) ∈ A is a feasible allo-

cation. Using Lemma 1 we compute its utility allocation (U 1(z1(ρ1, τ)), U2(e− ẑ1(ρ1, τ))) =

(ρ1M1, τM2) > (τM1, τM2) = K(V U), which contradicts Pareto efficiency of the KS solu-

tion. It follows again with part 5 of Lemma 1 that F 1(ρ1, τ) = U1(ẑ1(ρ1, τ)) = hU
1 (ρ1) <

hU
1 (τ) = τM1 = F 1(γ̄) has to hold. Analogous arguments apply for agent 2.

Step 3: Step 2 shows that agent i can assure himself a payoff of τM i by choosing γ̄i = τ .

Therefore, the payoff in any other equilibrium has to be at least this amount for both agents.

But the only utility allocation in V U that does satisfy this condition is K(V U). It is then

immediate that γ̄ is the only strategy profile with payoff K(V U) and therefore the only Nash

equilibrium in ΓU .

8Use part 1 of Lemma 1 and the fact that demand is increasing in income.
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3.2 Subgame Perfect support

Next, we derive an extensive form game ΣU from a bargaining game V U ∈ V. Again, we

first obtain an allocation as the result of strategy choices. The rules are as follows:

Stage 1 Agent 1 selects η ∈ [0, 1].

Stage 2 Agent 2 either chooses a bundle z2 = z2(η) ∈ B((1 − η)M 1, p̄1) or passes to the

next stage. In the former case, the final allocation is (e−z2, z2)∈A.

Stage 3 Agent 1 chooses a bundle z1 = z1(η) ∈ B((1 − η)M 2, p̄2). The final allocation is

(z1, e − z1)∈A.

Again, payoffs in ΣU are determined by evaluation of the final allocation with U i(·).

Proposition 2. Let z̄ = (z̄1, z̄2) be the final allocation and η̄ be the chosen parame-

ter at Stage 1 in a subgame-perfect equilibrium of ΣU . Then we have η̄ = τ(V U) and

(U1(z̄1), U2(z̄2)) = K(V U).

Proof:

First, in any subgame perfect equilibrium, if either agent 2 or 1 chooses a bundle from the

budget set (at stage 2 or 3), he will choose z2 = D2((1−η)M1, p̄1) or z1 = D1((1−η)M2, p̄2),

respectively. By parts 4 and 5 of Lemma 1, we know that U 1(e−z2) = η·M1 and U2(e−z1) =

η · M2, which means U1(z1) = hU
1 (η).

At stage 2, agent 2 compares his payoff from choosing z2 himself with U2(e − z1), which

he anticipates when passing to the next round. Since the respective allocations (e − z2, z2)

and (z1, e − z1) are Pareto efficient, we have that U 2(z2) > U2(e − z1), if and only if

U1(e − z2) < U1(z1). so agent 2 takes his decision as to minimize agent 1’s payoff.

Therefore, at stage 1, agent 1 faces a payoff of min(U 1(z1), U1(e − z2)) = min(hU
1 (η), ηM1).

To maximize this expression, agent 1 chooses η̄ to equate hU
1 (η̄) = η̄M 1.9 Hence, hU(η̄) =

(η̄M1, η̄M2), so η̄ = τ(V U) and the equilibrium payoff coincides with K(V U).

Note that in equilibrium agent 2 is indifferent between choosing himself or having agent 1

choose at stage 3. Nonetheless, there is no coordination problem at all, since with the unique

equilibrium parameter η̄ = τ(V U) the resulting allocations yield the same payoffs. With our

assumption on different substitution rates, agent 1 and 2 will even choose the same allocation

of objects.

9Recall that hU
1

(η) is decreasing in η.
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4 Discussion and Further Results

Although the game ΓU is a one-shot game, we may think of payoff functions as to be de-

termined in several steps. First, according to strategy choice γ i ∈ [0, 1] of agent i, agent

3 − i is equipped with an income of (1 − γi)M i, thus with a 1 − γi share of the value of

the total object set under prices p̄i. Next, agent 3 − i selects a bundle w.r.t. his income

and leaves the remaining objects to agent i (the bundle zi(γ) in (g1)). Assuming that 3 − i

chose the utility maximizing bundle, we have U i(zi(γ)) = γiM i. But this will be the final

payoff, only if the two bundles z1(γ), z2(γ) constitute a feasible allocation. In this sense,

we check compatibility of γ1 and γ2. Intuitively, on the one hand a “higher” γi claims a

higher utility, but on the other hand makes it less likely that the we have a feasible allocation

in (g1). Now, what happens, if (z1(γ), z2(γ)) fails to be an allocation? Then we examine

each γi once again. Now agent i himself will be endowed with a (1 − γi) share of M3−i and

is supposed to choose a utility maximizing bundle at prices p̄3−i (this is ẑi(γ)). Observe

that U3−i(e − ẑi(γ)) = γiM3−i. According to (g2), agent i still obtains z1(γ), only if it is

possible to provide a γi share of total utilities to both agents (in that case (z1(γ), e− ẑ1(γ))

is feasible). But, if γi is so “high” that this would not be possible, then agent i gets away

with ẑi(γ), i.e., the bundle chosen w.r.t. the “low” income (1 − γi)M3−i.

To sum, the idea behind the payoff functions is that in that players’ claims are incompatible,

an agent with a bold claim has to take what is left over in the situation, in which this claim

is realized for the other player.

Whereas we assumed utility maximizing choice in ΓU , we let agents freely choose in ΣU .

But, since the bundle chosen by either agent 2 or 1 is the final bundle for that agent, utility

maximizing prevails in any subgame perfect equilibrium. Inspecting the decision to be taken

by agent 2 at stage 2 reveals that he has to decide between two (Pareto efficient) allocations.

Suppose, η was chosen at stage 1. Then either agent 1 obtains an η share of his maximal

utility M1 (which is the case, if agent 2 chooses himself), or agent 2 passes and obtains ηM 2

(agent 1 chooses at stage 3). As in ΓU a “high” η can backfire for agent 1, as agent 2 may

pass to stage 3, where agent 1 is endowed with a “low” income of (1 − η)M 2. Conversely, a

“low” η gives incentives for agent 2 to choose himself at stage 2 with a “high” income. In

effect, there remains a “max-min problem” for agent 1 similar to the one in the definition of

the KS solution. This kind of tradeoff was also observed by Trockel (2000) in a welfaristic

context.

We should add a note on the role of prices. Although one can formally show that the two

price systems p̄i (i∈ I) constitute Walrasian equilibrium prices10, we shall not regard them

as competitive prices. Put in other words, these prices shall not be viewed as being formed

10see Haake (2006) for details.
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under perfect competition, but result from application of the (normative) solution concept

of Walrasian equilibrium. Therefore, we rather use equilibrium prices as an instrument to

achieve certain allocations. So, price taking is not understood as a consequence of perfect

competition but belongs to the rules of the game.

Both games ΓU and ΣU satisfy a property that was termed full range property by Trockel

(2000). This means that the rules of the game allow for any feasible allocation in A as the

outcome of the game, or, put in other words, any utility allocation V U is attainable as payoff

from strategic interaction. So, by playing the game instead of signing an agreement, the

agents do not lose any of their allocation possibilities. For example, in ΓU a high γ1 can be

compatible with a “low” γ2, so that a high payoff for agent 1 is (in principle) possible.

Observe that the assumption of ordered and mutually different substitution rates does not

constitute a material restriction. In case there are different objects having the same substi-

tution rate, we lose the one-to-one correspondence between Pareto efficient utility and object

allocations. Moreover, the demand sets in part 1 of Lemma 1 are no longer singletons. How-

ever, we will always be able to select an appropriate allocation, so that its utility allocation

satisfies the required properties.

The reader may dislike that there are two different price systems involved to obtain payoffs.

As Haake (2006) shows the price system p̄ with p̄j = (u1
j ·u

2
j)

1/2 is always an equilibrium price

system and therefore individual demand leads to an efficient allocation. As it is basically

shown there, we get support results for the superadditive bargaining solution introduced by

Perles & Maschler (1981). If one replaces p̄i by p̄ in ΓU (ΣU ), the results remain valid with

K(V U) replaced by the Perles-Maschler solution. The equilibrium strategies in ΓU are given

by γ̄ = (1/2, 1/2) as well as η̄ = 1/2 in ΣU .

So far, there is no taxonomy on support results in the literature that sharply divides them

into “plausible” and “implausible” ones. For instance, consider the game with two strategies

for each player, meaning that he can accept the KS solution or not. The latter is the final

payoff, only if both players chose to accept it. Otherwise, disagreement utilities prevail. This

game, though formally a “correct” support result, can hardly be called a reasonable way to

support the KS solution as it makes direct use of the solution. Observe that in our approach,

it is not necessary to compute an allocation of objects that yields a given profile of payoffs.

We always employ a market to arrive at an allocation. Players’ utilities only enter in so far

as they determine prices according to which we compute demand. The fairness consideration

incorporated in the KS solution is reflected in the assignment of income.

One should note that, in contrast to the theory of implementation (under complete informa-

tion), the Nash program is purely game theoretic. There is no social planner involved. In

effect, games are derived for specific underlying bargaining situations and we may assume

common knowledge over both the data of the bargaining problem and the data of the non-

10



cooperative game. We close by briefly commenting on how the support results discussed in

this paper yield (weak) implementation results for the KS solution as discussed in Trockel

(2002) (see also Haake & Trockel (2007)). The key is a proper definition of the implementa-

tion environment. For instance, the set of outcomes is the set of bargaining solutions for two

person bargaining games. Any preference profile over outcomes (bargaining solutions) can

be identified with a specific bargaining problem along the notions of effectivity and support-

ability discussed in Bergin & Duggan (1999). Then, the social choice correspondence that is

implemented assigns to each profile of preferences (here: a bargaining problem) a set of out-

comes (bargaining solutions) that coincide with the KS solution on this particular bargaining

problem. So, strictly speaking it is not the KS solution itself that is implemented, but a

social choice correspondence that takes the KS solution as benchmark to define desirable

outcomes.
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