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Abstract

This paper considers estimation and inference in panel vector autoregressions (PVARs) where

(i) the individual effects are either random or fixed, (ii) the time-series properties of the model

variables are unknown a priori and may feature unit roots and cointegrating relations, and (iii)

the time dimension of the panel is short and its cross-sectional dimension is large. Generalized

Method of Moments (GMM) and Quasi Maximum Likelihood (QML) estimators are obtained

and then compared in terms of their asymptotic and finite sample properties. It is shown that

GMM estimators based only on standard orthogonality conditions break down if the underlying

time series contain unit roots. Extended GMM estimators making use of further moment con-

ditions are not subject to this problem. However, their finite sample performance is shown to

deteriorate as a ratio of cross-section to time-series variation is increased, while the performance

of the fixed effects QML estimator is invariant to this ratio. The QML estimators also tend

to outperform the various GMM estimators in finite sample. Overall, our findings favor the

use of the fixed effects QML estimator, given that it does not impose any restrictions on the

distribution generating the individual effects. The paper also shows how the fixed effects QML

estimator can be used for unit root and cointegration tests in short panels.
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1 Introduction

Over the past decade important advances have been made in the study of dynamic panel data

models where both the time dimension (T ) and the cross-sectional dimension (N) are large. See,

for example, the surveys by Baltagi and Kao (2000) and Phillips and Moon (2000) and the references

cited therein. In this paper we are concerned with the more traditional panel literature where N is

large and T is short (typically less than 10), which remains the prevalent setting for the majority

of empirical microeconometric research.1 However, this literature has primarily focussed on single

equation dynamic panel data models whilst there are many applications that ideally require a

simultaneous treatment of the decision problems faced by households, firms, and institutions. A

natural starting point are vector autoregressive models (VARs) which have been extensively studied

in the time-series literature. An early analysis of panel VARs (PVARs) with a short T was provided

by Holtz-Eakin, Newey, and Rosen (1988). The fact that in such panels T is small does not mean

that the underlying data could not have arisen from non-stationary and/or cointegarted processes.

The slope homogeneity and the cross section independence assumptions of the traditional panel

literature allows us to make inferences about the long- term properties of the model even though T

is short. Moreover, the presence of cointegration provides a natural starting point for introducing

cross—equation restrictions in panel VAR models.

As in single equation dynamic panel data models there are two main issues that need to be

addressed in the study of PVARs. (i) The fact that T is fixed necessitates the modeling of the

initial observations.2 (ii) Presence of cross-sectional heterogeneity poses the important question

of how to best model the unobserved individual-specific effects.3 Here we shall consider both

the random and fixed effects specifications. The fixed effects specification has the advantage of

being robust to possible misspecification of the distribution of the individual effects. But it is still

subject to the classical incidental parameters problem as in Neyman and Scott (1948), violating the

regularity conditions needed for the consistency of the conventional Quasi Maximum Likelihood

(QML) estimator.4

To overcome this problem Generalized Method of Moments (GMM) estimation has been sug-

gested in the literature. It is useful to distinguish between the “standard” GMM estimators pro-

posed by Holtz-Eakin, Newey, and Rosen (1988) and Arellano and Bond (1991), and their sub-

sequent extensions by, for example, Ahn and Schmidt (1995), Arellano and Bover (1995), and

1For references to much of this empirical work see, for example, Baltagi (2001).
2For discussions of the initial observations in the single equation context see, for example, Anderson and Hsiao

(1981, 1982), Bhargava and Sargan (1983), Blundell and Smith (1991), and Nerlove (1999).
3Dealing with possible slope coefficient heterogeneity poses further complications and might not be feasible in

dynamic panels where T is very small. See, for example, Hsiao, Pesaran, and Tahmiscioglu (1999).
4See, for example, Anderson and Hsiao (1981) and Nickell (1981) for a discussion of this issue in the context of

univariate models.
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Blundell and Bond (1998). The “standard” GMM estimators are based on orthogonality condi-

tions that interact the lagged values of the endogenous variables with first differences of the model’s

disturbances, while the “extended” GMM estimators augment these orthogonality conditions with

additional moment conditions implied by homoskedasticity and initialization restrictions. The

motivation behind the introduction of the extended GMM estimators has been twofold: (i) The

standard GMM estimators, being based on a subset of the valid moment conditions, are asymp-

totically inefficient and are subject to the “weak instrument” problem if one or more roots of the

characteristic equation of the model are close to unity (for example, Blundell and Bond, 1998).

(ii) The standard GMM estimators break down in the presence of unit roots. A formal proof of

this breakdown in the context of PVARs is provided in this paper. In contrast to the standard

GMM estimators, the extended GMM estimators are consistent even if the unit root properties of

the model are not known a priori. These estimators are discussed in Ahn and Schmidt (1995) and

Arellano and Bover (1995) in the case of single equation models.

The paper develops random effects and fixed effects QML estimators (RE-QMLE and FE-

QMLE, respectively) when it is not known a priori whether the underlying series are stationary,

have unit roots or are cointegrated. It contributes to the discussion of the initialization of the dy-

namic models with a fixed T , by generalizing the stationarity restrictions proposed in the literature

to settings involving unit roots and cointegration. New panel unit root and cointegration tests are

proposed for panels with a short T . Under certain regularity conditions it is shown that the QML

estimators is consistent and asymptotically normally distributed (as N → ∞, with T fixed and

small), irrespective of whether the underlying time series are (trend) stationary, integrated of order

one, I(1), or I(1) and cointegrated. The paper also provides a generalization of the extended GMM

estimators to PVAR models, and presents a comparative analysis of these estimation procedures

in terms of their asymptotic properties as well as their finite sample performances using Monte

Carlo experiments. The RE-QMLE is more efficient than the FE-QMLE, but it imposes moment

homogeneity restrictions on the initial observations and requires the individual effects to be random

draws from probability distributions with finite fourth-order moments. The standard and extended

GMM estimators are also shown to impose restrictions on the distribution of the individual effects,

not needed under the fixed effects specification. In the case of stationary PVAR models it is shown

that the asymptotic variance of the standard GMM estimator (and by implication the extended

ones) is an increasing function of the variance matrix of the individual effects. This is an important

result and shows that in dynamic panels the quality of the GMM estimators can deteriorate often

substantially in applications where the individual effects show considerable variations. By contrast,

the FE-QMLE is invariant to the individual effects and hence is not subject to the same problem.

Finally, extensive Monte Carlo evidence on the finite sample properties of the QML and GMM

estimators is provided, with the following two main conclusions:
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(i) The FE-QMLE performs well under a variety of parameter configurations and is robust to the

unit root properties of the underlying time-series processes. It also seems to be reasonably robust

to non-normal errors.

(ii) As predicted by our theory, the finite sample properties of the GMM type estimators in general

depend critically on τ , the ratio of the variance of the individual effects relative to the variance

of the errors. When this ratio is well in excess of unity both the standard and extended GMM

estimators tend to perform poorly, except for the pure unit root case. This is an important finding

considering that the FE-QMLE is invariant to τ , and that it seems rather doubtful that τ in

empirical work can generally be assumed to be small. Even under τ = 1 and non-normal errors

the GMM estimators are still outperformed (with the exception of the pure unit root case) by the

FE-QMLE.

The remainder of this paper is organized as follows: Section 2 introduces the PVAR model.

Sections 3 and 4 develop the QML estimators under random and fixed effects specifications, re-

spectively. Section 5 proposes new tests for unit roots and cointegration in panels with short time

dimension. Section 6 discusses GMM estimation of the PVAR model. Monte Carlo simulation

results are presented in Section 7, and Section 8 concludes and provides some suggestions for future

research. In Appendix A the restrictions on the distributions generating the individual and initial-

ization effects needed for validity of the QML, and GMM estimators are contrasted. Appendix B

provides a proof of the dependence of the asymptotic variance of the standard GMM estimator on

the variance of individual effects. Appendix C describes the computational details and the related

algorithms.

2 A Panel VAR Model

Let wit be an m × 1 vector of random variables for the i-th cross-sectional unit at time t, and

suppose that the wit’s are generated by the following panel vector autoregressive model of order

one, PVAR(1):

wit = (Im −Φ)µi +Φwi,t−1 + εit, (2.1)

for i = 1, 2, . . . , N ; and t = 1, 2, . . . , T, where Φ denotes an m ×m matrix of slope coefficients,

µi is an m× 1 vector of individual-specific effects, εit is an m× 1 vector of disturbances, and Im
denotes the identity matrix of dimension m×m.

For simplicity we restrict our exposition to first-order PVAR models. However, the estimation

and inference procedures discussed in the paper are extended to the p-th order case in an appendix

available from the authors upon request. This appendix demonstrates that higher-order models

can for most parts be treated in conceptually the same manner as first-order models.
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We shall consider both random and fixed effects specifications of the individual-specific effects

in the remainder of this paper, highlighting their differences, and the implications these differences

have for estimation and inference. However, for both the random and fixed effects specifications

we make the following general assumptions:

Assumption (G1) The available observations are wi0, wi1, . . . , wiT , with T ≥ 2 but fixed as

N →∞.
Assumption (G2) The disturbances εit, t ≤ T , are independently and identically distributed (i.i.d)
for all i and t with E (εit) = 0, and V ar (εit) = Ωε, Ωε being a positive definite matrix.

Under certain conditions it is possible to relax the cross-sectional independence assumption.

Conley (1999), for example, presents in the context of a spatial model an economic distance metric

to order the data over the cross section. In panels with N and T sufficiently large, Bai and

Ng (2002), Moon and Perron (2003), Phillips and Sul (2002) and Pesaran (2002, 2003) consider

cross-sectional dependence with a residual factor structure. Exploring the issue of cross-sectional

dependence in the context of the PAVR model with T fixed is beyond the scope of the present

paper. As for the assumption that the disturbances are identically distributed across t, we will

discuss how this assumption can be weakened in Section 4 below.

Assumption (G3) The eigenvalues of Φ are either equal to unity or fall inside the unit circle.

Let

ξit = wit −µi (2.2)

Then (2.1) can be alternatively written as

(Im −ΦL)ξit = εit,, for t = 2, . . . , T (2.3)

and

∆wi1 = −(Im −Φ)(wi0 −µi) + εi1 (2.4)

When T is fixed, it is necessary to consider the initialization of the wit process for estimation and

inference. We assume that

Assumption (G4) The initial deviations, ξi0, are identically and independently distributed across

i, with zero means and the constant non-singular variance, E(ξi0ξ
0
i0) = Ψξ0 .

Under assumption G4, if all the eigenvalues of Φ are all inside the unit circle, the process 2.1

can either start from infinite past or finite past. If some of the eigenvalues of Φ are unity, then the

nonstationary direction can only start from a finite past. For details, see Appendix A.
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The PVAR(1) model (2.1) is the generalization of the univariate dynamic panel data model

considered, for example, in Ahn and Schmidt (1995) to the multivariate context, except for the

parameterization of the individual-specific effects. The multivariate counterpart of the Ahn and

Schmidt formulation is given by

wit = ai +Φwi,t−1 + εit, (2.5)

which would be equivalent to (2.1) when all eigenvalues of Φ fall inside the unit circle. However, in

the presence of unit roots the two specifications (2.1) and (2.5) will have different trend properties,

with the unrestricted intercepts specification (2.5) exhibiting linear trends whilst the restricted

specification (2.1) does not. In what follows we adopt (2.1) as the data generating mechanism,

although for estimation purposes it is often more convenient to work with (2.5).

3 Random Effects Specification

In this case the general assumptions, (G1) to (G4), need to be supplemented with additional

assumptions on the individual-specific effects, µi. In particular, we shall make the following as-

sumptions

Assumption (R1):

V ar (ai) = Ωa and Cov (ai, εit) = 0, for all i, and t = 1, 2, ..., T. (3.1)

This is a standard assumption in the random coefficient model and together with the general

assumptions (G1)-(G4) yields

rit =


wi0

ai

εit

 i.i.d.∼ (0,Ωr), for all i and t = 1, 2, . . . , T , (3.2)

where

Ωr =


Ω0 Ω0a 0

Ω00a Ωa 0

0 0 Ωε

 , (3.3)

and Ω0 and Ωa are respectively positive definite and non-negative definite matrices.5

5Assumption (R1) could be relaxed for example to allow the individual effects ai to have a common non-zero

mean. Non-zero correlations between the disturbances εit and the initial observations wi0/the individual effects ai

could also be allowed for, but they will not be considered here since in general it is not possible to test whether these

correlations are zero or non-zero. See Ahn and Schmidt (1995) for more detailed discussion of this in the univariate

setting.
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Assumption (R2) All elements of the cross-product matrices ritr
0
it, t = 1, 2, . . . , T , have finite

second-order moments.

Denote the
£
2m2 + 3m (m+ 1) /2

¤× 1 vector of unknown coefficients by θ,
θ =

³
φ0, σ0ε, σ0a, σ00, σ00a

´0
, (3.4)

where φ = vec (Φ), σε = vech (Ωε), σa = vech (Ωa), σ0 = vech (Ω0), and σ0a = vec (Ω0a).

Assumption (R3) θ ∈ Θ, where Θ is a compact subset of <2m2+3m(m+1)/2, and the true parameter

vector, θ0, falls in the interior of Θ.

Assumption R1 can be derived from more primitive assumptions concerning the initialization

of the wit process. For example, in the case when wit is stationary and has started in the infinite

past we have

wi0 = (Im −Φ)−1 ai +
∞X
j=0

Φjεi,−j, (3.5)

and hence

Ω0 = V ar (wi0) = (Im −Φ)−1Ωa (Im −Φ)0−1 +
∞X
j=0

ΦjΩεΦ
0j, (3.6)

and

Ω0a = Cov (wi0,ai) = Ωa (Im −Φ)0 −1 .
See Appendix A for further details and other initialization examples.

To derive the RE-QMLE of θ, we let

wi =


wi0

wi1
...

wiT

 , and ηi =



wi0

ai + εi1

ai + εi2
...

ai + εiT


, (3.7)

and note that

ηi = Rwi, (3.8)

where R is a matrix of dimension m (T + 1)×m (T + 1) given by

R =


Im 0

−Φ Im
. . .

. . .

0 −Φ Im

 . (3.9)
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Clearly, |R| = 1. From (3.2) we now have

E (ηi) = 0, and V ar (ηi) = Ση , (3.10)

where

Ση =

Ã
Ω0 ι0T ⊗Ω00a

ιT ⊗Ω0a IT ⊗Ωε + ιT ι
0
T ⊗Ωa

!
, (3.11)

with ιT being a T × 1 vector of ones. It follows that

E (wi) = 0, and V ar (wi) = Σw = R
−1ΣηR0−1. (3.12)

For RE-QML estimation of θ we use the following log-likelihood function, which assumes nor-

mally distributed errors, as the criterion function:6

L (θ) = −mN (T + 1)
2

log (2π)− N
2
log |Ση |− N

2
tr
¡
Σ−1w SN,w

¢
, (3.13)

where

SN,w =
1

N

NX
i=1

wiw
0
i. (3.14)

We then have the following proposition:7

Proposition 3.1 Under assumptions (G1)-(G4), (R1), and (R2), and assuming that (2.1) holds,

then as N → ∞, SN,w converges almost surely to the non-stochastic matrix Σw, and the random

effects QML estimator (RE-QMLE) of θ, defined by

bθQML = argmax
θ

[L (θ)] (3.15)

is consistent. Furthermore, under the additional assumption (R2)

√
N
³bθQML − θ0´ av N(0,VQML), (3.16)

where

VQML =H−1L GLH
−1
L , (3.17)

HL = lim
N→∞

E

·
− 1
N

∂2L (θ)

∂θ ∂θ0

¸
, and GL = lim

N→∞
E

·
1

N

∂L (θ)

∂θ

∂L (θ)

∂θ

0¸
, (3.18)

with HL being a positive definite matrix.

6Notice that Ση is non-singular even if initialization restrictions such as Ωa = 0 and Ω0a = 0 that follow under

Φ = Im are imposed. However, as noted above, in our estimation set-up Ωa and Ω0a will be treated as unrestricted

coefficient matrices.
7A proof can be established using familiar techniques as reviewed, for example, in White (1994).
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Remark 3.1 A consistent estimate of the variance-covariance matrix of bθQML robust to violations
of the information matrix equality is given by

1

N
bH−1N bGN

bH−1N , (3.19)

where bHN and bGN are the matrices HN and GN defined below and evaluated at θ = bθQML
HN = − 1

N

∂2L (θ)

∂θ ∂θ0
, GN =

1

N

µ
∂L (θ)

∂θ

¶µ
∂L (θ)

∂θ

¶0
. (3.20)

Remark 3.2 If time-specific effects are present, and wit is generated by
8

(Im −ΦL) (wit −µi − δt) = εit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (3.21)

where δt is an m× 1 vector of time-specific effects, then upon redefining for estimation purposes

wi =


wi0 − δ0
wi1 − δ1

...

wiT − δT

 , and ηi =



wi0 − δ0
ai + εi1

ai + εi2
...

ai + εiT


, (3.22)

the log-likelihood function is again given by (??). It can be shown that the RE-QMLE of δt is given

by

bδt = 1

N

NX
i=1

wit, t = 0, 1, . . . , T. (3.23)

In the special case where δt = δt, t = 0, 1, . . . , T , the RE-QMLE of δ can be obtained using the

following weighted average of the unrestricted estimates, bδt:
bδ = Ã TX

t=0

TX
s=0

Σtsw

!−1( TX
s=0

TX
t=0

Σtsw
bδs) , (3.24)

where we have partitioned Σ−1w into (T + 1)2 blocks of dimension m×m,

Σ−1w =


Σ00w Σ01w · · · Σ0Tw

Σ10w Σ11w · · · Σ1Tw
...

...
. . .

...

ΣT0w ΣT1w · · · ΣTTw

 . (3.25)

The RE-QMLE of the remaining parameters, θ, can be computed using the concentrated log-

likelihood function.9

8The presence of N cross-sectional units allows us to consider a nonparametrically specified common trend for all

cross-sectional units.
9Detailed derivations of (3.23) and (3.24) are contained in a note available from the authors upon request.
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4 Fixed Effects Specification

Under the fixed effects specification no restrictions need to be placed on the probability distribution

function generating the individual-specific effects µi in (2.1) (or, in unrestricted form, ai in (2.5)).

In particular, assumptions (R1) and (R2) are no longer required. It can then be allowed, for

example, that: (i) the individual effects are dependently distributed, (ii) the individual effects are

heteroskedastic, (iii) the individual effects are (more generally) characterized by a joint probability

distribution function with the number of unknown parameters increasing at the same rate as the

number of cross-sectional observations in the panel, and (iv) the individual effects do not have

moments.

Following standard practice the µi’s can be eliminated by first-differencing (2.1), namely
10

∆wit = Φ∆wi,t−1 +∆εit, t = 2, 3, . . . , T. (4.1)

The first-differenced model (4.1) allows us to obtain the probability distribution of ∆wi2, ∆wi3,

. . . , ∆wiT , conditional on ∆wi1. While it would be tempting to base the QML estimator of Φ

on the associated conditional likelihood, the resultant estimator would be inconsistent as N −→
∞ when T is finite, as discussed in the univariate setting by Hsiao, Pesaran, and Tahmiscioglu

(2002). To obtain a consistent QML estimator one needs to work with the unconditional joint

probability distribution of (∆wi1,∆wi2, . . . ,∆wiT ), and ensure that this joint distribution is free

of the incidental parameters problem. The latter condition is obviously satisfied if the unconditional

distribution of ∆wi1 does not depend on any incidental parameters. Therefore, for the fixed effects

specification we shall supplement assumptions (G1)-(G4) with

Assumption (F1) The following moment restrictions are satisfied:

(Im −Φ)E
¡
κi0ε

0
i1

¢
= 0, (4.2)

and

E
¡
κi0∆ε

0
it

¢
= 0, for t = 2, 3, ..., T, (4.3)

where κi0 = (Im −Φ) (wi0 −µi).
Combining this assumption with (G1)-(G4) and using (2.4) we now have11

∆wi1
i.i.d.∼ (0,Ψ) ,

10Hsiao, Pesaran, and Tahmiscioglu (2002) in the univariate context show that the QML estimator is invariant to

the choice of the T × (T + 1) transformation matrix P that is of rank T and eliminates the individual-specific effects,
namely has the property that Pc = 0, with c being a vector of constants of dimension (T + 1)× 1. The argument in
Hsiao, Pesaran, and Tahmiscioglu (2002) readily extends to the multivariate setting considered here.
11Assumptions (G4) and (F1) can be relaxed to allow for κi0 to have a constant non-zero mean, and for

Cov(κi0, εi1) and Cov(κi0,∆εit), for t = 2, 3, . . . , T , to be non-zero and possibly time-varying (but still homo-

geneous across i).
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and

Cov (∆wi1,∆εi2) = −Ωε, and, Cov (∆wi1,∆εit) = 0, t = 3, 4, . . . , T.
where

Ψ =(Im −Φ)Ψξ0

¡
Im −Φ0

¢
+Ωε, (4.4)

and Ψξ0 is already defined in Assumption G4.

Remark 4.1 It is clear that the individual effects µi do not enter the initial first differences, ∆wi1.

The first-differencing operation simultaneously deals with the incidental parameters and unit root

problems.12

Remark 4.2 It is important to note that assumption (F1) imposes homogeneity restrictions on a

linear combination of the initial deviations, (Im −Φ) ξi0, and the initial error terms, εi1, for all i,
without imposing any such restrictions on the individual effects, µi, themselves.

Finally, for the fixed effects specification we make the following moment and parameter space

assumptions:

Assumption (F2) The second moments of the cross-product matrix ∆rit∆r
0
it, t = 1, 2, . . . , T ,

with

∆rit =

Ã
∆wi1

∆εit

!
, (4.5)

exist.

Denote the
£
m2 +m (m+ 1)

¤× 1 vector of unknown coefficients by ρ,
ρ =

³
φ0, σ0ε, ψ0

´0
, (4.6)

where φ = vec (Φ), σε = vech (Ωε), and ψ = vech (Ψ).

Assumption (F3) ρ ∈ Ξ, where Ξ is a compact subset of <m2+m(m+1), and the true parameter

vector, ρ0, lies in the interior of Ξ.

To derive the FE-QMLE of ρ, we need to derive the second moment structure of (∆wi1,∆wi2, . . . ,∆wiT ).

We let

∆wi =


∆wi1

∆wi2
...

∆wiT

 , and ∆ηi =



∆wi1

∆εi2

∆εi3
...

∆εiT


. (4.7)

12As will be discussed in detail in Section 5, unlike in time-series models, first-differencing in panels with fixed

time dimension still allows us to identify and estimate the long-run (level) relations that are of economic interest

irrespective of the unit root and cointegrating properties of the wit process.
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From (4.7) it immediately follows that

∆ηi = R∆wi, (4.8)

whereR is given by (3.9), but its dimension now ismT×mT . The mean and the variance-covariance
matrix of ∆ηi are now easily obtained. We have

E (∆ηi) = 0, and V ar (∆ηi) = Σ∆η , (4.9)

where

Σ∆η =



Ψ −Ωε 0

−Ωε 2Ωε −Ωε
−Ωε 2Ωε −Ωε

. . .

−Ωε 2Ωε −Ωε

0 −Ωε 2Ωε


. (4.10)

It follows that

E (∆wi) = 0, and V ar (∆wi) = Σ∆w = R
−1Σ∆ηR0−1. (4.11)

We base the QML estimation of ρ on the following log-likelihood function derived from the joint

probability distribution of (∆wi1,∆wi2, . . . ,∆wiT ) under the normality assumption:
13

` (ρ) = −mNT
2

log (2π)− N
2
log |Σ∆η |− N

2
tr
¡
Σ−1∆wSN,∆w

¢
, (4.12)

where

SN,∆w =
1

N

NX
i=1

∆wi∆w
0
i. (4.13)

The following proposition establishes the properties of the resultant QML estimator:

Proposition 4.1 Under assumptions (G1)-(G4), (F1), and (F2), and assuming that (2.1) holds,

then as N → ∞, SN,∆w converges almost surely to the non-stochastic matrix Σ∆w, and the fixed

effects QML estimator (FE-QMLE) of ρ, defined by

bρQML = argmaxρ [` (ρ)] , (4.14)

is consistent. Furthermore, under the additional assumption (F2)

√
N
¡bρQML − ρ0¢ av N(0,VQML), (4.15)

13The likelihood function (4.11) holds whether T is finite or approaches to infinity. However, if T −→∞, one can
estimate µi consistently, hence one may apply MLE to (2.1) instead of working with (4.11).
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where

VQML =H
−1
` G`H

−1
` , (4.16)

H` = lim
N→∞

E

·
− 1
N

∂2` (ρ)

∂ρ∂ρ0

¸
, and G` = lim

N→∞
E

·
1

N

∂` (ρ)

∂ρ

∂` (ρ)

∂ρ

0¸
, (4.17)

with H` being a positive definite matrix.

A consistent estimate of the variance-covariance matrix of bρQML can be obtained using the
counterpart of (3.19).

Remark 4.3 If wit is generated by the fixed effects counterpart of (3.21), so that time-specific

effects are present, we have that

(Im −ΦL) (∆wit − γt) = ∆εit, i = 1, 2, . . . ,N ; t = 2, 3, . . . , T, (4.18)

with γt = ∆δt. Upon redefining

∆wi =


∆wi1 − γ1
∆wi2 − γ2

...

∆wiT − γT

 , and ∆ηi =



∆wi1 − γ1
∆εi2

∆εi3
...

∆εiT


, (4.19)

the log-likelihood function is again given by (4.12). Using similar derivations as in the random

effects setting, it can be shown that the FE-QMLE of γt is given by

bγt = 1

N

NX
i=1

∆wit, t = 1, 2, . . . , T. (4.20)

In the restricted case of γt = γ, t = 1, 2, . . . , T , we have

bγ = Ã TX
t=1

TX
s=1

Σts∆w

!−1Ã TX
s=1

TX
t=1

Σts∆wbγs
!
, (4.21)

where Σ−1∆w is partitioned into m×m dimensional blocks Σts∆w, t, s = 1, 2, . . . , T , analogous to the

partition in (3.25).

Remark 4.4 Computation of the FE-QMLE is complicated by the fact that the matrix Σ∆η will

often be high-dimensional. However, to compute the determinant and inverse of Σ∆η , one may

make use of the block-tridiagonal structure of Σ∆η . Applying the block LDL
0 factorization to Σ∆η ,

the latter may be factorized as Σ∆η = ALA0DA0L, where AD is a block-diagonal matrix with j-th

12



diagonal block given by A(1)D = Ψ−1, A(j)D =
h
2Ωε −ΩεA(j−1)D Ωε

i−1
, j = 2, 3, . . . , T , and where

AL = A−1D − AU , with AU being a block-subdiagonal matrix with all subdiagonal blocks equal to

Ωε.
14 It then follows that

det (Σ∆η) = [det (AL)]2 det (AD) =
1

det (AD)

=
1

det (Ψ)

TQ
j=2
det

h
A(j)D

i
. (4.22)

To compute the inverse of Σ∆η , a computationally efficient scheme is to adapt the recursions based

on Bowden’s procedure in Binder and Pesaran (2000), which yields

Σ−1∆η,jl = (T + 1− l)
£
(j − 1)Ω−1ε Ψ− (j − 2) Im

¤
[TΨ− (T − 1)Ωε]−1 , l ≥ j,

(4.23)

and

Σ−1∆η,jl = (T + 1− j) [TΨ− (T − 1)Ωε]−1
£
(l − 1)ΨΩ−1ε − (l − 2) Im

¤
, j > l,

(4.24)

where Σ−1∆η,jl denotes the jl-th block of Σ
−1
∆η , j, l = 1, 2, . . . , T . Further details of our numerical

algorithm that renders computation of the FE-QMLE practically feasible even for high-dimensional

systems are described in a note available upon request.

As will be seen in Section 6 below, GMM estimators of Φ need not impose homoskedasticity of

the error components (Im −Φ)µi + εit, which, it may be argued, adds to their robustness. Since

under the fixed effects specification no restrictions are placed on the distribution generating the

individual effects µi, by default the FE-QMLE also allows for the possibility of cross-sectional

heteroskedasticity in the combined error components, (Im −Φ)µi + εit. Furthermore, the above

analysis can readily accommodate intertemporal error variance heteroskedasticity. This can be

done by relaxing (G2) so that the disturbances εit are distributed independently and identically

for all i, and independently for all t with V ar (εit) = Ωεt , Ωεt being positive definite matrices for

all t. In this case Σ∆η defined by (4.10) generalizes to

Σ∆η =



Ψ −Ωε1
−Ωε1 Ωε1 +Ωε2 −Ωε2 0

. . .

0 −ΩεT−2 ΩεT−2 +ΩεT−1 −ΩεT−1
−ΩεT−1 ΩεT−1 +ΩεT


.

(4.25)

14For further details see, for example, Binder and Pesaran (2000), who in the context of the solution of multivariate

linear rational expectations models discuss the block LDU factorization, of which the block LDL0 factorization is a

special case.
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The FE-QMLE can now be derived under suitable parameterization of the error variance-covariance

matrices Ωεt , for t = 1, 2, ..., T .

Finally, it is also worth noting that under the random effects specification considered in Sec-

tion 3 there are m (T + 1) (T + 2) /2 exploitable moment conditions, while under the fixed effects

specification there are mT (T + 1)/2 moment conditions, or m (T + 1) fewer moment restrictions.

Therefore, in general one would expect the RE-QMLE to be asymptotically more efficient than the

FE-QMLE. The finite sample importance of these additional moment conditions will be studied in

Section 7, where the random and fixed effects QML estimators will be compared. Nevertheless, it

should be clear that, in general, FE-QMLE is preferable to RE-QMLE; unless prior information is

available that the individual effects are cross-sectionally homoskedastic and have finite moments of

up to the fourth order.

5 Unit Roots and Cointegration in PVARs

Since the issues of unit roots and cointegration can be of significant interest in economic modelling,

it is desirable to have procedures available to test for unit roots and cointegration rank even though

T is finite. The asymptotic properties of the QML estimators set out above hold irrespective of the

location of the eigenvalues of Φ and the size of T . Therefore, one may use the results of sections

3 and 4 to test for the presence of unit roots and cointegration.

In order to be able to interpret the rank of the matrix Π as the number of linearly independent

cointegrating relations, it is necessary to know whether each of the variables in wit follows an

I(1) process. Our framework can be easily adapted to test for unit roots in short panel univariate

autoregressive models. For m = 1 the equation to be estimated is

wit = ai + φwi,t−1 + εit, εit v iid
¡
0,σ2ε

¢
, (5.1)

where wit is now a scalar variable.
15 The unit root hypothesis

H0 : φ = 1 vs. H1 : φ < 1, (5.2)

can now be tested under both the random and fixed effects specifications. Denoting the QML

estimator of the slope coefficient under either model specification as bφ, a Wald type statistic of
testing H0 versus H1 will be

tφ =
bφ− 1
se(bφ) , (5.3)

15As for unit root testing in the time-series context, the appropriate order of augmentation of wit is important for

the validity of the test. In practice one may therefore need to consider higher-order cases as well. Here we confine

ourselves to p = 1 for simplicity of exposition.
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where se(bφ) denotes the standard error of bφ. Under the null hypothesis tφ is asymptotically dis-
tributed as a standard normal variate as N → ∞, for a fixed T ≥ 3. The alternative hypothesis
considered is homogeneous and one-sided. This test can be extended to models with serially cor-

related errors (to models with p > 1), so long as the slope homogeneity assumption is maintained.

Unit root tests for panels with slope heterogeneity and more complicated dynamics have been pro-

posed in the literature but require large N and T panels and are not valid when the time dimension

is short.16 A short T panel unit root test has been proposed by Harris and Tzavalis (1999), but

requires bias corrections and could be difficult to extend to models with serially correlated errors.

The natural next step after the unit root tests have been carried out is to test for cointegration.

Consider again the PVAR(1) model in the m variables wit, now assumed to be I(1). The hypothesis

that wit −µi is cointegrated with rank r versus rank r+1, r = 0, 1, . . . ,m− 1, can be formulated
as

Hr : Φ = Im +αrβ
0
r vs. Hr+1 : Φ = Im +αr+1β

0
r+1, (5.4)

where αr and βr are m× r matrices of full column rank r. Since αrβ0r = αrKK−1β0r for any r× r
nonsingular matrix K, one needs, in the absence of short-run restrictions, r restrictions on each of
the r columns of βr.

17 A convenient procedure for the identification of βr is to let

βr = Hδr + br, (5.5)

where H and br are, respectively, m× q and m× r matrices, both with known coefficients, and δ
is a q × r matrix with unknown coefficients. For example, if one chooses (as we shall do in what
follows) the Phillips (1991) exact identification restriction that

βr =
³
Ir, eβ0r ´0 , (5.6)

where eβ0r is an r × (m− r) matrix with unrestricted coefficients, then
H =

³
0, Im−r

´0
, br =

³
Ir, 0

´0
, and δr = eβr. (5.7)

The QML estimators restricting the rank of the matrix Π can now be set out as before, noting

that in the random effects case the unknown coefficients are now given by

θΠ =
³
vec (αr)

0 , vec
³eβr´0 , σ0ε, σ0a, σ00, σ00a

´0
16See, for example, Levin, Lin and Chu (2002), Im, Pesaran, and Shin (2003), and Maddala and Wu (1999).

Extensions of these tests to models with cross section dependence have also been considered by Bai and Ng (2002),

Moon and Perron (2003), Phillips and Sul (2002) and Pesaran (2003).
17For a more detailed discussion see, for example, Pesaran and Shin (2002). Also note that the extrema of the

QML and MD criterion functions under rank (Π) = r are invariant to the choice of K.
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, and in the fixed effects case are defined by

ρΠ =
³
vec (αr)

0 , vec
³eβr´0 , σ0ε, ψ0

´0
.

The likelihood ratio test statistic of Hr versus Hr+1 is asymptotically chi-square distributed with

(m− r)2 − (m − r − 1)2 = 2(m− r) − 1 degrees of freedom. (Imposing Π to be of rank r leaves
m2 − (m− r)2 unrestricted coefficients in Π.)

Additional parameter restrictions or overidentifying restrictions can be formulated in terms of

vec (Φ) = Gκ + f, (5.8)

where G is an m2 × q matrix and f an m2 × 1 vector, both with known elements, and κ is a

q × 1 vector of free parameters. A likelihood ratio test of (5.8) will be asymptotically chi-square
distributed with m2 − q degrees of freedom.

We will document the (perhaps surprisingly) good small sample properties of the unit root and

cointegration tests proposed in this section when the tests are based on the QML estimator in

Section 7 below.

6 GMM Estimation

There now exists an extensive literature on the GMM estimation of univariate dynamic panel data

models (for example, Arellano and Bond, 1991, Ahn and Schmidt, 1995, 1997, Arellano and Bover,

1995, Blundell and Bond, 1998, Alonso-Borrego and Arellano, 1999). However, just like Three Stage

Least Squares estimation of a system of equations can be more efficient than the single equation

based Two Stage Least Squares, in this section we shall generalize GMM estimation to a systems

context, and show that if the PVAR model (2.1) contains unit roots, then the standard GMM

approach (for example, Arellano and Bond, 1991) of using lagged level variables as instruments

that are orthogonal to the disturbances of the first-differenced form of the model breaks down.

We then discuss how this problem may be overcome using additional moment conditions implied

by homoskedasticity and initialization restrictions of the type suggested in the case of univariate

models by Ahn and Schmidt (1995), Arellano and Bover (1995), and Blundell and Bond (1998).

Standard GMM and its Breakdown under Unit Roots

The standard GMM estimator of Arellano and Bond (1991) employs instruments that are orthogonal

to the disturbances of the first-differenced form of the model. For the PVAR(1) model (2.1), such

instruments are given by levels of the dependent variables, wit, lagged two or more periods. The

resulting orthogonality conditions may be written as

E
£
(∆wit −Φ∆wi,t−1)q0it

¤
= 0, t = 2, 3, . . . , T, (6.1)

16



where qit is the m (t− 1)× 1 vector defined by

qit =
³
w0i0, w0i1, . . . , w0i,t−2

´0
. (6.2)

To derive the standard GMM estimator of Φ based on the moment conditions (6.1), it will be useful

to rewrite these moment conditions in stacked form as:

E
£
Q0i
¡
∆Wi −∆Wi,−1Φ0

¢¤
= 0, (6.3)

where Q0i is a matrix of dimension mT (T − 1) /2× (T − 1) given by

Q0i =


qi2 0 0 0

0 qi3 0
. . .

0 qiT

 , (6.4)

and ∆Wi and ∆Wi,−1 are (T − 1)×m dimensional matrices,

∆Wi =
³
∆wi2, ∆wi3, . . . , ∆wiT

´0
, (6.5)

and

∆Wi,−1 =
³
∆wi1, ∆wi2, . . . , ∆wi,T−1

´0
. (6.6)

The standard GMM estimator of φ = vec (Φ) is now given by18

bφGMM =
¡
S0ZXD

−1be SZX¢−1 S0ZXD−1be SZy, (6.7)

where

SZX =
1

N

NX
i=1

Z0iXi, SZy =
1

N

NX
i=1

Z0iyi, Dbe = 1

N

NX
i=1

Z0iΥbeZi, Υbe = 1

N

NX
i=1

beibe0i,
(6.8)

Z0i = Q
0
i ⊗ Im, Xi = ∆Wi,−1 ⊗ Im, yi = vec

¡
∆W0

i

¢
, ei = vec

¡
∆E0i

¢
, (6.9)

and c∆Ei = ∆Wi − ∆Wi,−1bΦ0IE , where bΦIE is an initial consistent estimate of Φ such as the

generalized instrumental variables estimator obtained using the formula (6.7), but withDbe replaced
by ΛQ ⊗Ωε, where

ΛQ =
1

N

NX
i=1

Q0iVQi, (6.10)

18An alternative estimator of Dbe also used in the literature is given by N−1PN
i=1 Z

0
ibeibe0iZi. See, for example,

Arellano and Honoré (2001) and Baltagi (2001). However, our Monte Carlo experiments suggest Dbe to be preferable
in the settings we consider, particularly for purposes of hypothesis testing. Arellano and Honoré (2001) also discuss

how auxiliary assumptions can be used to impose further restrictions on Dbe.
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and V is the (T − 1)× (T − 1) matrix,

V =



2 −1 0

−1 2 −1 0
. . .

0 −1 2 −1
0 −1 2


. (6.11)

Since the resultant instrumental variables estimator is invariant to the choice of Ωε, without loss of

generality the estimator may be computed replacing Dbe by ΛQ⊗ Im. Using the standard formula,
a consistent estimate of the variance-covariance matrix of bφGMM can be obtained as

1

N

¡
S0ZXD

−1be SZX¢−1 . (6.12)

The standard GMM estimator is consistent if all eigenvalues of Φ fall inside the unit circle,

but breaks down if some eigenvalues of Φ are equal to unity. Note that a necessary condition for

the GMM estimator (6.7) to exist is that rank(Q0i∆Wi,−1) = m as N → ∞. In the case where
Φ = Im, rank (Q

0
i∆Wi,−1) as N →∞ is less than m, however. This is because when Φ = Im, for

t = 2, 3, . . . , T we have ∆wit = εit, and wit = wi0 + sit, with sit =
Pt
q=1 εiq, and thus it follows

that for t = 2, 3, . . . , T , l = 0, 1, . . . , t− 2, as N →∞

1

N

NX
i=1

∆wi,t−1w0il =
1

N

NX
i=1

εi,t−1 (wi0 + sil)0
p→ 0, (6.13)

where
p→ denotes convergence in probability. In other words, when Φ = Im, the elements of qit are

not legitimate instruments.19 As some of the eigenvalues of Φ approach unity, the qit’s become

weak instruments in the terminology of Staiger and Stock (1997).

Extended GMM

Nevertheless, a consistent GMM type estimator may be obtained by making use of additional mo-

ment conditions. One possibility is the extended GMM estimator proposed by Ahn and Schmidt

(1995, 1997) which augments the standard moment conditions with those implied by homoskedas-

ticity assumptions as in (G2). These are legitimate instruments regardless of the unit root and

cointegrating properties of wit − µi. In the context of the PVAR(1) model (2.1) invoking ho-
moskedasticity (over time) of the εit’s yields the following two sets of moment conditions:

E
£
(wi −Φwi,−1) (∆wit −Φ∆wi,t−1)0

¤
= 0, t = 2, 3, . . . , T, (6.14)

19The same conclusion holds for PVAR(p) with more complicated derivation. A note containing a detailed argument

is available from the authors upon request.
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and

E
£
(∆wi,t−1 −Φ∆wi,t−2)w0i,t−2 − (∆wit −Φ∆wi,t−1)w0i,t−1

¤
= 0, t = 3, 4, . . . , T,

(6.15)

where

wi =
1

T

TX
t=1

wit, and wi,−1 =
1

T

TX
t=1

wi,t−1. (6.16)

Note that the moment conditions (6.14) are nonlinear in Φ. Stacking the moment conditions (6.1),

(6.14), and (6.15) as a
£
m2T (T − 1) /2 +m2 (2T − 3)¤ × 1 dimensional column vector, m(wi,φ),

the moment conditions can be rewritten as

E [m(wi,φ)] = 0. (6.17)

Ahn and Schmidt’s (1995, 1997) extended GMM estimator applied to the PVAR model (2.1) is

then given by

bφGMM = argmin
φ

n
M0
N (φ) [WN(φ)]

−1MN(φ)
o
, (6.18)

where

MN(φ) =
1√
N

NX
i=1

m(wi,φ), and WN(φ) =
1

N

NX
i=1

m(wi, bφIE)m(wi, bφIE)0,
(6.19)

with bφIE being an initial consistent estimate of φ. One possibility would be to use for this purpose
the generalized instrumental variables estimator applied to the linear moment conditions (6.1) and

(6.15) only.

Arellano and Bover (1995) and Blundell and Bond (1998) proposed an additional set of moment

conditions which when applied to the PVAR model (6.20) can be written as

E
£
(wit −Φwi,t−1) ∆w0i,t−1

¤
= 0, t = 2, 3, . . . , T. (6.20)

It is readily seen that these conditions require that

(Im −Φ)E
£
µi (wi0 −µi)0

¤
(Φ− Im)0 = 0. (6.21)

Thus the moment conditions (6.20) involve restrictions on the distribution of the initial observations,

wi0, unless of course Φ = Im. The Ahn and Schmidt (1995, 1997) homoskedasticity implied moment

restrictions, (6.14) and (6.15), and the Arellano and Bover (1995) and Blundell and Bond (1998)
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initialization restrictions implied moment conditions, (6.20), can now be combined, after eliminating

redundant conditions, to yield the linear moment conditions

E
£
(wit −Φwi,t−1)w0it − (wi,t−1 −Φwi,t−2)w0i,t−1

¤
= 0, t = 2, 3, . . . , T,

(6.22)

and (6.20).

To derive the extended GMM estimator of Φ based on the linear moment conditions (6.1),

(6.20), and (6.22), it will be useful to rewrite the three sets of moment conditions in stacked form

as:

E
£
P0i
¡
Wi −Wi,−1Φ0

¢¤
= 0, (6.23)

where P0i is a matrix of dimension [mT (T − 1) /2 + 2m (T − 1)]× T ,

P0i =
³
P01i, P02i, P03i

´0
, (6.24)

with P1i a matrix of dimension mT (T − 1) /2× T given by

P1i =


−qi2 qi2 0 0 0

0 −qi3 qi3 0
. . .

0 0 −qiT qiT

 , (6.25)

P2i a matrix of dimension m (T − 1)× T given by

P2i =


0 ∆wi1 0 0 0

0 0 ∆wi2 0
. . .

0 0 ∆wi,T−1

 , (6.26)

and P3i a matrix of dimension m (T − 1)× T given by

P3i =


−wi1 wi2 0 0 0

0 −wi2 wi3 0
. . .

0 0 −wi,T−1 wiT

 , (6.27)

andWi andWi,−1 are T ×m dimensional matrices,

Wi =
³
wi1, wi2, . . . , wiT

´0
, (6.28)
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and

Wi,−1 =
³
wi0, wi1, . . . , wi,T−1

´0
. (6.29)

The extended GMM estimator of φ based on the orthogonality, homoskedasticity, and initialization

restrictions implied moment conditions (6.1), (6.20), and (6.22) is now given by

bφGMM =
³
S0
Z̊X̊
D−1bu SZ̊X̊

´−1
S0
Z̊X̊
D−1bu SZ̊̊y, (6.30)

where

SZ̊X̊ =
1

N

NX
i=1

Z̊
0
iX̊i, SZ̊̊y =

1

N

NX
i=1

Z̊
0
i̊yi, Dbu = 1

N

NX
i=1

Z̊
0
iΥbuZ̊i, Υbu = 1

N

NX
i=1

buibu0i,
(6.31)

Z̊
0
i = P

0
i ⊗ Im, X̊i =Wi,−1 ⊗ Im, ẙi = vec

¡
W0

i

¢
, bui = vec³bU0i´ ,

(6.32)

and bUi =Wi −Wi,−1bΦ0IE , where bΦIE is an initial consistent estimator of Φ, for example the gen-
eralized instrumental variables estimator based on (6.30), but with Dbu replaced by ΛP⊗Im, where

ΛP =
1

N

NX
i=1

P0iPi. (6.33)

Using the standard formula, a consistent estimate of the variance-covariance matrix of the extended

GMM estimator (6.30) can be obtained as

1

N

³
S0
Z̊X̊
D−1bu SZ̊X̊

´−1
. (6.34)

Remark 6.1 The GMM estimators (6.7), (6.18), and (6.30) require that the second moments of µi

exist. For asymptotic normality of these estimators it will also be required that the fourth moments

of µi exist. The existence of these moments is not implied by any of the assumptions we had

invoked for QML estimation under the fixed effects specification. Moreover, the number of moment

conditions for GMM increases at the order of T 2, while the orthogonality conditions for QMLE

remain the same as T increases, which can have implications for the finite sample performance of

the two types of estimators.

Remark 6.2 Due to the use of levels variables (wit,t = 0, 1, ..., T −2) as instruments, the variance
of the GMM estimators will depend on the distribution of the unobserved individual effects,, µi, a

dependence that does not disappear with N →∞. As shown in Appendix B the asymptotic variance
of the standard GMM estimator is in fact an increasing function of Ωµ, the variance matrix of

individual effects, µi, in the sense that for any two variance matrices, Ω
(1)
µ and Ω

(2)
µ ,

AsyV
³
φ̂GMM

h
Ω(1)µ

i´
−AsyV

³
φ̂GMM

h
Ω(2)µ

i´
≥ 0,
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if Ω
(1)
µ − Ω(2)µ ≥ 0, and vice versa, where “ ≥ ” stands for a positive semi-definite matrix. In

particular, in the special case where Ωµ = τΩε the precision of the GMM estimators deteriorates

with τ . In contrast, the asymptotic variance of the FE-QMLE discussed in Section 4 does not

depend on Ωµ.

Remark 6.3 The pure unit root case presents an exception. Under (2.1), when Φ = Im, no indi-

vidual effects, µi, are present. However, if one were to assume that the initialization of series differ

across the individuals, then from wit = wi0 +
Pt
s=1 εst, one can again deduce that the efficiency

of (extended) GMM estimators in the pure unit root case will depend on the magnitude of V (wi0),

the cross-section variation of the initial values relative to the time series dimension variations as

given by Ωε.

Remark 6.4 The asymptotic efficiency arguments in Ahn and Schmidt (1995) carry over to the

extended GMM estimator (6.30) set out above, provided that the fourth moments of µi exist. How-

ever, as is well known from the instrumental variables literature, such asymptotic results need not

carry over to small or even moderate sized samples, particularly when the number of moment con-

ditions is large relative to the number of observations. The extended GMM estimators seem to be

subject to such a shortcoming. This is because in the absence of prior information on the unit root

properties of wit all moment conditions could be informative,20 and as a result the extended GMM

estimators tend to use moment conditions well in excess of the number of unknown parameters.21

Therefore, the extended GMM estimators are likely to be subject to important small sample bias.

This issue is taken up in the next section.

7 Finite Sample Evidence

In this section we provide evidence on the finite sample properties of the QML estimators, and

standard and extended GMM estimators by means of Monte Carlo experiments.22 While we con-

sider a fairly broad range of model specifications, our Monte Carlo analysis is, given the scope of

the paper, necessarily limited in nature. Nevertheless, we conjecture that our conclusions are likely

to be of general validity.
20In the univariate context, Wansbeek and Bekker (1996) argue the importance of using all applicable moment

conditions; Hahn (1999) argues that the information content of the homoskedasticity implied moment conditions is

significantly augmented if initialization restrictions are imposed.
21The use of more moment conditions can lead to an increase in the bias of the GMM estimators in finite sample,

for example, see Ziliak (1997). Also note that for both the standard and extended GMM estimators the number of

orthogonality implied moment conditions increases quadratically with the time dimension of the panel.
22In the univariate context Monte Carlo studies of the finite sample properties of various GMM estimators include

Kiviet (1995), Blundell and Bond (1998), and Alonso-Borrego and Arellano (1999).
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7.1 Monte Carlo Design

We consider three types of designs for the matrix of slope coefficients, Φ. These designs distinguish

between stationary , pure unit root, and cointegrated PVAR models.23 In the case of stationary

designs we consider three sub-cases with Φ having maximum eigenvalues equal; to 0.60, 0.80, and

0.95. For all designs we set m = 2., and to make the Monte Carlo results from the various designs

comparable, we specify (where appropriate) different error variance matrices for different designs

so as to obtain similar population R2 values for both equations of the PVAR model and across all

designs:

Design 1a: Stationary PVAR with maximum eigenvalue of Φ equal to 0.6

Φ =

Ã
0.4 0.2

0.2 0.4

!
, Ωε =

Ã
0.07 0.05

0.05 0.07

!
.

The other eigenvalue of Φ is 0.2, and the population R2 values are given by R24wlit = 0.2364,

l = 1, 2, i = 1, 2, ...,N , and t = 2, 3, . . . , T , where

R24wlit = 1−
[Ωε]llhP∞

j=0CjΩεC
0
j

i
ll

, (7.1)

with C0 = Im, C1 = − (Im −Φ), and Cj = Cj−1Φ, j = 2, 3, . . . , and [S]ll denoting the element in
the l-th row and l-th column of the matrix S.24

Design 1b: Stationary PVAR with maximum eigenvalue of Φ equal to 0.8

Φ =

Ã
0.6 0.2

0.2 0.6

!
, Ωε =

Ã
0.07 −0.02
−0.02 0.07

!
.

The other eigenvalue of Φ is 0.4, and the population R2 values are given by R24wlit = 0.2396,

l = 1, 2, t = 2, 3, . . . , T , where R24wlit are computed as in (7.1).

Design 1c: Stationary PVAR with maximum eigenvalue of Φ equal to 0.95

Φ =

Ã
0.7 0.25

0.25 0.7

!
, Ωε =

Ã
0.08 −0.05
−0.05 0.08

!
.

The other eigenvalue of Φ is 0.45, and the population R2 values are given by R24wlit = 0.2383,

l = 1, 2, t = 2, 3, . . . , T , where R24wlit are computed as in (7.1).

Design 2: PVAR with unit roots (but non-cointegrated)

23An earlier version of this paper also included two additional designs which are dropped to save space.
24See Pesaran, Shin, and Smith (2000) for a discussion of the computation of R2 values for (possibly cointegrated)

VARs.
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Φ =

Ã
1 0

0 1

!
, Ωε =

Ã
0.08 −0.05
−0.05 0.08

!
.

Design 3: Cointegrated PVAR

Φ =

Ã
0.5 0.1

−0.5 1.1

!
, Ωε =

Ã
0.05 0.03

0.03 0.05

!
.

The eigenvalues of Φ in this case are given by 1 and 0.6, and the implied vectors/matrices α, β,

and Π are given by

α =

Ã
−0.5
−0.5

!
, β =

Ã
1

−0.2

!
, Π =

Ã
−0.5 0.1

−0.5 0.1

!
.

The population R2 values are given by R24wlit = 0.2381, l = 1, 2, t = 2, 3, . . . , T , where R
2
4wlit are

computed as in (7.1).

The baseline settings across all five designs for the remaining model parameters are as follows:

We take the εit’s to be normally distributed, and generate the individual-specific effects as

µi =
√
τ

µ
qi − 1√
2

¶
ni, qi

iid∼χ2 (1) , and ni
iid∼N (0,Ωε) , (7.2)

with qi and ni being distributed independently of εit for all i and t. In this way the individual effects

will not be normally distributed. Clearly, the particular way that the individual effects are generated

has no consequence for the FE-QMLE but could be important for the GMM type estimators. For

τ we consider two value, τ = 1 and 5. It should be recalled that τ measures the degree of cross-

section to the time-series variations, which tends to be quite large for most economic data sets.

The Monte Carlo studies of GMM estimators in the univariate context typically set τ = 1, and to

our knowledge we are the first to consider implications of changes in τ for the GMM estimators.

The FE-QMLE does not depend on τ .

The w0its were generated using (2.1) and the initialization (I3) as set out in Appendix A, with

M = 25 and Ωz = Ωε. Note that under this initialization we have that R
2
4wli1 = R24wlit , for

t = 2, 3, . . . , T , and l = 1, 2. We set N = (50, 250), T = (3, 10), and carry out 1, 000 replications

for all baseline experiments, computing the FE-QML as well as the standard and extended GMM

estimators.

In further experiments we consider a couple of deviations from the baseline scenario. As a partial

analysis of the performance of the QML estimator under non-normal disturbances we also consider
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the cases of t- and chi square distributed disturbances: We generate t distributed disturbances εit

as

εit =

r
3

5
P0ε

Ã
ς1it

ς2it

!
, (7.3)

where Pε is the (upper triangular) Cholesky factor of Ωε, and ςlit, l = 1, 2, are (for all l, i, and t)

independently distributed standard t variates with five degrees of freedom. Chi square distributed

disturbances are generated as

εit =

r
1

2
P0ε

Ã
χ21it − 1
χ22it − 1

!
, (7.4)

where χ21it and χ22it are independently distributed chi square variates with one degree of freedom.

Also, as a partial analysis of the information content of the moment conditions available under

the random but not the fixed effects specification, we compare the fixed and random effects QML

estimators under cross-sectionally homoskedastic individual-specific effects, generating the latter as

µi =
√
τni, ni

iid∼N (0,Ωε) , (7.5)

with ni again being distributed independently of εit for all i and t, and τ = (1, 5).

In what follows we compare the various estimators in terms of their biases and root mean square

errors (RMSEs). We also investigate the finite sample performance of a number of tests based on

these estimators. For Designs 1 and 2 we compute the various estimators with Π unrestricted, and

for Design 3 we compute the QMLE both with and without imposing rank restrictions on Π. In

what follows we refer to the GMM estimator that uses only the orthogonality and initialization

restrictions implied moment conditions as the “Extended GMM Estimator I”, and the GMM es-

timator that uses only the orthogonality and homoskedasticity implied moment conditions as the

“Extended GMM Estimator II”. Finally, the GMM estimator that uses the orthogonality, initial-

ization restrictions, and homoskedasticity implied moment conditions will be referred to as the

“Extended GMM Estimator III”. A summary of the computational details is provided in Appendix

C.

7.2 The Results

The evidence on the finite sample properties of the various estimators in the case of normally

distributed disturbances and when no rank restrictions are imposed on the matrixΠ are summarized

in Tables 1 and 2. Performance of each estimator is evaluated according to the familiar four criteria,

namely bias, RMSE, size, and power. Table 1 reports the bias and RMSEs of the various estimators.

To economize on space we focus on the results for the elements in the first column of Φ, namely φ11

and φ21. The results for φ12 and φ22 are qualitatively similar and are available upon request. Size
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and power of the tests are reported in Tables 2a-2d. The nominal size is set to 5%. Once again to

save space these tables only report the results for design 1a, and 3. For the GMM type estimators

we report the results for τ = 1 and 5.

The results in Tables 1 and 2 clearly show that the performance of the GMM type estimators

tends to deteriorate with increases in τ , except in the pure unit root case. These simulation results

are in line with our theoretical derivations discussed in Remark 6.2 and 6.3, and will not disappear

if larger sample sizes are considered. The FE-QMLE is invariant to changes in τ and its finite

sample performance is therefore unaffected by the choice of τ . Except for the pure unit root

case where Φ = I2, in which our data generating process no longer depends on individual effects.

The dependence of the GMM type estimators on τ and/or on whether Φ = I2, complicates the

comparison of the various estimators. However, our Monte Carlo results suggest that even when τ

is relatively small, τ = 1, the FE-QMLE tends to perform significantly better than the GMM type

estimators, possibly with the exception of the extended GMM estimators in the pure unit root case.

While for a small number of scenarios with τ = 1 one or more of the extended GMM estimators on

a subset of our four evaluation criteria perform slightly better than the FE-QMLE, the differences

in performance in those cases tend to be small, and are outweighed or at least offset by reverse

ranking on one or more of the other evaluation criteria.

The results in Tables 1 and 2 also confirm the breakdown of the standard GMM estimator in the

presence of unit roots, and document its deterioration as the eigenvalues of Φ approach unity, even

for the relatively large sample size of N = 250, T = 10. None of the extended GMM estimators

suffers from this problem. In fact, ceteris paribus the extended GMM estimators perform best in the

pure unit root case. Of the various extended GMM estimators, the one using the homoskedasticity

but not the initialization restrictions (Extended GMM Estimator II) is least sensitive to changes

in τ . The tests based on Extended GMM Estimators I and III suffer from a considerable degree of

over-rejection when T = 10, particularly as τ is increased. This finding should not be too surprising

given that the standard orthogonality conditions as well as the initialization restrictions implied

moment conditions involve interaction terms involving both levels and first differences, whereas

the homoskedasticity implied moment conditions only involve levels terms. The finding that the

Extended GMM Estimator II is relatively robust to changes in τ is unfortunately of limited use for

empirical analysis, however, as the Extended GMM Estimator II performs worse than the other

two extended GMM estimators when smaller values of τ are considered. Also, it is worth noting

that while for τ = 1 the extended GMM estimators outperform the standard GMM estimator, as τ

increases this ranking is reversed in some instances. Finally, the results show that the performance

of the GMM type estimators need not improve as T is increased. This is due to the rapid increase

in the number of legitimate instruments with T , and stands in contrast to the FE-QMLE whose

performance invariably improve with T . In summary, the Monte Carlo results suggest that the
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GMM estimators are likely to perform well if prior knowledge were available regarding the location

of the eigenvalues of Φ and/or if it were known that τ is small (so that the most suitable moment

conditions could be picked). However, even in cases where the GMM estimators perform reasonably

well in terms of bias and RMSE, they tend to be outperformed by the FE-QMLE in terms of size

and power of the tests, except in the pure unit root case. The extended GMM estimators, however,

provide useful consistent initial estimates for the QMLE iterations.

Overall, the results show that the FE-QMLE performs well, and is remarkably robust to the

time-series properties of the underlying variables. In particular, the performance of the FE-QMLE

is generally unaffected by whether the maximal eigenvalue of Φ is moderately sized, close, or equal

to unity.

Table 3 presents evidence on the finite sample properties of the FE-QMLE in the case of a

cointegrated PVAR model (Design 3). We did not compute any of the GMM estimators for this

design: The main virtue of the GMM estimators, their computational simplicity, is lost in the

presence of rank restrictions on Π, as in such cases the GMM estimators would have to be computed

using iterative optimization techniques. The results in Table 3 show that the FE-QMLE continues

to perform reasonably well under rank restrictions on Π. Nevertheless, it should be noted that in

the smallest sample (N = 50, T = 3) the RMSEs for the FE-QMLE tend to be larger than for the

other designs, and the test of cointegration rank is undersized. For larger sample sizes featuring a

larger N and/or T , bias and RMSE diminish rather rapidly, however, and size and power properties

of the tests improve considerably.

Table 4 reports on the performance of the FE-QMLE under two types of departures from

normally distributed disturbances, namely when the disturbances are t (5) or χ2 (1) distributed.25

For the case of t (5) distributed disturbances the FE-QMLE on all four evaluation criteria performs

just about the same as under normally distributed disturbances. For χ2 (1) distributed disturbances

the same tends to be true, specifically for bias and RMSE, except that there is now significant

evidence of over-rejection when T = 3.26 The size does quickly tend towards its nominal value as T

is increased, though. Consider now the size of the tests when normality is (erroneously) assumed in

the computation of the standard errors. With one exception the Monte Carlo results do not favor

the use of the robust estimator of the variance-covariance matrix. The exception is that under

χ2 (1) distributed disturbances, when T is small (T = 3) and N relatively large (N = 250), the use

of the sandwich formula helps in correcting the over-rejection problem.

All of the above arguments carry over to the random effects setting. To economize on space,

25Since the two types departures from normality considered here cover both the possibility of fat tails and the

possibility of an asymmetric/skewed shock distribution, it is very likely that the results reported here could be of

greater generality.
26We have also obtained broadly similar results for the various GMM estimators. These are available from the

authors upon request.
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however, Table 5, which provides our findings under the random effects specification of the indi-

vidual effects, focuses on the comparison of the random effects QML (RE-QML) and the FE-QML

estimators. The table reveals that under the random effects model the FE-QMLE performs on par

with the RE-QMLE even for the smallest sample size (N = 50, T = 3). The differences between

the two estimators are very small across all the four evaluation criteria, often even favoring the

FE-QMLE.27 Thus, the argument often advanced concerning the efficiency loss involved in the

first-differencing operation that underlies the FE-QMLE as compared to the RE-QMLE does not

appear to be important for the estimation of PVARs using finite samples. The RE-QMLE, how-

ever, remains the estimator of choice if the primary purpose of the analysis is the identification

and estimation of the effects of time-invariant variables in short panels. In that case great caution

must be exercised since the random effects model imposes strong assumptions on the distribution

of the individual-specific effects. For the identification and estimation of the effects of time-varying

variables our findings favor the use of FE-QMLE on grounds of its robustness to any form of

specification of the distribution generating the individual-specific effects.

8 Conclusion

In this paper, we have extended the analysis of linear dynamic panel data models with short time

dimension in a number of respects. We have generalized the extended GMM estimators, hitherto

studied in the literature in a single equation context, to a multivariate PVAR setting. We have

derived random and fixed effects QML estimators, and have shown that the QML estimators are

consistent and asymptotically normally distributed when the cross-sectional dimension of the panel

approaches infinity, irrespective of whether the underlying time series are (trend) stationary, pure

I(1), or I(1) and cointegrated. Furthermore, we have proposed new QML based procedures for

conducting tests for unit roots and cointegration rank in panels with short time dimension, and

shown that the limiting distributions of the relevant test statistics follow standard chi square and

normal distributions.

Asymptotic considerations would suggest that the extended GMM estimator making use of the

full set of moment conditions, when applicable, would in general be superior to the other estima-

tors. However, the validity of this argument requires that certain assumptions on the unobserved

individual effects are satisfied. From the perspective of empirical analysis, these assumptions could

be restrictive in the case of the extended GMM estimator. In addition, the Monte Carlo evidence

presented in Section 7 suggests that such asymptotic efficiency considerations do not generally

carry over to finite samples. Our results favor the fixed effects QML estimator over the various

GMM estimators, even under important departures from normally distributed disturbances. The

27While for space reasons Table 5 reports the RE-QMLE results only for τ = 5, we have found similar results as

reported in that table for τ = 1 also.
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finite sample performance of the various GMM estimators depends critically on a ratio reflecting

unobserved cross-section variation in the data relative to unobserved time-series variation, but even

if this ratio is relatively small the GMM estimators are outperformed in finite sample by the QML

estimators. A theoretical rationale is also provided for this result whereby it is shown that as-

ymptotic variance of the Standard GMM estimator is an increasing function of the variance of the

individual effects, while the distribution of the FE-QMLE is invariant to the size of this variance.

The use of likelihood based procedures for estimation and inference in VAR models is standard

in the time-series literature. This paper has provided theoretical as well as operational arguments

for the application of likelihood based methods to Panel VAR models. The ultimate test of our

approach lies in the application of the proposed techniques to substantive economic problems. This

is the next stage of our research, and hopefully that of others. The likelihood approach can also

be used to address other theoretical issues of interest, such as model selection and conditional

estimation and inference in PVARs. It would also be of interest to compare the finite sample

performance of the QML estimators with other types of GMM estimators, such as continuously

updated GMM and iterated GMM estimators discussed in the literature. In this way a fairer

comparison with GMM type estimators could be provided.
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Appendix A: Technical Issues Regarding the Initializations

The moment restrictions on wi0 and ∆wi1 assumed in the paper could be motivated directly

without necessarily relating them to the assumed data generating process for wit. However, further

insight into the moment homogeneity restrictions can be obtained by solving for wi0 and ∆wi1 in

terms of individual-specific initializations of the data generating process. We first note from (2.1)

that

∆wi1 = − (Im −Φ) (wi0 −µi) + εi1. (A.1)

Hence the properties of both wi0 and ∆wi1 can be examined by considering the deviations ξit,

ξit = wit −µi. (A.2)

Suppose that the ξit process for cross-sectional unit i started at time t = −Mi, Mi ≥ 0, with given
ξi,−Mi

. Then from (2.1) and (A.2) we obtain

ξi0 = Φ
Miξi,−Mi

+
Mi−1X
j=0

Φjεi,−j . (A.3)

To ensure that ξi0 exists irrespective of the unit root properties of (2.1) it will be useful to distinguish

between three main cases, where {ξit} is stationary, pure I(1), or I(1) and cointegrated.
In the case where all eigenvalues of Φ fall inside the unit circle, it then follows from (A.3) and

assumption (G2) that ξi0 will exist for all Mi, including the case where the ξit process has been

in operation for a long period of time, namely when Mi →∞. In this latter case (A.3) becomes

ξi0 =
∞X
j=0

Φjεi,−j, (A.4)

which is independent of the initialization deviations, ξi,−Mi
. However, when Mi is finite for all i

and all eigenvalues of Φ fall inside the unit circle, then the distribution of ξi0 will depend on ξi,−Mi

and homogeneity assumptions regarding the cross-sectional distribution of ξi,−Mi
will be required

both under the random and fixed effects specifications. See assumption (R1) in Section 3, and

assumption (F1) in Section 4. Intermediate cases where Mi → ∞ only for some i could also be

entertained.

At the other extreme where all eigenvalues of Φ are equal to unity, it follows from (A.3) that

ξi0 = ξi,−Mi
+

Mi−1X
j=0

εi,−j, (A.5)

and to ensure that ξi0 exists, the ξit process must have started in a finite period in the past for

all i. While homogeneity assumptions regarding the cross-sectional distribution of ξi,−Mi
will then
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be required for the random effects specification which is based on wi0, under the fixed effects

specification, which is based on ∆wi1, it is clear from (A.1) that no restrictions will be required

regarding ξi,−Mi
.

It remains to consider the case where some eigenvalues of Φ are equal to unity, and the remaining

ones fall inside the unit circle. For this case it is helpful to note that in terms of the deviations ξit

the model (2.1) can also be written as

∆ξit = Πξi,t−1 + εit, t = −Mi + 1,−Mi + 2, . . . , T, (A.6)

where

Π = − (Im −Φ) . (A.7)

As is well known from the time-series literature on cointegrated systems the key to the analysis of

these systems lies in the rank of the long-run multiplier matrix, Π, which we denote by r. When

r = 0, ξit is a pure random walk process. When r = m, Π is of full rank and ξit is a stationary

process. In the intermediate case where r = 1, 2, . . . ,m − 1 there exist m × r matrices α and β

such that

Π = αβ
0
, (A.8)

where α and β have full column rank.28 The above discussion is formalized in the following

assumptions:

Assumption (I1) The eigenvalues of Φ are either equal to unity or fall inside the unit circle.

Assumption (I2) Assume rank (Π) = r, and rank (α0⊥β⊥) = m− r for some r = 1, 2, ...,m− 1,
where α⊥ and β⊥ are m×(m− r) matrices of full column rank such that α0α⊥ = 0 and β0β⊥ = 0.

Under assumptions (I1) and (I2) the elements of ξit are either I(0) or I(1). To separate the

stochastic trend components in ξit from the cointegrating relations, we follow Johansen (1995, Ch.

4) and define

C = β⊥
¡
α0⊥β⊥

¢−1
α0⊥. (A.9)

If rank (Π) = r, r = 1, 2, . . . ,m − 1, then the matrix C has rank m − r, and there are m − r
common stochastic trend components in ξit, given by β

0
⊥ξit ∼ I (1), t = −Mi,−Mi +1, . . . , T . To

ensure that ξi0 exists, the m − r common stochastic trend components, β0⊥ξit v I(1), must have
started in a finite period in the past. For consistency with (A.4), the r cointegrating relations,

β0ξi0, must be stationary. The following assumption ensures this, irrespective of the number of

common stochastic trend components in ξit.

28See, for example, Johansen (1995, Ch. 4).
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Assumption (I3) The initial deviations ξi,−Mi
for i = 1, 2, . . . , N are given by

ξi,−Mi
=

∞X
j=0

¡
Φj −C¢ εi,−Mi−j +Czi, (A.10)

where zi is an m× 1 vector of individual-specific initialization effects.29

Substituting (A.10) back into (A.3), and noting from the definition of C that ΠC = 0, and thus

C = ΦC, we have that

ξi0 =
∞X
j=0

¡
Φj −C¢ εi,−j +C

Mi−1X
j=0

εi,−j

+Czi, (A.11)

and therefore also

β0ξi0 = β0
∞X
j=0

Φjεi,−j . (A.12)

It is thus seen that assumption (I3) indeed ensures that the cointegrating relations β0ξi0 are sta-

tionary, irrespective of the number of common trend components in the ξit process.
30 Furthermore,

in the case where all eigenvalues of Φ fall inside the unit circle, C = 0, and (A.11) reduces to (A.4).

In the case where all eigenvalues of Φ are equal to unity, C = Φ = Im, and (A.11) reduces to (A.5),

with ξi,−Mi
= zi. Finally, since

©
Φj −Cª∞

j=0
is absolutely summable irrespective of the number of

eigenvalues of Φ that are equal to unity,31 it follows from (A.11) that ξi0 exists. We shall discuss

the implications of the initialization (I3) for random and fixed effects QML and MD estimation in

the next two sections.
29According to assumption (I3), there are m− r linearly independent initialization effects in ξi,−Mi

, corresponding

to the number of common stochastic trend components in ξit. Also, since assumption (I3) effectively characterizes the

r stationary components of ξit as having started a long time ago, initialization effects in the latter components will,

irrespective of the effects’ properties, have vanished at time t = −Mi, Mi finite, and thus do not feature in (A.10).
30The following is in fact also true: The same processes generating the stationary components of {ξit}Tt=1 also

generate those of ξi0, and the same processes generating the common stochastic trend components of {ξit}Tt=1 also
generate those of ξi0.
31For a proof of the absolute summability property of

©
Φj −Cª∞

j=0
in the context of a p-th order VAR model, see

Johansen (1995, Ch. 4).
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Appendix B: The Asymptotic Variance Matrix of the Standard GMM Estimator

In this appendix we derive the asymptotic variance of φ̂GMM , the standard GMM estimator defined

by (6.7), for T = 3, and as N →∞, and show that it is an increasing function of Ωµ, the variance
matrix of the individual effects, µi, in the sense that if Ω

(1)
µ −Ω(2)µ is a positive semi-definite (p.s.d.)

matrix, so will be

AsyV
³
φ̂GMM

h
Ω(1)µ

i´
−AsyV

³
φ̂GMM

h
Ω(2)µ

i´
,

where Ω
(i)
µ , i = 1, 2 are two different variance matrices for the individual effects.32

The asymptotic variance of φ̂GMM is given by (also see (6.12) )

AsyV
³
φ̂GMM

´
=
¡
S0D−1S

¢−1 ⊗Ωε, (B.1)

where Ωε = E (εitε
0
it),

D = p lim
N→∞

Ã
1

N

NX
i=1

Q0iVQi

!
, (B.2)

S =p lim
N→∞

Ã
1

N

NX
i=1

Q0i∆Wi,−1

!
, (B.3)

Qi, ∆Wi,−1,and V are defined by (6.4), (6.6), and (6.11), respectively.
To simplify the derivations we suppose that assumptions G1 and G2 hold, all eigenvalues

of Φ lie inside the unit circle and the wit process has started in the infinite past. Under these

assumptions33

wit = µi +
∞X
j=0

Φjεi,t−j = µi + ξit, for all t, (B.4)

and it is easily seen that

E
¡
witw

0
i,t+s

¢
= Ωµ +ΩξΦ

0s, E
¡
wit∆w

0
i,t+s

¢
= −Ωξ

¡
Im −Φ0

¢
Φ0s−1, (B.5)

where Ωξ =
P∞
j=0Φ

jΩεΦ
0j . Also under Assumption G2

S =E
¡
Q0i∆Wi,−1

¢
, and D = E

¡
Q0iVQi

¢
,

32The more complicated case of the dependence of extended GMM on Ωµ can be derived similarly noting that

wit − Φwi,t−1 = (I− Φ)µi + εit and making use of the relations (6.20) and (6.22).
33The results will be qualitatively unaffected if we consider other initializations of the wit process discussed in

Appendix A.
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and using (B.5) we have (for T = 3)

S =


−Ωξ (Im −Φ0)
−Ωξ (Im −Φ0)Φ0
−Ωξ (Im −Φ0)

 , D = Ωµ ⊗V+H, (B.6)

where

H =


2Ωξ −Ωξ −ΩξΦ0
−Ωξ 2Ωξ 2ΩξΦ

0

−ΦΩξ 2ΦΩξ 2Ωξ

 .
It is clear that AsyV

³
φ̂GMM

´
will depend on Ωµ only through matrix D, and for any two variance

matrices, Ω
(i)
µ , i = 1, 2,

AsyV
³
φ̂GMM

h
Ω(1)µ

i´
≥ AsyV

³
φ̂GMM

h
Ω(1)µ

i´
, (B.7)

if ¡
S0D−11 S

¢−1 ≥ ¡S0D−12 S¢−1 , (B.8)

whereDi = Ω
(i)
µ ⊗V+H, andA ≥ B denotes that A−B is a p.s.d. matrix. This condition implies

S0D−11 S ≤ S0D−12 S,

and since S does not depend on Ω
(i)
µ , using (B.6) the condition (B.7) will be satisfied if

Ω(1)µ ⊗V+H ≥ Ω(2)µ ⊗V+H,

or if Ω
(1)
µ ≥ Ω(2)µ . The above sequence can be reversed to show that if Ω(1)µ ≥ Ω(2)µ then (B.7) will

follow.

In the simple case where m = 1, we have

D = σ2µ


1 −1 −1
−1 2 2

−1 2 2

+ σ2ε
1− φ2


1 −1 −φ
−1 2 2φ

−φ 2φ 2

 ,S = −σ2ε
1 + φ


1

φ

1

 ,
and after some algebra it follows that

AsyV
³
φ̂GMM

´
= 2

µ
1 + φ

1− φ

¶Ã
[2τ(1− φ) + 1]

£
τ(1− φ2) + 1

¤
τ2(1− φ2)(1− φ)2 + 2τ(1− φ) [φ2 + 4φ+ 5] + [φ2 + 4φ+ 5]

!
,

where τ = σ2µ/σ
2
ε . It is interesting to note that AsyV

³
φ̂GMM

´
depends on the ratio τ and not

the error variances, σ2µ and σ2ε separately. It is also easily established that AsyV
³
φ̂GMM

´
is an

increasing function of τ , for all values of |φ| < 1 and τ > 0.
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Appendix C: Computation of the Various Estimators for the Monte Carlo Analysis

In this appendix we provide details on how the various GMM andQML estimators were computed

in our Monte Carlo experiments.

For the computation of the standard GMM estimator we use (6.7), with the initial estimate of Φ

computed using (6.7), but withDbe replaced by ΛQ⊗Im, where ΛQ is given by (6.10). The variance-
covariance matrix of the standard GMM estimator is computed using (6.12). The Extended GMM

Estimators I, II, and III are obtained using (6.30), but with P0i defined as P0i =
³
P01i, P02i

´0
,

P0i =
³
P01i, P03i

´0
, and P0i =

³
P01i, P02i, P03i

´0
, respectively. See (6.24)-(6.27). We compute

initial estimates of the extended GMM estimators using (with the appropriate definitions of P0i)

(6.30), but with Dbu replaced by ΛP ⊗ Im, where ΛP is defined by (6.33). The variance-covariance
matrices of these estimators are computed using (6.34), again with the appropriate definition of

P0i.

The FE-QMLE for Designs 1-3 are computed using (4.14) with Ψ given by

Ψ = Ωε +
∞X
j=0

GjΩεG
0
j , with Gj = (Im −Φ)Φj . (C.1)

When all eigenvalues of Φ fall inside the unit circle, observing that

ΦΨΦ0 = ΦΩεΦ
0 +

∞X
j=0

Φj+1 (Im −Φ)Ωε (Im −Φ)0Φ0 j+1

= ΦΩεΦ
0 +Ψ−Ωε − (Im −Φ)Ωε (Im −Φ)0 , (C.2)

Ψ can then be computed directly by

ψ = D+m (Im2 −Φ⊗Φ)−1Dmvech
¡
2Ωε −ΦΩε −ΩεΦ0

¢
, (C.3)

where D+m denotes the generalized inverse of the m2×m (m+ 1) /2 dimensional duplication matrix
Dm defined such that vec (M) = Dmvech (M) for any symmetricm×m dimensional matrixM. When
some eigenvalues of Φ are equal to unity, then (Im2 −Φ⊗Φ) is singular; Ψ may then be computed
using recursions that invoke an appropriate stopping rule to truncate

P∞
j=0GjΩεG

0
j . The variance-

covariance matrix of the FE-QMLE is based on the fixed effects counterpart of (3.19). As initial

estimates of Φ we use the Extended GMM I estimates, which we denote by bΦ(0). Furthermore, we
obtain initial estimates of Ωε as

bΩ(0)ε =
1

2N (T − 1)
TX
t=2

NX
i=1

h
∆wit − bΦ(0)∆wi,t−1i h∆wit − bΦ(0)∆wi,t−1i0 , (C.4)

and of Ψ from (C.1), replacing Φ by bΦ(0), and Ωε by bΩ(0)ε .
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For Design 3 we compute the FE-QMLE under different rank restrictions on Π. This is achieved

by (i) leaving the rank of Π unrestricted; (ii) setting Φ = αβ0 + Im, where α and β are m × r
vectors, r = 1, 2, . . . ,m− 1; and, finally (iii) setting Φ = Im. Under (ii), to obtain initial estimates
of β, which we denote by bβ(0), we run cross-section regressions in the elements of wit under the
normalization restriction (5.6). Also from (A.1) and noting that

∆2wit = αβ0∆wi,t−1 +∆εit, t = 2, 3, . . . , T, (C.5)

we then obtain the following initial estimate of α:

vec
hbα(0)i = ( NX

i=1

H0
i

hbΣ(0)4ηi−1Hi

)−1( NX
i=1

H0
i

hbΣ(0)4ηi−1 gi
)
, (C.6)

where

Hi = L
0
i
bβ(0) ⊗ Im, Li =

³
0, ∆wi1, ∆wi2, . . . , ∆wi,T−1

´
,

gi = vec
³
∆wi1, ∆2wi2, ∆2wi3, . . . , ∆2wiT

´
,

and bΣ(0)4η is obtained from (4.10), with Ψ replaced by bΨ(0), and with Ωε replaced by bΩ(0)ε , where we
compute bΨ(0) and bΩ(0)ε as described above.

For the RE-QMLE we concentrate on Designs 1 and 2 and compute it. We compute the

estimators using (3.15), with the variance-covariance given by (3.19). We restrict Ω0 and Ω0a as

in (3.6), use the Extended GMM I estimates as the initial estimates of Φ, and compute initial

estimates for Ωε using (C.4). For the initial estimate of Ω0, we use

bΩ(0)0 =
1

N

NX
i=1

wi0w
0
i0. (C.7)

Observing that under (3.6)

σa = D+m [(Im −Φ)⊗ (Im −Φ)]Dm
h
σ0 + (Im2 −Φ⊗Φ)−1 σε

i
, (C.8)

we obtain initial estimates of Ωa, bΩ(0)a , from (C.8), replacing Φ by bΦ(0), and Ωε by bΩ(0)ε . Finally,
for the initial estimate of Ω0a we use

bΩ(0)0a = bΩ(0)a ³
Im − bΦ(0)´0 −1 .

The numerical optimization routine we employ for computation of the QML estimators is based

on a trust region method type algorithm, and is described in some detail in a note available upon

request.
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Table 1: Bias and RMSE of Alternative Estimators of Panel VAR1 

 

 Estimator   
   

  λmax = 0.6 
   

 True Value φ11 = 0.4 φ21 = 0.2 
      

  Bias RMSE Bias RMSE 
      

  N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 
          

  τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 
                  
T = 3 SGMM 0.0884 0.1643 0.0211 0.0443 0.3349 0.4459 0.1461 0.2059 0.0261 0.0604 0.0145 0.0271 0.3265 0.4323 0.1432 0.1975 
 EGMM I -0.0109 -0.0947 -0.0044 -0.0245 0.2066 0.2628 0.0964 0.1258 0.0092 0.0259 0.0052 0.0084 0.2064 0.2399 0.0943 0.1171 
 EGMM II 0.0222 -0.0415 0.0024 -0.0216 0.2729 0.3150 0.1231 0.1468 0.0150 0.0311 0.0063 0.0055 0.2729 0.3147 0.1203 0.1411 
 EGMM III -0.0234 -0.1346 -0.0085 -0.0391 0.2130 0.2824 0.0958 0.1256 0.0159 0.0415 0.0023 0.0003 0.2130 0.2400 0.0936 0.1127 
 FE-QML 0.0027 0.0003 0.1969 0.0898 0.0027 0.0008 0.1969 0.0809 
          
          

T = 10 SGMM 0.0894 0.1133 0.0199 0.0266 0.1334 0.1544 0.0491 0.0561 0.0222 0.0354 0.0069 0.0113 0.1051 0.1159 0.0458 0.0515 
 EGMM I -0.0656 -0.2004 -0.0072 -0.0291 0.1193 0.2441 0.0382 0.0550 0.0205 0.0588 0.0024 0.0014 0.0965 0.1315 0.0367 0.0446 
 EGMM I 0.0502 -0.0036 0.0107 0.0038 0.1064 0.1127 0.0431 0.0449 0.0173 0.0332 0.0048 0.0057 0.0994 0.1164 0.0423 0.0461 
 EGMM II -0.0702 -0.2181 -0.0068 -0.0323 0.1265 0.2615 0.0383 0.0577 0.0238 0.0685 0.0024 0.0021 0.1020 0.1395 0.0367 0.0452 
 FE-QML 0.0023 0.0027 0.0737 0.0327 0.0005 0.0019 0.0706 0.0303 
          
   

  λmax = 0.8 
   

 True Value φ11 = 0.6 φ21 = 0.2 
      

  Bias RMSE Bias RMSE 
      

  N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 
          

  τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 
                  

T = 3 SGMM 0.1704 0.2842 0.0395 0.0798 0.4057 0.5450 0.1614 0.2327 0.0781 0.1198 0.0179 0.0340 0.3777 0.5090 0.1561 0.2200 
 EGMM I 0.0161 -0.0397 0.0083 -0.0038 0.1710 0.2041 0.0828 0.1071 0.0121 0.0393 0.0035 0.0075 0.1750 0.2041 0.0800 0.1018 
 EGMM II 0.0594 0.0199 0.0135 -0.0023 0.2405 0.2634 0.1131 0.1306 0.0126 0.0306 0.0070 0.0124 0.2238 0.2558 0.1087 0.1288 
 EGMM III 0.0023 -0.0735 0.0029 -0.0216 0.1649 0.2041 0.0799 0.1033 0.0137 0.0515 0.0043 0.0094 0.1646 0.1933 0.0784 0.0974 
 FE-QML 0.0105 0.0040 0.1694 0.0736 0.0037 0.0014 0.1385 0.0607 
          
          

T = 10 SGMM 0.1228 0.1591 0.0292 0.0427 0.1474 0.1852 0.0466 0.0620 0.0390 0.0582 0.0103 0.0198 0.0960 0.1203 0.0363 0.0481 
 EGMM I -0.0394 -0.1328 -0.0047 -0.0242 0.0779 0.1601 0.0282 0.0446 0.0288 0.0747 0.0024 0.0048 0.0688 0.1063 0.0264 0.0341 
 EGMM II 0.0691 0.0314 0.0139 0.0086 0.0983 0.0928 0.0341 0.0373 0.0185 0.0367 0.0030 0.0053 0.0726 0.0907 0.0303 0.0372 
 EGMM III -0.0415 -0.1425 -0.0046 -0.0266 0.0818 0.1700 0.0283 0.0464 0.0304 0.0817 0.0022 0.0057 0.0724 0.1135 0.0267 0.0349 
 FE-QML 0.0038 0.0022 0.0513 0.0231 0.0023 -0.0003 0.0445 0.0198 
          
      

 
For details of the Monte Carlo design, see Section 7.1. The data generating process is given by (I2 - ΦL) (wit - µi) = εit. λmax denotes the maximum eigenvalue of Φ, and φjk the element in 
the j-th row and k-th column of Φ, j, k = 1, 2. ‘RMSE’ denotes the root mean square error, ‘SGMM’ the Standard GMM Estimator, ‘EGMM I’ the Extended GMM Estimator I, ‘EGMM 
II’ the Extended GMM Estimator II, ‘EGMM III’ the Extended GMM Estimator III and ‘FE-QML’ the Fixed Effects Quasi Maximum Likelihood Estimator. See Section 7.2 for further 
details. 



  

Table 1 (Continued) 
Bias and RMSE of Alternative Estimators of Panel VAR 

 
 

 Estimator   
   

  λmax = 0.95 
   

 True Value φ11 = 0.7 φ21 = 0.25 
      

  Bias RMSE Bias RMSE 
      

  N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 
          

  τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 
                  
T = 3 SGMM 0.3585 0.4193 0.1150 0.1596 0.8923 0.9174 0.4020 0.4966 0.2331 0.2297 0.0521 0.0787 0.8527 0.8501 0.3792 0.4688 
 EGMM I 0.0260 -0.0149 0.0153 0.0091 0.1982 0.2396 0.1104 0.1396 0.0196 0.0524 0.0006 0.0056 0.1987 0.2369 0.1042 0.1339 
 EGMM II 0.0711 0.0494 0.0246 0.0151 0.2979 0.3223 0.1519 0.1743 0.0186 0.0416 0.0033 0.0121 0.2836 0.3187 0.1474 0.1723 
 EGMM III 0.0124 -0.0426 0.0090 -0.0069 0.1743 0.2101 0.0994 0.1241 0.0171 0.0660 0.0027 0.0138 0.1775 0.2140 0.0957 0.1206 
 FE-QML 0.0175 0.0064 0.2026 0.0873 0.0134 0.0006 0.1674 0.0727 
          
          

T = 10 SGMM 0.1892 0.2151 0.0587 0.0754 0.2336 0.2605 0.0879 0.1081 0.1057 0.1113 0.0379 0.0488 0.1778 0.1897 0.0740 0.0905 
 EGMM I -0.0248 -0.0945 -0.0017 -0.0145 0.0707 0.1268 0.0330 0.0492 0.0328 0.0946 0.0040 0.0125 0.0707 0.1229 0.0325 0.0468 
 EGMM I 0.0754 0.0464 0.0163 0.0129 0.1157 0.1147 0.0429 0.0508 0.0179 0.0395 0.0035 0.0066 0.0862 0.1064 0.0388 0.0493 
 EGMM II -0.0264 -0.1022 -0.0014 -0.0161 0.0727 0.1336 0.0332 0.0497 0.0350 0.1024 0.0038 0.0139 0.0732 0.1298 0.0328 0.0475 
 FE-QML 0.0053 0.0024 0.0558 0.0259 0.0025 -0.0004 0.0486 0.0217 
          
   

  λmax = 1 
   

 True Value φ11 = 1 φ21 = 0 
      

  Bias RMSE Bias RMSE 
      

  N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 
          

  τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 τ = 1 τ = 5 
                  

T = 3 SGMM 0.9731 0.9576 0.8874 0.8656 1.3102 1.2884 1.2042 1.1845 -0.0295 -0.0225 0.0499 0.0681 0.9415 0.9780 0.9263 0.9374 
 EGMM I 0.0354 0.0358 0.0034 0.0036 0.1598 0.1635 0.0571 0.0571 0.0001 -0.0001 -0.0016 -0.0016 0.1387 0.1421 0.0527 0.0539 
 EGMM II 0.1019 0.1029 0.0187 0.0184 0.2837 0.2834 0.0962 0.0968 -0.0155 -0.0138 -0.0039 -0.0039 0.2268 0.2319 0.0897 0.0915 
 EGMM III 0.0172 0.0180 0.0033 0.0035 0.1055 0.1050 0.0514 0.0513 -0.0039 -0.0034 -0.0013 -0.0015 0.1027 0.1018 0.0484 0.0488 
 FE-QML 0.0234 0.0069 0.2031 0.1012 -0.0015 -0.0031 0.1562 0.0693 
          
          

T = 10 SGMM 0.4874 0.4879 0.5283 0.5288 0.5257 0.5267 0.5727 0.5728 0.0075 0.0077 0.0125 0.0130 0.2017 0.2022 0.2176 0.2184 
 EGMM I 0.0023 0.0024 0.0003 0.0003 0.0244 0.0235 0.0117 0.0116 0.0013 0.0011 -0.0000 -0.0000 0.0234 0.0225 0.0117 0.0117 
 EGMM II 0.0354 0.0358 0.0034 0.0036 0.0712 0.0713 0.0188 0.0189 0.0034 0.0028 -0.0002 -0.0002 0.0549 0.0543 0.0174 0.0175 
 EGMM III 0.0024 0.0025 0.0004 0.0005 0.0239 0.0231 0.0116 0.0115 0.0016 0.0015 -0.0001 -0.0001 0.0234 0.0227 0.0115 0.0115 
 FE-QML 0.0091 0.0006 0.0623 0.0274 0.0021 0.0003 0.0443 0.0182 
          
      



  

 
Table 2a : Size and Power Properties of Tests for φ11 Under Alternative Estimators of Panel VAR2,3, λmax = 0.6 

 

 Estimator φ11 = 0.1 φ11 = 0.2 φ11 = 0.3 φ11 = 0.4 φ11 = 0.5 φ11 = 0.6 φ11 = 0.7 
         

τ = 1 0.1220 0.0790 0.0710 0.0990 0.1730 0.2610 0.3790 N = 50, 
T = 3 

SGMM 
τ = 5 0.0600 0.0530 0.0750 0.1260 0.1860 0.2580 0.3450 
τ = 1 0.4120 0.2560 0.1440 0.0880 0.1100 0.2250 0.3670  EGMM I 
τ = 5 0.4920 0.3870 0.2750 0.1790 0.1180 0.1410 0.2210 
τ = 1 0.2130 0.1310 0.0810 0.0930 0.1400 0.2360 0.3690  EGMM II 
τ = 5 0.2900 0.1960 0.1350 0.1010 0.1130 0.1610 0.2500 
τ = 1 0.4700 0.3000 0.1760 0.1250 0.1430 0.2280 0.0420  EGMM III 
τ = 5 0.6240 0.5090 0.3640 0.2750 0.1930 0.1820 0.2640 

 FE-QML (Normal) 0.2960 0.1440 0.0700 0.0640 0.0950 0.1880 0.3530 
 FE-QML (Robust) 0.3080 0.1670 0.0930 0.0730 0.1120 0.2050 0.3480 
         
         

τ = 1 0.7630 0.3800 0.1400 0.2910 0.6710 0.9400 0.9920 N = 50, 
T = 10 

SGMM 
τ = 5 0.6290 0.2760 0.1310 0.3490 0.6970 0.9410 0.9910 
τ = 1 0.9990 0.9410 0.6810 0.3030 0.2660 0.6360 0.9020  EGMM I 
τ = 5 1.0000 0.9890 0.9210 0.7110 0.4860 0.4250 0.6190 
τ = 1 0.8950 0.5760 0.2190 0.2180 0.5890 0.8930 0.9890  EGMM II 
τ = 5 0.9410 0.7120 0.3740 0.2280 0.4120 0.7330 0.9280 
τ = 1 0.9950 0.9470 0.7030 0.3410 0.2960 0.6430 0.8990  EGMM III 
τ = 5 1.0000 0.9930 0.9400 0.7800 0.5480 0.4680 0.6320 

 FE-QML (Normal) 0.9810 0.7860 0.2870 0.0660 0.2770 0.7930 0.9860 
 FE-QML (Robust) 0.9720 0.7520 0.3040 0.0760 0.2800 0.7820 0.9790 
         
         

τ = 1 0.5220 0.2600 0.0810 0.0750 0.1920 0.4200 0.6640 N = 250, 
T = 3 

SGMM 
τ = 5 0.2570 0.0980 0.0510 0.0790 0.1670 0.3310 0.4980 
τ = 1 0.8890 0.6010 0.2340 0.0600 0.1810 0.5630 0.8950  EGMM I 
τ = 5 0.7750 0.5280 0.2520 0.1020 0.1160 0.3370 0.6970 
τ = 1 0.7180 0.3830 0.1270 0.0630 0.1880 0.4540 0.7150  EGMM II 
τ = 5 0.6270 0.3600 0.1570 0.0720 0.1180 0.2970 0.5630 
τ = 1 0.9230 0.6400 0.2480 0.0700 0.2010 0.5850 0.8910  EGMM III 
τ = 5 0.8550 0.6110 0.3010 0.1320 0.1340 0.3750 0.7280 

 FE-QML (Normal) 0.8400 0.5350 0.1720 0.0440 0.1870 0.5570 0.8250 
 FE-QML (Robust) 0.7410 0.4560 0.1610 0.0590 0.1730 0.4990 0.7380 
         
         

τ = 1 1.0000 0.9900 0.5140 0.0980 0.8120 1.0000 1.0000 N = 250, 
T = 10 

SGMM 
τ = 5 1.0000 0.9690 0.4000 0.1220 0.7790 0.9990 1.0000 
τ = 1 1.0000 1.0000 0.8560 0.0680 0.7640 0.9990 1.0000  EGMM I 
τ = 5 1.0000 1.0000 0.8900 0.1760 0.5010 0.9770 1.0000 
τ = 1 1.0000 0.9990 0.6430 0.0890 0.8110 1.0000 1.0000  EGMM II 
τ = 5 1.0000 0.9960 0.6420 0.0840 0.7010 0.9990 1.0000 
τ = 1 1.0000 1.0000 0.8540 0.0700 0.7670 1.0000 1.0000  EGMM III 
τ = 5 1.0000 1.0000 0.9040 0.2040 0.4920 0.9720 1.0000 

 FE-QML (Normal) 0.9960 0.9960 0.8020 0.0460 0.8510 0.9960 0.9960 
 FE-QML (Robust) 0.9900 0.9750 0.7310 0.0480 0.7570 0.9810 0.9930 
         
         

 
2 See the footnote to Table 1 for a description of the data generating process and the notation used in this table.  
3 The table reports the fraction of rejections for tests of H0: φ11 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, versus two-sided alternatives. The true value of φ11 is equal to 0.4. 



  

 
Table 2b:  Size and Power Properties of Tests for φ21 Under Alternative Estimators of Panel VAR4,5, λmax = 0.6 

 

 Estimator φ21 = -0.1 φ21 = 0 φ21 = 0.1 φ21 = 0.2 φ21 = 0.3 φ21 = 0.4 φ21 = 0.5 
         

τ = 1 0.1680 0.1180 0.0740 0.0800 0.1120 0.1640 0.2580 N = 50, 
T = 3 

SGMM 
τ = 5 0.1110 0.0800 0.0560 0.0670 0.1070 0.1500 0.2060 
τ = 1 0.3650 0.2160 0.1100 0.0730 0.1160 0.2300 0.4100  EGMM I 
τ = 5 0.3190 0.1880 0.1050 0.0820 0.1360 0.2640 0.4140 
τ = 1 0.2590 0.1620 0.0990 0.0820 0.1190 0.1950 0.3180  EGMM II 
τ = 5 0.2220 0.1340 0.0880 0.0860 0.1330 0.2030 0.3100 
τ = 1 0.3960 0.2410 0.1250 0.1010 0.1670 0.2890 0.4570  EGMM III 
τ = 5 0.3830 0.2240 0.1400 0.1460 0.2350 0.3520 0.5090 

 FE-QML (Normal) 0.3870 0.2040 0.0980 0.0600 0.0990 0.2150 0.3800 
 FE-QML (Robust) 0.3790 0.2280 0.1020 0.0670 0.1030 0.2160 0.3840 
         
         

τ = 1 0.9000 0.6410 0.2780 0.1570 0.4180 0.7690 0.9620 N = 50, 
T = 10 

SGMM 
τ = 5 0.8370 0.5380 0.2260 0.1720 0.4170 0.7590 0.9480 
τ = 1 0.9550 0.7640 0.3770 0.2230 0.5070 0.8870 0.9860  EGMM I 
τ = 5 0.8850 0.6600 0.4130 0.3980 0.6590 0.9020 0.9870 
τ = 1 0.9330 0.7110 0.3430 0.1730 0.4470 0.8070 0.9770  EGMM II 
τ = 5 0.8840 0.6330 0.3150 0.2330 0.4880 0.8080 0.9680 
τ = 1 0.9540 0.7640 0.3970 0.2670 0.5420 0.8870 0.9880  EGMM III 
τ = 5 0.8820 0.6580 0.4460 0.4770 0.7070 0.9210 0.9880 

 FE-QML (Normal) 0.9960 0.8010 0.2940 0.0650 0.3050 0.8240 0.9850 
 FE-QML (Robust) 0.9850 0.7950 0.3120 0.0690 0.3060 0.8080 0.9800 
         
         

τ = 1 0.5580 0.2950 0.0940 0.0620 0.1690 0.3750 0.6290 N = 250, 
T = 3 

SGMM 
τ = 5 0.3220 0.1460 0.0520 0.0640 0.1260 0.2670 0.4530 
τ = 1 0.8880 0.5710 0.1830 0.0630 0.2110 0.6130 0.9030  EGMM I 
τ = 5 0.7310 0.4110 0.1330 0.0680 0.1680 0.4600 0.7830 
τ = 1 0.7080 0.3850 0.1330 0.0560 0.1720 0.4370 0.7560  EGMM II 
τ = 5 0.5830 0.3030 0.1100 0.0600 0.1540 0.3540 0.6120 
τ = 1 0.9090 0.6050 0.2120 0.0600 0.2270 0.6310 0.9090  EGMM III 
τ = 5 0.8100 0.4960 0.1990 0.0750 0.2030 0.5100 0.8130 

 FE-QML (Normal) 0.8880 0.6130 0.2190 0.0530 0.2170 0.6290 0.9020 
 FE-QML (Robust) 0.8030 0.5310 0.1950 0.0600 0.2070 0.5360 0.8020 
         
         

τ = 1 1.0000 0.9940 0.6190 0.0890 0.7360 0.9980 1.0000 N = 250, 
T = 10 

SGMM 
τ = 5 1.0000 0.9790 0.5250 0.0920 0.6970 0.9910 1.0000 
τ = 1 1.0000 1.0000 0.7960 0.0650 0.8360 1.0000 1.0000  EGMM I 
τ = 5 1.0000 0.9980 0.7150 0.1110 0.7480 0.9950 1.0000 
τ = 1 1.0000 0.9980 0.6860 0.0790 0.7600 0.9980 1.0000  EGMM II 
τ = 5 1.0000 0.9930 0.6330 0.0880 0.7010 0.9950 1.0000 
τ = 1 1.0000 1.0000 0.8000 0.0680 0.8430 1.0000 1.0000  EGMM III 
τ = 5 1.0000 0.9980 0.7420 0.1260 0.7620 0.9980 1.0000 

 FE-QML (Normal) 0.9970 0.9960 0.8410 0.0530 0.8880 0.9960 0.9960 
 FE-QML (Robust) 0.9930 0.9780 0.7720 0.0510 0.8120 0.9820 0.9940 
         
         

 
4 See the footnote to Table 1 for a description of the data generating process and the notation used in this table.  
5 The table reports the fraction of rejections for tests of H0: φ21 = {-0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5}, versus two-sided alternatives. The true value of φ21 is equal to 0.2. 



  

 
Table 2c:  Size and Power Properties of Tests for φ11 Under Alternative Estimators of Panel VAR6,7, λmax = 1 

 

 Estimator φ11 = 0.7 φ11 = 0.8 φ11 = 0.9 φ11 = 1 φ11 = 1.1 φ11 = 1.2 φ11 = 1.3 
         

τ = 1 0.1990 0.2290 0.2730 0.3150 0.3760 0.4310 0.4880 N = 50, 
T = 3 

SGMM 
τ = 5 0.1860 0.2260 0.2720 0.3080 0.3610 0.4050 0.4650 
τ = 1 0.6980 0.4900 0.1740 0.0340 0.2200 0.5980 0.8200  EGMM I 
τ = 5 0.7160 0.4920 0.1690 0.0320 0.2250 0.6170 0.8240 
τ = 1 0.3560 0.2120 0.0860 0.0780 0.1880 0.3970 0.5990  EGMM II 
τ = 5 0.3690 0.2170 0.0870 0.0770 0.1910 0.3940 0.5980 
τ = 1 0.8460 0.6510 0.2680 0.0390 0.2980 0.7270 0.9210  EGMM III 
τ = 5 0.8500 0.6560 0.2770 0.0380 0.3110 0.7490 0.9210 

 FE-QML (Normal) 0.3600 0.2110 0.1160 0.0840 0.1390 0.2540 0.4260 
 FE-QML (Robust) 0.3720 0.2430 0.1270 0.1090 0.1590 0.2740 0.4250 
         
         

τ = 1 0.4700 0.6760 0.8490 0.9480 0.9860 0.9970 1.0000 N = 50, 
T = 10 

SGMM 
τ = 5 0.4710 0.6670 0.8510 0.9430 0.9850 0.9970 1.0000 
τ = 1 1.0000 0.9990 0.9770 0.1210 0.9960 1.0000 1.0000  EGMM I 
τ = 5 1.0000 0.9990 0.9800 0.1280 0.9970 1.0000 1.0000 
τ = 1 0.9820 0.9200 0.6010 0.3020 0.9350 0.9950 1.0000  EGMM II 
τ = 5 0.9830 0.9140 0.5890 0.3150 0.9390 0.9960 1.0000 
τ = 1 1.0000 1.0000 0.9810 0.1570 0.9970 1.0000 1.0000  EGMM III 
τ = 5 1.0000 1.0000 0.9810 0.1610 0.9980 1.0000 1.0000 

 FE-QML (Normal) 0.9700 0.8860 0.4900 0.0870 0.5860 0.9460 0.9750 
 FE-QML (Robust) 0.9700 0.8760 0.5130 0.1040 0.6030 0.9330 0.9760 
         
         

τ = 1 0.1650 0.1980 0.2370 0.2840 0.3220 0.3790 0.4310 N = 250, 
T = 3 

SGMM 
τ = 5 0.1550 0.1950 0.2440 0.2860 0.3210 0.3680 0.4150 
τ = 1 0.9830 0.9220 0.5630 0.0310 0.5560 0.9570 0.9930  EGMM I 
τ = 5 0.9820 0.9140 0.5600 0.0270 0.5580 0.9560 0.9890 
τ = 1 0.8570 0.6330 0.2170 0.0720 0.3280 0.7470 0.9250  EGMM II 
τ = 5 0.8530 0.6120 0.2110 0.0690 0.3320 0.7450 0.9130 
τ = 1 0.9900 0.9410 0.6010 0.0400 0.6200 0.9710 0.9980  EGMM III 
τ = 5 0.9910 0.9400 0.6010 0.0390 0.6320 0.9760 0.9970 

 FE-QML (Normal) 0.7210 0.5120 0.2010 0.0660 0.2240 0.5520 0.7490 
 FE-QML (Robust) 0.6740 0.4800 0.2020 0.0820 0.2220 0.4890 0.6940 
         
         

τ = 1 0.4830 0.6630 0.8320 0.9350 0.9790 0.9940 0.9990 N = 250, 
T = 10 

SGMM 
τ = 5 0.4850 0.6660 0.8260 0.9360 0.9810 0.9970 0.9990 
τ = 1 1.0000 1.0000 1.0000 0.0580 1.0000 1.0000 1.0000  EGMM I 
τ = 5 1.0000 1.0000 1.0000 0.0550 1.0000 1.0000 1.0000 
τ = 1 1.0000 1.0000 1.0000 0.0930 1.0000 1.0000 1.0000  EGMM II 
τ = 5 1.0000 1.0000 0.9990 0.0940 1.0000 1.0000 1.0000 
τ = 1 1.0000 1.0000 1.0000 0.0670 1.0000 1.0000 1.0000  EGMM III 
τ = 5 1.0000 1.0000 1.0000 0.0710 1.0000 1.0000 1.0000 

 FE-QML (Normal) 0.9630 0.9560 0.9140 0.0500 0.9340 0.9570 0.9640 
 FE-QML (Robust) 0.9730 0.9620 0.8900 0.0600 0.9100 0.9620 0.9730 
         
         

 
6 See the footnote to Table 1 for a description of the data generating process and the notation used in this table. 
7 The table reports the fraction of rejections for tests of H0: φ11 = {0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3}, versus two-sided alternatives. The true value of φ11 is equal to 1. 



  

Table 2d: Size and Power Properties of Tests for φ21 Under Alternative Estimators of Panel VAR8,9, λmax = 1 
 

 Estimator φ21 = -0.3 φ21 = -0.2 φ21 = -0.1 φ21 = 0 φ21 = 0.1 φ21 = 0.2 φ21 = 0.3 
         

τ = 1 0.0920 0.0740 0.0630 0.0500 0.0500 0.0620 0.0790 N = 50, 
T = 3 

SGMM 
τ = 5 0.0850 0.0690 0.0650 0.0580 0.0560 0.0670 0.0780 
τ = 1 0.7530 0.5380 0.1990 0.0300 0.1620 0.5420 0.7540  EGMM I 
τ = 5 0.7510 0.5380 0.1980 0.0240 0.1690 0.5390 0.7570 
τ = 1 0.4640 0.2690 0.1040 0.0410 0.0900 0.2540 0.4430  EGMM II 
τ = 5 0.4750 0.2750 0.1120 0.0420 0.1010 0.2470 0.4450 
τ = 1 0.8870 0.6750 0.2810 0.0410 0.2630 0.6880 0.8730  EGMM III 
τ = 5 0.8930 0.6900 0.2940 0.0400 0.2730 0.6940 0.8750 

 FE-QML (Normal) 0.4200 0.2440 0.1050 0.0620 0.1050 0.2230 0.4100 
 FE-QML (Robust) 0.4380 0.2610 0.1290 0.0780 0.1230 0.2350 0.4300 
 FE-MD 0.3700 0.2110 0.1170 0.0790 0.1350 0.2500 0.3740 
         

τ = 1 0.6680 0.4950 0.3790 0.3240 0.3890 0.5290 0.6910 N = 50, 
T = 10 

SGMM 
τ = 5 0.6750 0.5060 0.3520 0.3160 0.3840 0.5230 0.7070 
τ = 1 1.0000 1.0000 0.9830 0.1210 0.9870 1.0000 1.0000  EGMM I 
τ = 5 1.0000 1.0000 0.9850 0.1160 0.9890 1.0000 1.0000 
τ = 1 0.9990 0.9730 0.7710 0.2050 0.8090 0.9820 0.9990  EGMM II 
τ = 5 0.9990 0.9750 0.7710 0.2120 0.8040 0.9810 0.9990 
τ = 1 1.0000 1.0000 0.9880 0.1560 0.9900 1.0000 1.0000  EGMM III 
τ = 5 1.0000 1.0000 0.9900 0.1480 0.9910 1.0000 1.0000 

 FE-QML (Normal) 0.9730 0.9520 0.5810 0.0600 0.6220 0.9470 0.9750 
 FE-QML (Robust) 0.9720 0.9410 0.5830 0.0780 0.6050 0.9450 0.9710 
         
         

τ = 1 0.0760 0.0600 0.0460 0.0470 0.0520 0.0580 0.0730 N = 250, 
T = 3 

SGMM 
τ = 5 0.0770 0.0550 0.0430 0.0460 0.0470 0.0570 0.0820 
τ = 1 0.9940 0.9490 0.5480 0.0300 0.5430 0.9370 0.9870  EGMM I 
τ = 5 0.9910 0.9400 0.5500 0.0260 0.5390 0.9360 0.9840 
τ = 1 0.9200 0.7020 0.2490 0.0340 0.2530 0.6820 0.8960  EGMM II 
τ = 5 0.9090 0.7030 0.2540 0.0310 0.2520 0.6700 0.8890 
τ = 1 0.9970 0.9750 0.6160 0.0350 0.6000 0.9590 0.9980  EGMM III 
τ = 5 0.9970 0.9740 0.6180 0.0360 0.6150 0.9550 0.9970 

 FE-QML (Normal) 0.8170 0.6240 0.2610 0.0480 0.2320 0.6050 0.8030 
 FE-QML (Robust) 0.7580 0.5490 0.2500 0.0620 0.2250 0.5530 0.7460 
         
         

τ = 1 0.6250 0.4350 0.2980 0.2650 0.3300 0.4900 0.6640 N = 250, 
T = 10 

SGMM 
τ = 5 0.6140 0.4350 0.3040 0.2690 0.3380 0.4920 0.6550 
τ = 1 1.0000 1.0000 1.0000 0.0550 1.0000 1.0000 1.0000  EGMM I 
τ = 5 1.0000 1.0000 1.0000 0.0540 1.0000 1.0000 1.0000 
τ = 1 1.0000 1.0000 1.0000 0.0630 0.9990 1.0000 1.0000  EGMM II 
τ = 5 1.0000 1.0000 1.0000 0.0640 0.9990 1.0000 1.0000 
τ = 1 1.0000 1.0000 1.0000 0.0570 1.0000 1.0000 1.0000  EGMM III 
τ = 5 1.0000 1.0000 1.0000 0.0550 1.0000 1.0000 1.0000 

 FE-QML (Normal) 0.9640 0.9600 0.9400 0.0520 0.9410 0.9610 0.9650 
 FE-QML (Robust) 0.9780 0.9680 0.9260 0.0580 0.9350 0.9710 0.9790 
         
         

 
8 See the footnote to Table 1 for a description of the data generating process and the notation used in this table.  
9 The table reports the fraction of rejections for tests of H0: φ21 = {-0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3}, versus two-sided alternatives. The true value of φ21 is equal to 0. 



  

 
 

 

 
Table 3a:  Bias and RMSE of Fixed Effects QML Estimator of Cointegrated 

Panel VAR10 
 

 

 
 

 

α1 = -0.5 
 

α2 = -0.5 
 

β2 = -0.2 

    
 Bias RMSE Bias RMSE Bias RMSE 
    
N = 50, T = 3 0.0438 0.4422 0.0068 0.3883 -0.0186 0.4982 
    
N = 50, T = 10 0.0058 0.2572 0.0024 0.2263 -0.0021 0.2483 
    
N = 250, T = 3 0.0045 0.3044 0.0009 0.2579 -0.0075 0.3188 
    
N = 250, T = 10 0.0019 0.1661 0.0015 0.1495 -0.0007 0.1604 
    

 
 

 
              Table 3b:  Size and Power Properties of Cointegration 
                 Rank Tests Based on Fixed Effects QML Estimator11 

 
 Size: H1 vs. H2 Power: H0 vs. H1 

   
N = 50, T = 3 0.0230 0.8560 

   
N = 50, T = 10 0.0500 1.0000 

   
N = 250, T = 3 0.0460 1.0000 

   
N = 250, T = 10 0.0460 1.0000 

   

 
10 See the footnote to Table 1 for a description of the data generating process, where now Φ = I2 + αβ ′, with α = (α1, α2) 

′ and β = (β1, β2) 
′. The remaining notation is as described 

in the footnote to Table 1. 
11 The table reports the fraction of rejections for tests of Hr: rank(Π) = r versus Hr+1: rank(Π) = r+1, r = 0, 1, where the true rank of Π is equal to 1. 



  

 
Table 3c:  Size and Power Properties of Tests for α1 Under Fixed Effects QML Estimator of Cointegrated Panel VAR12 

 

 Estimator α1 = -0.8 α1 = -0.7 α1 = -0.6 α1 = -0.5 α1 = -0.4 α1 = -0.3 α1 = -0.2 
         

N = 50, T = 3 FE-QML (Normal) 0.2240 0.1330 0.0870 0.0750 0.1250 0.2230 0.3730 
 FE-QML (Robust) 0.2690 0.1640 0.1010 0.0920 0.1450 0.2480 0.3840 
         

N = 50, T = 10 FE-QML (Normal) 0.9740 0.8240 0.3240 0.0650 0.3600 0.8670 0.9810 
 FE-QML (Robust) 0.9490 0.7690 0.3360 0.0920 0.3670 0.8320 0.9600 
         

N = 250, T = 3 FE-QML (Normal) 0.6530 0.4270 0.1710 0.0750 0.1870 0.4840 0.7190 
 FE-QML (Robust) 0.6440 0.4430 0.2020 0.1060 0.2100 0.4620 0.6720 
         

N = 250, T = 10 FE-QML (Normal) 0.9580 0.9520 0.8330 0.0440 0.8560 0.9500 0.9590 
 FE-QML (Robust) 0.9490 0.9120 0.7320 0.0600 0.7680 0.9150 0.9510 
         

 

 
Table 3d: Size and Power Properties of Tests for α2 Under Fixed Effects QML Estimator of Cointegrated Panel VAR13 

 

 Estimator α2 = -0.8 α2 = -0.7 α2 = -0.6 α2 = -0.5 α2 = -0.4 α2 = -0.3 α2 = -0.2 
         

N = 50, T = 3 FE-QML (Normal) 0.4330 0.2150 0.0910 0.0590 0.1310 0.2760 0.4910 
 FE-QML (Robust) 0.4170 0.2250 0.1050 0.0640 0.1280 0.2840 0.4850 
         

N = 50, T = 10 FE-QML (Normal) 0.9960 0.9460 0.4710 0.0580 0.4940 0.9690 0.9950 
 FE-QML (Robust) 0.9850 0.9160 0.4770 0.0620 0.4850 0.9430 0.9840 
         

N = 250, T = 3 FE-QML (Normal) 0.8510 0.7130 0.2890 0.0660 0.3010 0.7210 0.8590 
 FE-QML (Robust) 0.8210 0.6530 0.2690 0.0680 0.2660 0.6510 0.8260 
         

N = 250, T = 10 FE-QML (Normal) 0.9650 0.9630 0.9250 0.0460 0.9450 0.9630 0.9650 
 FE-QML (Robust) 0.9710 0.9530 0.8620 0.0510 0.8760 0.9540 0.9710 
         

 

 
Table 3e:  Size and Power Properties of Tests for β2 Under Fixed Effects QML Estimator of Cointegrated Panel VAR14 

 

 Estimator β2 = -0.5 β2 = -0.4 β2 = -0.3 β2 = -0.2 β2 = -0.1 β2 = 0 β2 = 0.1 
         

N = 50, T = 3 FE-QML (Normal) 0.2410 0.1130 0.0560 0.0740 0.1610 0.2530 0.3950 
 FE-QML (Robust) 0.3030 0.1760 0.1080 0.1070 0.1760 0.2670 0.4080 
         

N = 50, T = 10 FE-QML (Normal) 0.9880 0.9100 0.3560 0.0450 0.4010 0.8300 0.9710 
 FE-QML (Robust) 0.9670 0.8460 0.3680 0.0690 0.4040 0.8050 0.9450 
         

N = 250, T = 3 FE-QML (Normal) 0.6970 0.4170 0.1440 0.0730 0.2020 0.4640 0.6410 
 FE-QML (Robust) 0.6670 0.4170 0.1820 0.1050 0.2210 0.4500 0.6250 
         

N = 250, T = 10 FE-QML (Normal) 0.9620 0.9250 0.8800 0.0470 0.8690 0.9500 0.9580 
 FE-QML (Robust) 0.9560 0.9310 0.7890 0.0630 0.7840 0.9300 0.9540 
         

 
12 The table reports the fraction of rejections for tests of H0: α1 = {-0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2}, versus two-sided alternatives. The true value of α1 is equal to -0.5. 
13 The table reports the fraction of rejections for tests of H0: α2 = {-0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2}, versus two-sided alternatives. The true value of α2 is equal to -0.5. 
14 The table reports the fraction of rejections for tests of H0: β2 = {-0.5, -0.4, -0.3, -0.2, -0.1, 0, 0.1}, versus two-sided alternatives. The true value of β2 is equal to –0.2. 



  

 
 

 
 

Table 4a: Bias and RMSE of Fixed Effects QML Estimator of Panel VAR With Non-Normal 
Disturbances15,λmax = 0.6 

 

 Estimator   
   
  t Distributed Disturbances 
   
 True Value φ11 = 0.4 φ21 = 0.2 
      
  Bias RMSE Bias RMSE 
      
  N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 
      
T = 3 FE-QML -0.0026 -0.0050 0.2100 0.0961 0.0005 -0.0049 0.1862 0.0888 
T = 10 FE-QML 0.0044 0.0001 0.0728 0.0319 0.0025 0.0011 0.0688 0.0312 
          
   
  Chi Square Distributed Disturbances 
   
 True Value φ11 = 0.4 φ21 = 0.2 
      
  Bias RMSE Bias RMSE 
      
  N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 N = 50 N = 250 
      
T = 3 FE-QML -0.0085 -0.0001 0.2380 0.1070 0.0120 0.0010 0.2178 0.0969 
T = 10 FE-QML 0.0041 -0.0005 0.0758 0.0325 0.0026 0.0003 0.0710 0.0304 
          
      

 
15 For details of the Monte Carlo design, see Section 7.1. The data generating process is given by (I2 - ΦL) (wit - µi) = εit. See the footnote to Table 1 for a description of the notation used in this table.  



  

 
 

Table 4b:  Size and Power Properties of Tests for φ11 Based on Fixed Effects QML Estimator of Panel VAR in the Case 
of Non-Normal Disturbances16,17,  λmax = 0.6 

 

 Estimator φ11 = 0.1 φ11 = 0.2 φ11 = 0.3 φ11 = 0.4 φ11 = 0.5 φ11 = 0.6 φ11 = 0.7 
         

  t Distributed Disturbances 
         

N = 50, T = 3 FE-QML (Normal) 0.3200 0.1550 0.0780 0.0660 0.1120 0.2090 0.3390 
 FE-QML (Robust) 0.3100 0.1620 0.0960 0.0750 0.1170 0.2290 0.3420 
         
         

N = 50, T = 10 FE-QML (Normal) 0.9780 0.7510 0.2550 0.0530 0.3150 0.8000 0.9720 
 FE-QML (Robust) 0.9590 0.7340 0.2540 0.0630 0.3240 0.7650 0.9510 
         
         

N = 250, T = 3 FE-QML (Normal) 0.8390 0.5370 0.2000 0.0660 0.1720 0.5230 0.8040 
 FE-QML (Robust) 0.6860 0.4330 0.1610 0.0570 0.1550 0.4160 0.6730 
         
         

N = 250, T = 10 FE-QML (Normal) 0.9950 0.9940 0.8290 0.0490 0.8330 0.9940 0.9950 
 FE-QML (Robust) 0.9910 0.9750 0.7570 0.0540 0.7550 0.9760 0.9870 
         
         

  Chi Square Distributed Disturbances 
         

N = 50, T = 3 FE-QML (Normal) 0.3220 0.1990 0.1320 0.0950 0.1410 0.2130 0.3590 
 FE-QML (Robust) 0.2940 0.1840 0.1070 0.0960 0.1450 0.2250 0.3420 
         
         

N = 50, T = 10 FE-QML (Normal) 0.9730 0.7530 0.2690 0.0620 0.3120 0.7690 0.9770 
 FE-QML (Robust) 0.9350 0.7230 0.2660 0.0690 0.3310 0.7440 0.9420 
         
         

N = 250, T = 3 FE-QML (Normal) 0.8000 0.5100 0.2090 0.0770 0.2400 0.5440 0.7850 
 FE-QML (Robust) 0.6160 0.3580 0.1390 0.0510 0.1510 0.3850 0.6340 
         
         

N = 250, T = 10 FE-QML (Normal) 0.9940 0.9930 0.8330 0.0540 0.8170 0.9930 0.9940 
 FE-QML (Robust) 0.9890 0.9740 0.7300 0.0510 0.7160 0.9710 0.9880 
         
         

 
16 See the footnote to Table 4a for a description of the data generating process used in this table, and the footnote to Table 1 for a description of the notation.  
17 The table reports the fraction of rejections for tests of H0: φ11 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, versus two-sided alternatives. The true value of φ11 is equal to 0.4. 



  

 
 
 
 

Table 4c:  Size and Power Properties of Tests for φ21 Based on Fixed Effects QML Estimator of Panel VAR in the Case 
of Non-Normal Disturbances18,19,  λmax = 0.6 

 

 Estimator φ21 = -0.1 φ21 = 0 φ21 = 0.1 φ21 = 0.2 φ21 = 0.3 φ21 = 0.4 φ21 = 0.5 
         

  t Distributed Disturbances 
         

N = 50, T = 3 FE-QML (Normal) 0.3840 0.2100 0.1020 0.0730 0.1000 0.2190 0.3890 
 FE-QML (Robust) 0.3510 0.2190 0.1090 0.0680 0.1050 0.2070 0.3570 
         
         

N = 50, T = 10 FE-QML (Normal) 0.9920 0.8040 0.2960 0.0460 0.3280 0.8220 0.9880 
 FE-QML (Robust) 0.9740 0.7840 0.2990 0.0620 0.3360 0.7980 0.9690 
         
         

N = 250, T = 3 FE-QML (Normal) 0.8800 0.6140 0.2510 0.0760 0.2180 0.5900 0.8640 
 FE-QML (Robust) 0.7530 0.4990 0.1890 0.0510 0.1760 0.4610 0.7340 
         
         

N = 250, T = 10 FE-QML (Normal) 0.9950 0.9930 0.8530 0.0530 0.8650 0.9950 0.9950 
 FE-QML (Robust) 0.9900 0.9780 0.7770 0.0490 0.7890 0.9800 0.9900 
         
         

  Chi Square Distributed Disturbances 
         

N = 50, T = 3 FE-QML (Normal) 0.3620 0.2320 0.1490 0.0980 0.1450 0.2370 0.3860 
 FE-QML (Robust) 0.3140 0.1930 0.1210 0.0900 0.1200 0.2120 0.3400 
         
         

N = 50, T = 10 FE-QML (Normal) 0.9790 0.7990 0.2920 0.0590 0.3040 0.7960 0.9860 
 FE-QML (Robust) 0.9530 0.7640 0.2980 0.0730 0.3160 0.7810 0.9590 
         
         

N = 250, T = 3 FE-QML (Normal) 0.8530 0.5880 0.2460 0.0910 0.2420 0.6050 0.8590 
 FE-QML (Robust) 0.6570 0.4170 0.1660 0.0590 0.1490 0.4320 0.6870 
         
         

N = 250, T = 10 FE-QML (Normal) 0.9940 0.9930 0.8680 0.0470 0.8550 0.9930 0.9940 
 FE-QML (Robust) 0.9890 0.9740 0.7760 0.0490 0.7610 0.9760 0.9900 
 FE-MD 0.8790 0.6030 0.2260 0.0580 0.2040 0.5690 0.8670 
         

 
18 See the footnote to Table 4a for a description of the data generating process used in this table, and the footnote to Table 1 for a description of the notation.  
19 The table reports the fraction of rejections for tests of H0: φ21 = {-0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5}, versus two-sided alternatives. The true value of φ21 is equal to 0.2. 



  

 
 
 
 
 

 
Table 5a:  Bias and RMSE of Random and Fixed Effects QML Estimators of Panel VAR in the Case of Random Individual 

Effects20, λmax = 0.6 
 
 

 Estimator   
   
 True Value φ11 = 0.4 φ21 = 0.2 φ12 = 0.2 φ22 = 0.4 
      
  Bias RMSE Bias RMSE Bias RMSE Bias RMSE 
          
N = 50, T = 3 RE-QML τ = 5 0.0036 0.1971 0.0032 0.1815 0.0059 0.1697 0.0049 0.1987 
 FE-QML 0.0033 0.1971 0.0027 0.1829 0.0044 0.1698 0.0023 0.1986 
          
N = 50, T = 10 RE-QML τ = 5 0.0023 0.0737 0.0005 0.0707 0.0006 0.0669 0.0040 0.0716 
 FE-QML 0.0023 0.0737 0.0005 0.0706 0.0006 0.0669 0.0040 0.0717 
          
N = 250, T = 3 RE-QML τ = 5 0.0007 0.0884 0.0013 0.0800 0.0024 0.0794 0.0016 0.0895 
 FE-QML 0.0003 0.0898 0.0008 0.0806 0.0022 0.0809 0.0015 0.0898 
          
N = 250, T = 10 RE-QML τ = 5 0.0028 0.0327 0.0019 0.0303 -0.0012 0.0314 -0.0009 0.0304 
 FE-QML 0.0027 0.0327 0.0019 0.0303 -0.0012 0.0314 -0.0010 0.0304 
          

 
20 For details of the Monte Carlo design, see Section 7.1. The data generating process is given by (I2 - ΦL) (wit - µi) = εit. See the footnote to Table 1 for a description of the notation used in this table. See Section 7.2 for 
an explanation of any discrepancies between results for the FE-QML estimator reported in  this table and those reported in Table 1. 



  

 
 
 
 

Table 5b:  Size and Power Properties of Tests for φ11 Under Random and Fixed Effects QML Estimators of Panel VAR 
in the Case of Random Individual Effects21,22,  λmax = 0.6 

 Estimator φ11 = 0.1 φ11 = 0.2 φ11 = 0.3 φ11 = 0.4 φ11 = 0.5 φ11 = 0.6 φ11 = 0.7 
         

N = 50, T = 3 RE-QML (Normal) τ = 5 0.3060 0.1530 0.0740 0.0630 0.1070 0.1910 0.3330 
 FE-QML (Normal) 0.3020 0.1430 0.0640 0.0600 0.0980 0.1950 0.3350 
 RE-QML (Robust) τ = 5 0.3010 0.1700 0.0850 0.0750 0.1140 0.1900 0.3090 
 FE-QML (Robust) 0.3000 0.1700 0.0860 0.0730 0.1170 0.2080 0.3450 
         

N = 50, T = 10 RE-QML (Normal) τ = 5 0.9780 0.7880 0.2810 0.0670 0.2690 0.8010 0.9820 
 FE-QML (Normal) 0.9760 0.7940 0.2750 0.0680 0.2850 0.7850 0.9840 
 RE-QML (Robust) τ = 5 0.9540 0.7520 0.2830 0.0700 0.2740 0.7850 0.9740 
 FE-QML (Robust) 0.9640 0.7790 0.2770 0.0870 0.2860 0.7690 0.9680 
         

N = 250, T = 3 RE-QML (Normal) τ = 5 0.8590 0.5410 0.1860 0.0540 0.2070 0.5640 0.8330 
 FE-QML (Normal) 0.8410 0.5290 0.1670 0.0410 0.1900 0.5340 0.8290 
 RE-QML (Robust) τ = 5 0.7540 0.4610 0.1680 0.0520 0.1850 0.4630 0.7480 
 FE-QML (Robust) 0.7320 0.4510 0.1640 0.0540 0.1690 0.4710 0.7290 
         

N = 250, T = 10 RE-QML (Normal) τ = 5 1.0000 1.0000 0.8460 0.0480 0.8500 1.0000 1.0000 
 FE-QML (Normal) 0.9980 0.9970 0.8080 0.0520 0.8480 0.9950 0.9980 
 RE-QML (Robust) τ = 5 1.0000 1.0000 0.8070 0.0480 0.8500 1.0000 1.0000 
 FE-QML (Robust) 0.9890 0.9800 0.7390 0.0610 0.7770 0.9750 0.9920 
         

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
21 See the footnote to Table 5a for a description of the data generating process and the notation used in this table. Also, see Section 7.2 for an explanation of any discrepancies between 
results for the FE-QML estimator reported in  this table and those reported in Table 2a. 
22 The table reports the fraction of rejections for tests of H0: φ11 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, versus two-sided alternatives. The true value of φ11 is equal to 0.4. 



  

 
 

 
 

Table 5c : Size and Power Properties of Tests for φ21 Under Random and Fixed Effects QML Estimators of Panel VAR 
in the Case of Random Individual Effects23,24 , λmax = 0.6 

 Estimator φ21 = -0.1 φ21 = 0 φ21 = 0.1 φ21 = 0.2 φ21 = 0.3 φ21 = 0.4 φ21 = 0.5 
         

N = 50, T = 3 RE-QML (Normal) τ = 5 0.3760 0.2100 0.1010 0.0670 0.1000 0.2080 0.3740 
 FE-QML (Normal) 0.3960 0.2130 0.0900 0.0670 0.0990 0.2080 0.3740 
 RE-QML (Robust) τ = 5 0.3600 0.2150 0.0960 0.0730 0.0970 0.2040 0.3550 
 FE-QML (Robust) 0.4010 0.2180 0.0900 0.0700 0.1110 0.2090 0.3830 
         

N = 50, T = 10 RE-QML (Normal) τ = 5 0.9890 0.8040 0.2890 0.0580 0.3080 0.8180 0.9820 
 FE-QML (Normal) 0.9700 0.7940 0.2970 0.0670 0.3040 0.7930 0.9720 
 RE-QML (Robust) τ = 5 0.9920 0.8150 0.3010 0.0610 0.3160 0.8220 0.9850 
 FE-QML (Robust) 0.9780 0.7970 0.3130 0.0770 0.3130 0.7880 0.9750 
         

N = 250, T = 3 RE-QML (Normal) τ = 5 0.8880 0.6300 0.2300 0.0540 0.2150 0.6420 0.9050 
 FE-QML (Normal) 0.8890 0.6010 0.2220 0.0460 0.2060 0.6370 0.8990 
 RE-QML (Robust) τ = 5 0.7910 0.5370 0.2160 0.0510 0.1950 0.5490 0.7940 
 FE-QML (Robust) 0.7840 0.5290 0.2020 0.0530 0.1740 0.5630 0.8040 
         

N = 250, T = 10 RE-QML (Normal) τ = 5 1.0000 1.0000 0.8900 0.0520 0.9140 1.0000 1.0000 
 FE-QML (Normal) 0.9980 0.9970 0.8500 0.0440 0.8770 0.9950 0.9990 
 RE-QML (Robust) τ = 5 1.0000 1.0000 0.8660 0.0460 0.8770 1.0000 1.0000 
 FE-QML (Robust) 0.9910 0.9810 0.7760 0.0490 0.8050 0.9820 0.9910 
         

 
23 See the footnote to Table 5a for a description of the data generating process and the notation used in this table. Also, see Section 7.2 for an explanation of any discrepancies between 
results for the FE-QML estimator reported in this table and those reported in Table 2b. 
24 The table reports the fraction of rejections for tests of H0: φ21 = {-0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5}, versus two-sided alternatives. The true value of φ21 is equal to 0.2. 



  

 
 

Table 5d: Size and Power Properties of Tests for φ12 Under Random and Fixed Effects QML Estimators of Panel VAR 
in the Case of Random Individual Effects25,26,  λmax = 0.6 

 Estimator φ12 = -0.1 φ12 = 0 φ12 = 0.1 φ12 = 0.2 φ12 = 0.3 φ12 = 0.4 φ12 = 0.5 
         

N = 50, T = 3 RE-QML (Normal) τ = 5 0.3480 0.1960 0.0850 0.0520 0.0800 0.1990 0.3920 
 FE-QML (Normal) 0.3500 0.2020 0.0850 0.0470 0.0710 0.1930 0.3930 
 RE-QML (Robust) τ = 5 0.3300 0.1900 0.0910 0.0580 0.0950 0.2130 0.3660 
 FE-QML (Robust) 0.3400 0.1960 0.0940 0.0620 0.0950 0.2110 0.3670 
         

N = 50, T = 10 RE-QML (Normal) τ = 5 0.9930 0.8130 0.2780 0.0420 0.2970 0.8260 0.9900 
 FE-QML (Normal) 0.9940 0.8150 0.2810 0.0450 0.3030 0.8300 0.9860 
 RE-QML (Robust) τ = 5 0.9790 0.7880 0.2690 0.0500 0.3030 0.7930 0.9730 
 FE-QML (Robust) 0.9780 0.8030 0.2790 0.0510 0.3080 0.8080 0.9720 
         

N = 250, T = 3 RE-QML (Normal) τ = 5 0.8880 0.6260 0.2250 0.0500 0.2110 0.6460 0.9010 
 FE-QML (Normal) 0.8850 0.6040 0.2080 0.0550 0.2190 0.6250 0.9000 
 RE-QML (Robust) τ = 5 0.7910 0.5600 0.2100 0.0530 0.1910 0.5580 0.8070 
 FE-QML (Robust) 0.7840 0.5390 0.1970 0.0590 0.1820 0.5460 0.7970 
         

N = 250, T = 10 RE-QML (Normal) τ = 5 1.0000 1.0000 0.8890 0.0530 0.8740 1.0000 1.0000 
 FE-QML (Normal) 0.9980 0.9960 0.8630 0.0470 0.8500 0.9970 0.9990 
 RE-QML (Robust) τ = 5 1.0000 1.0000 0.8640 0.0510 0.8430 1.0000 1.0000 
 FE-QML (Robust) 0.9890 0.9790 0.7920 0.0520 0.7770 0.9790 0.9900 
         

 

 
Table 5e: Size and Power Properties of Tests for φ22 Under Random and Fixed Effects QML Estimators of Panel VAR 

in the Case of Random Individual Effects27,28 , λmax = 0.6 
 Estimator φ22 = 0.1 φ22 = 0.2 φ22 = 0.3 φ22 = 0.4 φ22 = 0.5 φ22 = 0.6 φ22 = 0.7 
         

N = 50, T = 3 RE-QML (Normal) τ = 5 0.2920 0.1460 0.0800 0.0540 0.1020 0.1970 0.3570 
 FE-QML (Normal) 0.2870 0.1440 0.0750 0.0530 0.0990 0.1980 0.3560 
 RE-QML (Robust) τ = 5 0.2950 0.1690 0.0950 0.0780 0.1090 0.1950 0.3430 
 FE-QML (Robust) 0.3030 0.1700 0.0900 0.0760 0.1140 0.2210 0.3590 
         

N = 50, T = 10 RE-QML (Normal) τ = 5 0.9790 0.7760 0.2500 0.0460 0.3040 0.7940 0.9870 
 FE-QML (Normal) 0.9820 0.7680 0.2610 0.0440 0.2940 0.7970 0.9850 
 RE-QML (Robust) τ = 5 0.9640 0.7530 0.2530 0.0560 0.3030 0.7720 0.9680 
 FE-QML (Robust) 0.9640 0.7530 0.2750 0.0590 0.3080 0.7730 0.9750 
         

N = 250, T = 3 RE-QML (Normal) τ = 5 0.8360 0.5360 0.1910 0.0460 0.1890 0.5600 0.8320 
 FE-QML (Normal) 0.8410 0.5240 0.1760 0.0480 0.1960 0.5420 0.8350 
 RE-QML (Robust) τ = 5 0.7260 0.4790 0.1880 0.0480 0.1710 0.4680 0.7290 
 FE-QML (Robust) 0.7240 0.4600 0.1590 0.0570 0.2060 0.4860 0.7250 
         

N = 250, T = 10 RE-QML (Normal) τ = 5 1.0000 1.0000 0.8860 0.0360 0.8740 1.0000 1.0000 
 FE-QML (Normal) 0.9980 0.9950 0.8420 0.0330 0.8390 0.9950 0.9990 
 RE-QML (Robust) τ = 5 1.0000 1.0000 0.8530 0.0400 0.8410 1.0000 1.0000 
 FE-QML (Robust) 0.9900 0.9770 0.7770 0.0400 0.7690 0.9760 0.9870 
         

 

 
25 See the footnote to Table 5a for a description of the data generating process and the notation used in this table. 
26 The table reports the fraction of rejections for tests of H0: φ12 = {-0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5}, versus two-sided alternatives. The true value of φ12 is equal to 0.2. 
27 See the footnote to Table 5a for a description of the data generating process and the notation used in this table. 
28 The table reports the fraction of rejections for tests of H0: φ22 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}, versus two-sided alternatives. The true value of φ22 is equal to 0.4. 


