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ABSTRACT.  We derive a family of probabilistic choice models including
the multinomial logit model, from a microeconomic model in which the decision
maker has to make some effort in order to avoid mistakes when implementing
any desired outcome. The disutility of this effort enters the decision maker’s
goal function in an additively separable way. A particular disutility function,
yielding the multinomial logit and GEV models as special cases, is charac-
terized axiomatically. Unlike the usual random-utility approach, the present
approach leads to a normalization of the achieved utility with respect to the
number of alternatives. The present model also applies to continuum choice
sets in Euclidean spaces, and provides a microeconomic foundation for quantal
response models in game theory.
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1. INTRODUCTION

In most real-life situations, the decision maker cannot guarantee any desired outcome
with a probability exactly equal to one, only with a positive probability that may be
close to one. The careless driver may drive off the road, the absent-minded shopper
might buy the wrong item in the grocery store, the CEO who does not carefully
monitor his staff may find that the firm has made suboptimal deals, etc. By contrast,
in the classical microeconomic model, every economic agent can effortlessly obtain
any desired choice alternative with certainty. In the present model, this is actually
also possible for the decision maker. However, the marginal disutility of effort at zero
mistake probability is assumed to be infinite, so the decision maker will optimally
choose positive mistake probabilities.

Of course, there are probabilistic choice models in the economics literature, with
the multinomial logit model as the prime example. These models are usually derived
in an additive random-utility approach, with McFadden (1974) as the pioneering
contribution. The randomness of choice is then interpreted either in terms of hetero-
geneity of tastes in a population of decision makers, or in terms of choice attributes
hidden to the analyst, see Anderson et al. (1992). We instead consider a single de-
cision maker who has to make some effort in order to avoid mistakes in the choice
process. The higher probability he wants to put on any particular outcome, the more
effort is needed. If he makes no effort, then the choice probabilities are given by an
exogenous distribution, the “default” choice distribution. The decision maker is as-
sumed to have deterministic preferences over the set of alternative outcomes, known
by the analyst, and to be cognitively fully rational in the sense of being able to solve
relevant maximization programs (or, at least, to behave as if he had this capacity).
However, the model contains the above-mentioned element of procedural bounded
rationality - there is a possibility of implementation mistakes.

Bounded procedural rationality of this type is not new in game theory. Selten
(1975) defines “trembling hand” perfect equilibrium as a Nash equilibrium which is ro-
bust to small (exogenous) mistake probabilities when strategies are to be implemented
(but players are cognitively fully rational). van Damme (1983) and van Damme and
Weibull (1999) endogenize Selten’s mistake probabilities. This is also done here. How-
ever, we go beyond van Damme (1983) by providing an axiomatic characterization of
a particular disutility function which generates a generalized logit choice model, and
we complement the one-dimensional error-control model in van Damme and Weibull
(1999) by providing an n-dimensional error-control model, where n is the number of
discrete alternatives. The present model also provides a decision-theoretic founda-

Machina (1985) develops a model of stochastic choice at the individual level, based on deter-
ministic (and known) preferences over lotteries. In this respect, our approach is similar to his.
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tion for certain probabilistic choice behaviors in the “quantal response” approaches
in Stahl (1990), Blume (1993, 1999), McKelvey and Palfrey (1995) and Chen et al.
(1997). While these models start out by assuming probabilistic choice behavior, we
provide conditions under which such behaviors are optimal for the decision maker.
Moreover, while the latter models presume the parameters in the probabilistic choice
formula for all players to be constant across the whole range of mixed-strategy pro-
files in the game in question - i.e. independent of the particular choice situation that
is induced by the other players’ (expected) choice probabilities - we show when and
why this constancy is consistent with expected utility maximization.

Technically, the discrete-choice version of the present model may be seen as a
variant of the model in Proposition 3.7 in Anderson et al. (1992) (see also Fisk
and Boyce (1984), Nadal et al. (1998) and Erlander (2000)). However, instead of
the motivation in Anderson et al. of “variety-seeking behavior of the representative
consumer” (p. 79), the present formulation builds on an explicit trade-off between
expected payoff and disutility of mistake control, along with an axiomatic character-
ization of the disutility term. This results in a relatively general probabilistic choice
model, which has as special cases the multinomial logit choice model, the generalized
extreme-value (GEV) choice model, as well as the standard deterministic microeco-
nomic utility maximization model of choice, and probabilistic generalizations of the
latter. In the limit, as the weight given to the disutility of mistake control is taken to
zero, the model boils down to the usual deterministic microeconomic choice model.
Our formulation permits a resolution of the so-called “blue-bus-red-bus paradox,”
and, unlike the usual random-utility approach to the logit model, the present ap-
proach leads to a normalization of the achieved utility with respect to changes in the
number of alternative outcomes.? Except in special cases, the present choice model
does not exhibit the independence of irrelevant alternatives property.

The rest of the paper is organized as follows. The basic model, including the
axiomatic characterization of a particular control-cost function, is developed in sec-
tion 2. The model is discussed and analyzed in section 3, and the multinomial and
generalized extreme-value models are identified as special cases. Section 4 is devoted
to an extension of the choice model to continuum sets of outcomes. Finally, some
ideas for future research is discussed in section 5.

2Fisk and Boyce (1984) show how such a normalization can be achieved in the random-utility
derivation of the logit model.
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2. THE MODEL

First some notation. For any positive integer n, let A,, denote the (n—1)-dimensional
unit simplex in n-space,

An:{pERizipwzl}, (1)

w=1

and let int (A,,) be the relative interior of A,, in R”, int (A,) = A, NR%,.3

We consider a decision maker who faces a decision problem with alternative out-
comes w € = {1,...,n}, where n is a positive integer, and where each outcome w
gives some payoff m, € R. Let m be the associated vector of payoffs, 7 = (1, ..., m,).
We represent the decision maker’s choice by a probability distribution p = (p1, ..., pn)
over the outcomes. Hence p € A,. The expected payoff under choice p is thus
p-T =) cqPuT,. If the decision maker without cost or effort can implement any
choice p € A,,, then he would assign unit probability to the subset Q) C Q of outcomes
with maximal payoff, where

Q={weQ:m, =7} (2)
and
T = maxm, . (3)
we

The decision maker thus achieves the maximal payoff, just as in the standard micro-
economic choice model.

Suppose, however, that there is a disutility or control cost v(p, q) associated with
every choice p € A,,, where v : A, xint (A,) — R, is a continuous function satisfying
the “no effort” condition

v(p,q) =0 & p=gq. (4)

In other words, the decision maker has to make some effort when implementing a
choice p, an effort that incurs a disutility or control cost, unless he chooses ¢, the
default choice vector that results if the decision maker makes no effort.*

The (expected, total) utility associated with any choice p € A,, is then defined as
the expected payoff from the resulting outcome minus ¢ times the control cost, where
0 is a positive scalar that represents the relative weight the decision maker attaches

3This terminology applies only to cases n > 1. In the case n = 1 it gives int (A,) = {1}.
4The notion of control costs in connection with strategy choice in games was introduced by van
Damme (1983, 1991).
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to the disutility or cost of implementation effort: 7 - p — év(p,q). Hence, the new
decision problem is

[M]  max|[r-p—bv(p,q)] (5)

PEAL

The maximand is continuous in the choice variable p, and this variable is constrained
to a compact set, so the decision problem has a non-empty compact solution set, by
Weierstrass’ Maximum Theorem. Given a payoff vector 7 € R™ and disutility weight
6 > 0, let U* denote the achieved utility level, and let P* be the (non-empty and
compact) solution set:

U* =max|[r-p—96v(p,q)| , P"=argmax|r-p—dv(p,q)] . (6)
PEA, PEA,
By Berge’s Maximum Theorem, this defines U* as a continuous function of (7, 6),
and P* as an upper hemi-continuous correspondence from pairs (, ) to (compact)
subsets of A,. Obviously, 7-q < U* < &. If all payoffs happen to be the same
(m, = mp for all w,v € Q), then U* = 7, and P* = {q} - it is optimal to make no
effort. Otherwise, U* < 7.

2.1. Axioms for disutility of mistake control. We now proceed to narrow
down the class of disutility or control-cost function v, by way of imposing three
axioms borrowed from information theory. For this purpose, we extend the domain
of the cost functions to consist of all finite outcome sets 2. Formally, now let the
class of continuous control-cost functions be

v Upen [An X int (A,)] — Ry (7)

that satisfy the “no effort” condition (4).

The first axiom requires that if control costs differ across outcomes, then that
asymmetry should be fully captured by asymmetry in the default probability vector
q. Hence, control cost should be invariant under any relabeling of the outcomes. By
a relabeling of the outcomes in an outcome set {2 we mean a permutation of the set
Q, i.e., a bijection ¢ :  — Q. Formally:

[A1] (Symmetry) For any relabeling ¢ of 2

v [(ph "'7pn>7 (q17 sy QTL)] = [(pap(l)» "'7ptp(n))7 <Qg0(1)7 sy QW(n)ﬂ

The second axiom requires that the control cost associated with a choice that
assigns equal probability to the m first outcomes, and zero to all others, in a situation
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where the default distribution ¢ is uniform over all outcomes, be decreasing in m
and increasing in n, the number of outcomes in 2. In other words, it is costly to
completely avoid subsets of outcomes (to assign them zero probability), and more
costly the larger the excluded subset is. This property can be formally expressed as
follows. For any positive integers m and n such that m < n, let r* € A, be the
(“rectangular”) probability vector that assigns probability 1/m to each of the first m
outcomes (and hence zero to all others).

n
n

[A2] (Monotonicity) For any m < n, v(rp,r
increasing in n.

) is decreasing in m and

The third axiom requires that the cost of a choice p be independent of whether
this is made directly or in two steps, by first choosing between two mutually exclusive
and together exhaustive subsets of outcomes, and thereafter making a choice in the
subset chosen in the first step. More exactly, by an ordered binary decomposition of
the set , granted this consists of two or more outcomes, we mean a pair (A, B) of
non-empty and disjoint subsets of €2, such that A = {1,...,m} and B = {m + 1, ...,n}.
For any such decomposition, and any probability vector p in Ay, let ps = > 4 Pw
and pp = > gD (With ¢4 and ¢p defined similarly). The axiom states that the
cost associated with choosing p directly, v(p, q), equals the cost of the binary choice
between A and B, v |[(pa,pg), (qa,qn)], plus the expected cost of choosing from the
resulting subset A or B, where the first choice situation has probability p4 and the
second probability pg. In this second stage, the choice probabilities in the respective
subset are the corresponding conditional probabilities.®

[A3] (Decomposition) For any decomposition (A, B) of

v(p,q) = v|[(pa.ps),(qa.q8)] +
+pav [(p1/PA, s Pm/DA), (@194, -y G/ qA)]
+pBV [(Pm41/PBs - Pn/DPB)s (Gms1/dB, -5 Gn/aB)] -

It turns out that these axioms characterize the control-cost function, up to a
positive scalar. This result is due to Hobson (1969).7

By [A1], this monotonicity property holds irrespective of the order in which the outcomes are
labelled.

6By [A1], this decomposition property holds for all binary decompositions of the outcome set.

"The result is a generalizion of Shannon’s axiomatic characterization of the entropy function,
see Shannon and Weaver (1949). For an alternative derivation of the relative-entropy function, see
Snickars and Weibull (1977).
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Proposition 1 [Hobson (1969)]. Suppose v is a control-cost function. Then v satis-
fies [A1 — A3] if and only if, for some a > 0,

v(p.g) =) poln(p/q.) .

we

(Here and elsewhere we use the convention 0ln0 = 0.)

Let (A, B) be a binary decomposition of the outcome set €2, as discussed in con-
nection with axiom [A3]. Let the decision problem [M'] be to solve the maximization
program (5) for the two aggregate outcomes A and B, and where the two payoffs
are the achieved utilities when solving the maximization program (5) for Q = A and
) = B, respectively. It can be verified that the two decision problems [M] and [M']
are equivalent under axiom [A3], in the sense that they result in the same achieved
utility and probability distribution over outcomes. In problem [M'], the probability
of a particular outcome w in the full set €2 is then calculated as the probability of the
relevant subset A or B to which the outcome belongs, times the conditional probabil-
ity of the outcome when chosen from within the relevant subset A or B.® Conversely,
if the cost function is such that for any binary decomposition of any decision prob-
lem [M] the resulting problem [M’] is equivalent in this sense, then the control-cost
function has to meet axiom [A3].

3. IMPLICATIONS
If the cost function meets axioms [Al] — [A3], then we may without loss of generality
set

v(p,q) = Y poln(pu/q) - (8)

This is the relative-entropy (or information-gain) measure suggested by Kullback and
Leibler, see Kullback (1959). This function is continuously differentiable in p on the
relative interior of the simplex. A necessary condition for an interior solution p to
the decision program [M], for any such function v, is

ov(p,q) T+ A
op, 6

where A is the Lagrangian multiplier associated with the constraint > p, = 1. If
the system of equations (9) has a solution p € int(4,), and v(p,q) is convex in p,
then such a solution is also a solution to the decision problem (5). In the present case
(8), v(p, q) is convex in p, and the first-order condition (9) becomes

for all w € Q, 9)

8This equivalence, that follows from [A3], thus implies the choice axiom of Luce (1959).
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wt+ A
mm+1—m%:ﬁé% for all w € Q, (10)
with the unique solution p* defined by
* G exp (m,,/0)

D, = for allw € Q. (11)
2 veq G exXP (T0/0)

Since this solution is interior, it is the unique solution to the decision problem (5).

In sum:

Proposition 2. The unique solution to program [M] is p* € A,,, defined in equation
(11). Moreover, the achieved utility is

U*=6ln [Z . €XP (Ww/é)]

wel

We note that if two outcomes have the same payoff, then their probability ratio
equals the ratio of the two default probabilities. If one outcome has a lower payoff
than another, then the probability ratio goes to zero when the weight 6 > 0 attached
to the control-cost term is taken to zero. These two observations follow formally from
the following equality:

PZ qw Ty — Ty
0 — Dexp [ 2—2) . 12
Py G < o ) (12

In particular, in the limit when 6 — 0 the solution p* assigns unit probability
to the subset  of outcomes with maximal payoff, with probabilities in this subset
proportional to the corresponding components of the default choice probability vector
q. Hence, in the limit the decision-maker effortlessly achieves the maximal payoff
U* = 7, just as in the standard microeconomic choice model, and he does so by
randomizing over the best outcomes according to the default choice probabilities.

We conclude with a comment on the present choice model (11) in relation to
the so-called “blue-bus/red-bus paradox” in the discrete-choice literature (see, e.g.,
Anderson et al. (1992) or Ben-Akiva and Lerman (1985)). Suppose a decision maker
faces the problem of whether to go by car, ¢, or by bus, b, for a certain trip. Let the
payoffs be m. and m,, respectively. Let us call this binary choice decision problem 1.
In decision problem 2, the bus alternative is replaced by two bus alternatives which
differ only in some irrelevant aspect, such as the color of the bus (blue bus vs. red
bus), and hence both outcomes, bb and rb, have the same payoff m,. The paradox
consists in the fact that the logit model (see next section) assigns lower probability
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to the car outcome in decision problem 2 than in decision problem 1. However, in
the present choice model this need not be the case. In particular, if the probability
for the (aggregate) bus outcome in the no-effort case is unchanged (g + g = @),
then the resulting choice probability for the car outcome is unchanged.

3.1. The logit model. Suppose all outcomes are equally likely in case the deci-
sion maker makes no effort, i.e., q, = % for all w € 2. Then

U(p, Q) = IHTL—Fpr lnpw . (13>

Such a cost function, the negative of the entropy of the distribution p plus a constant,
achieves its minimal value, zero, at the mid-point of the probability simplex, and its
maximal value, Inn, at each of its vertices (all probabilities but one equal to zero).
By proposition 2 this results in the well-known (multinomial) logit choice model,

. _ew (/) "

Po = S exp (ma/8)

with achieved utility

U*=6ln [% Zexp (Ww/é)] . (15)

In the random-utility foundation for the multinomial logit choice model, there is a
random utility term wu,, associated with each outcome w € €2, defined as the sum of a
deterministic payoff 7, (like here) and a random term &, where, by assumption, the
random terms ¢, are statistically independent and identically distributed according
to the extreme-value distribution F'(z) = exp[—exp (—z/0)], for some § > 0. This
leads to choice probabilities pf, = Pr(u, > u, for all v € Q) of precisely the form
(14), see McFadden (1974) or Anderson et al (1992). In that framework, p, is thus
the probability that w is the outcome with the highest random utility u,, = 7, +¢,, to
the decision maker, and the parameter ¢ is proportional to the standard deviation of
the random utility terms e,.° Hence, the weight attached to the disutility of control
effort in the present model plays the same mathematical role as (the square root
of) the variance of the random utility terms in the random-utility derivation of the
multinomial logit model. A decision maker who more easily can control his or her
choices correspond to a decision maker with less variance in the random utility terms.

Moreover, the present model gives a decision-theoretic justification of the practice
in quantal-response models in game theory of letting this parameter be constant across

9More exactly, the standard deviation of e, is 67/ V6 ~ 1.286.
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all strategy profiles, see e.g. McKelvey and Palfrey (1995). In such a game-theoretic
setting, the expected payoffs 7, to the player’s own pure strategy w depends on (the
expectation of) the other players’ mixed strategies.!® Given a player’s preferences
of the form suggested here, the induced optimal choice behavior is as if the random
utility terms had the same variance irrespective of where in the polyhedron of mixed-
strategy profiles the player expects the others to play.

How does the achieved utility in (15) depend on the number n of alternative
outcomes? It was noted in section 2 that if all outcomes would happen to give exactly
the same payoff, and another such outcome were added to the set 2 of alternatives,
then the achieved utility would be unchanged: If 7, = 7 for all w € €2, then U* = 7,
independently of n.!! By contrast, in the above-mentioned random-utility derivation
of the logit model (without control costs), the achieved utility would in this case be

E [Iiléi{%((ﬁw+€w):| =7+06(y+1nn) , (16)
where 7 is Euler’s constant (v = 0.577). In that derivation, an additional alternative
increases the expected utility to the decision maker, even if the deterministic payoffs
are identical, since the random term has a positive probability of being favorable to
the decision maker. In the present model, however, the expected utility is unaffected.
More generally, the addition of a new outcome in the present model results in higher
(lower) achieved utility if and only if the payoff 7, to this additional outcome is
higher (lower) than the originally achieved utility U*. To see this, suppose that 7, >
U*, where m = (my,...m,), and U* is defined in equation (15). Then exp (m,4+1/6) >
exp [U*/6], and thus

1
n+1eXp<7Tn+1/ TL—|—1 ZeXp 7Tw/6 <E_ TL—|—1> Zexp 7Tw/6

(17)
Re-arranging the terms, we obtain
1 n+1
Zexp (7,/06) > Zexp (m0/0) . (18)

n+1

By taking the logarithm of both sides and multiplying by ¢ we see that addition of the
new outcome indeed resulted in a higher achieved utility. (The same argument can

0Let w be a pure strategy available to some player 4, and let o be a mixed-strategy profile in the
game. The expected payoff to player ¢ when playing w against o_; is then a function of both w and
g_;.

" This property holds for any control-cost function v that meets the “no effort” condition (4), see
decision problem [M].
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be applied in the opposite case when 7,1 < U*). Hence, if an additional alternative
has high enough payoff, then this will more than compensate for the extra control
cost.

3.2. The GEV model. By allowing for statistical dependence among the random
terms in the random-utility derivation of the (multinomial) logit model, McFadden
(1978, 1981) derived the probabilistic choice model,

e H, (e™,...,e™)
H(em,...,e™)

where H : R}, — R, is a continuously differentiable and linearly homogeneous
function with partial derivative H, with respect to its w’th argument. This is the
so called generalized extreme-value (GEV) choice model. More precisely, he assumed
that there is a random utility term wu,, associated with each outcome w, defined as
the sum of the deterministic payoff 7w, and a random term ¢, where the vector
e = (€1, ...,&,) of random terms has the cumulative probability distribution function
F(xy,...,m,) = exp[—H (e ™, ...,e”*)].1? This formulation allows for statistical de-
pendence among the components of the random vector . McFadden (1978) showed
that this leads to choice probabilities p, = Pr(u, > u, for all v € Q) of the form
(19). In this framework, p, is thus the probability that w is the outcome with the
highest random utility u, = 7, + €,

One can alternatively derive the choice model (19) in the present framework, as
follows. For simplicity, let 6 = 1, and suppose the default choice vector ¢ is a function
of the payoff vector m, such that for all w € Q

Do = Yw e Q, (19)

_ H,(e™,..,e™)
o = S Hy (e, .. e™)
for some continuously differentiable and linearly homogeneous function H : R} | —

R, .. Using Euler’s theorem, the optimal choice probabilities (11) can be written in
the form (19), and the achieved utility becomes

(20)

I H(e™,...,e™)
> Hy (€™, ... e™)
Note that this class of choice models includes the nested (multinomial) logit model,

see, e.g., Ben-Akiva and Lerman (1985). We obtain the usual (multinomial) logit
model in the special case when H(z) =) x..

U*

(21)

12Gee Smith (1984) for necessary and sufficient conditions (in addition to H being homogeneous)
for F' to be a cumulative distribution function.
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The above-mentioned “blue-bus/red-bus paradox” can be recast in terms of (20)
for
H (e, Ty, ) = e + (2, + 25,) "/, (22)
where o > 1.1 In the boundary case ¢ = 1, all three outcomes are distinct, while
the two bus alternatives become more and more indistinguishable as 0 — +o00. With
this particular function H (and recalling that the two bus outcomes have the same
payoff) we obtain

B 1 B B 21/071
- 1+21/07 gvb = Qqrb = 1+21/J

For o = 1 all three outcomes are equally likely, while ¢. — 1/2 and gw = ¢, — 1/4
as 0 — oo. In the special case when all payoffs are equal, we obtain by proposition
2, p* = ¢. This indicates how the red-bus/blue-bus paradox may be resolved by
parameterizing the extent to which the different outcomes are substitutes. Finally,
we may note that when the payoffs for the car and bus outcomes differ, the achieved
utility will be lower (higher) when the bus outcome is split into two differently col-
ored outcomes, provided the bus payoff is lower (higher) than the car payoff. This
difference will, however, tend to zero, independently of the levels of the payoffs, if the
distinctness parameter o tends to plus infinity.

ge (23)

4. CONTINUUM OUTCOME SETS
So far, we have assumed that the set € of outcomes is finite. However, part of the
analysis can be generalized to a wide class of sets €2, including such continuum sets in
Euclidean spaces as the usual budget sets in the standard microeconomic consumer
model. We here sketch one such extension.

More precisely, suppose that 2 is a non-empty compact set in some Euclidean
space. Assume that the payoff function 7 :  — R is continuous. Let the decision
maker’s choice be represented by a probability density function p on §2. More exactly,
let p € A, where A is the set of non-negative functions p : Q2 — R with unit (Riemann)
integral, fQ p (w) dw = 1. The expected payoff resulting from any choice p € A is then
Jo m(w)p(w)dw. Let int(A) C A be the subset of functions p € A that have a positive
infimum on ). Just as in the previously analyzed case of finite {2, we assume the
existence of a “default choice” ¢ € int(A) and a “disutility” or “control cost” v(p, q)
associated with each choice p € A, where v : A x int(A) — R,. We restrict the
subsequent analysis to the special case when v is the generalized Kullback-Leibler

13This inequality is needed in the random-utility formulation, but not in the present formulation.
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o(p,q) = / plw) In [p(w) /g(w)] dw (24)

The (expected total) utility associated with any decision p € A is, as before,
defined as the expected payoff minus 6 times the disutility of mistake control. Hence,
the current decision problem is

[M"] max [/Q 7(w)p(w)dw — (5/p(w) In [p(w)/q(w)] dw| . (25)

pEA Q

In view of the solution (11) in the finite case, a natural solution candidate seems
to be the function p* € int(A) defined by

o qw)expln(w)/8]
) = T o) oxp [n(0) /8] do

This conjecture turns out to be true. (The following analysis also applies in the case
when € is finite by letting the integration symbol represent summation.)

Yw e Q. (26)

Proposition 3. The function p* defined by equation (26) solves program [M"].
Moreover, the achieved utility is

U* = 6n ( /Q ¢(w) exp [ (w) /6] dov ) |

Proof:!® Let F be the set of (Riemann) integrable functions f : Q@ — R, . Hence
int(A) C A C F. For each A € R, let the functional Hy : F — R be defined by

() = | (@) = St/ (w)/a)] + V) flw)do = A (27)
One-variable calculus shows that the integrand is maximized at each w if f = f3,

where f; € F is defined by f;(w) = q(w)exp ([r(w) + A] /6§ — 1) for all w € Q.16 Let
i € R be defined by

exp (11/6 — 1) = ( / 4(w) exp [r(w)/2] dw) - (28)

14See Hobson (1969) for a discussion of the (24) continuum version of the Kullback-Leibler mea-
sure. Note that v(p,q) > 0, with equality if p = g. This follows from a point-wise application of the
inequality In (p/q) > 1 — ¢/p (an argument used in the finite case in Snickars and Weibull (1977)).

15The authors thank PO Lindberg for helpful suggestions.

16This follows from the fact that, for each w € €, the corresponding function g : R, — R, defined
by g(z) = m(w)x— (6ln[x/q(w)] + A) z, is continuously differentiable and concave with (unique)
maximum at ¢ = g(w) exp ([r(w) +A] /6§ — 1) .
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Clearly f; € int(A) C A, and thus f; maximizes H, also over the subset A C F.
But H,(f) = Ho(f) for all f € A, so f; also maximizes Ho over A. This proves
the claim, since f;; = p*, and Hy(f) is the maximand in [M"]. Finally, U* = Hy(p*).
End of proof.

Similarly to the finite case, [, 7(w)g(w)dw < U* < sup,,cqm(w). Just as in that
case, the optimal choice probabilities concentrate on the set of outcomes with maximal
payofts when the disutility weight 6 > 0 is taken to zero, and the limiting choice
probability density, inside the set of payoff-maximal outcomes, is proportional to the
default probability density. Formally, if Q = arg max,cq 7(w), which is non-empty
by assumption, then

pi) = | [ atiao] )

forallw e Qasd— 0 (and thus p* (B) — 1 for any open set B containing Q) Thus,
in the limit we obtain the usual microeconomic model without implementation errors
(modulo q).

We illustrate proposition 3 by way of an example. Let the outcome set be the
unit interval, the payoff function linear, and the default choice the uniform density.
Formally: Q@ = [0, 1], with 7(w) = w and g(w) = 1 for all w € Q. By proposition 3,
the decision problem [M"] is solved by

oo 1
V) = Slexpl(T — w1 /2] — expl /0] 2

and the achieved utility is
U*=6In6+ 6lnfexp(1/6) — 1)]. (30)

As § — 0, p*(w) — 0 for all w < 1, p*(1) — oo and U* — 1.7 This is ex-
pected: in the limit as control costs become negligeable, the decision maker puts all
choice probability at the payoff-maximizing outcome w = 1, and the obtained utility
accordingly converges to the maximal payoff, 7(1) = 1. See Figure 1 and 2 below.
Note that U* (§) — 3 when § — 4o0. As the disutility of mistake control becomes
overwhelming, there is no point in controlling mistakes, and the solution converges
to the default choice g, which results in the expected payoff value %

17To see that p*(w) — 0 for all w < 1, note that

lim 66(17‘0)/6 = lim le(lf"")g =400
6—0 f—+o00 0 ’

where the last equality follows from the fact that an exponential function eventually grows faster
than a linear.
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Figure 1. The optimal choice probability density function p*, for 6 = 0.02, 0.2 and 1.
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Figure 2: The achieved utility U* as a function of 6.

5. (CONCLUDING REMARKS
Our analysis has been focused on the case when the control-cost function is of the
relative-entropy form (8). Then the optimal choice probabilities in decision problem
[M] are of the generalized logit form (11). A natural question then is whether other
choice probability forms, e.g., the probit choice model, can be derived from some
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other control-cost function. In the relative-entropy case, the control-cost function is
convex in the choice probabilities. Hence, the achieved utility (in decision problem
[M]) is the conjugate of a convex weighted control cost, implying that the achieved
utility is convex in the pay-off vector 7 (see Rockafellar, 1970, p. 104).!® As has been
noted by Hofbauer and Sandholm (2000) for the special case of a uniform default
choice distribution ¢, this conjugate function value equals the expected utility in
the random-utility derivation of a suitably normalized logit model. Moreover, the
conjugate of this convex expected utility will retrieve the original weighted control-
cost function.! Hence, by taking the conjugate of the expected utility for other
random utility models, candidate control-cost functions could possibly be derived.

Another avenue for further research might be to use the present framework to
model social norms. Suppose that decision problem [M] is faced by all individuals in
a society in which defection from what others do causes disutility (see e.g. Lindbeck
et al. (1999) for such a model). Letting the “default” decision ¢ be the aggregate
of all others’ decisions, and interpreting the disutility function v as the disutility
of defecting from this aggregate behavior, decision problem [M] determines each
individual’s choice probabilities. A social equilibrium could then be thought of as
a fixed point in this system of equations: an aggregate choice distribution ¢ which
results in individual choice probabilities (11) which, in aggregate, result in g.
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