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Abstract

This paper investigates the pricing bias in the Swedish OMX-Index Option market and how
a stochastic volatility affects European call option prices. The market is purely European
and without dividends for the period studied. A CIR square-root process for the volatility is
estimated with non-linear least square minimization, and stochastic volatility option prices
are calculated through Fourier-Inversion. These call option prices are compared to Black-
Scholes prices as well as observed market prices, and a well-defined bias structure between
Stochastic Volatility prices and Black-Scholes prices is observed. With a dynamic hedging
scheme, I demonstrate larger ex ante profits, excluding transaction costs, for traders using
the stochastic volatility model rather than the Black-Scholes model.
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1 Introduction

An option is a derivative security and its value can, in principle, be determined if all underlying
variables are specified. The Black-Scholes (1973) (henceforth ”B-S”) model is, of course, the
outstanding model for this purpose. It is simple and elegant but builds on fairly restrictive
assumptions, two of which, the constant stock return volatility and the constant interest rate,
have been relaxed in a number of papers in the last decade.

Early studies of the Black-Scholes model and its pricing behavior include Macbeth and
Merville (1979), Rubinstein (1985), and Evnine and Rudd (1985). In the case of option pricing
with volatility modelled as a stochastic process, both stock and stock index options, (Hull and
White (1987), Wiggins (1987), Scott (1987), Stein and Stein (1991), and Ball and Roma (1994)),
and currency options (Chesney and Scott (1989), Melino and Turnball (1990), Heston (1993),
and Bates (1996)) have been studied. There are also articles where the interest rate is assumed
to be stochastic (Heston (1993), Amin and Ng (1993), and Saez (1995)). A common result is
that an improvement in pricing (more efficient markets) follows with the inclusion of a stochastic
volatility, while the impact of a stochastic interest rate seems less clear.

Several option-pricing models, with different assumptions regarding the return distribution
of the underlying asset, have been developed; the vast majority of the models being based on
continuous time stochastic processes and Ito calculus. When the model is specified, the option
price must be solved for. Normally, this means solving a partial differential equation (PDE) and
a number of methods are available. Whether direct numerical solving of the partial differential
equation, Monte Carlo simulations, approximation methods, or a combination of numerical and
analytical solution methods is used, depends on the kind of option to be priced as well as
the processes chosen for the underlying assets. In addition, when introducing a non-traded
underlying parameter like stochastic volatility, it is known from financial theory that a non-zero
volatility risk premium must be introduced, which complicates the search for the option price,
although not in a critical way.

With a randomly changing volatility, the option price is no longer determined by a single
stochastic variable, the stock index price, but a second stochastic variable, the volatility of the
stock index return, is equally important. We end up having two underlying stochastic processes,
two state variables, that may be specified in different ways and may or may not be correlated.

In this paper, a Geometric Brownian Motion is assumed for the stock index price and a mean-



reverting Cox-Ingersoll-Ross square-root process for the volatility (variance)

dS = mSdt+oSdZ, (1)
do? = ol —o?)dt + EVo2dZ,, (2)

where S is the stock index price, o2 is the volatility (variance) of the stock index return, a, 6, &,
and m are constants, and dZ;and dZ, are independent Wiener processes. The parameter « is the
degree of mean reversion, 6 is the long-run mean volatility, and £ measures the volatility of the
variance process. The choice of model for the volatility behavior is partly due to mathematical
tractability where we can draw on interest rate theory and the bond pricing formula in Cox,
Ingersoll and Ross (1985), and partly due to feasibility; empirically, volatility is never negative
and it has a tendency to revert to a long-run average. Both these phenomena are covered by
the mean-reverting square-root process.

To solve for the option price, I use the Feynman-Kac functional and the concept of risk
neutrality, i.e. solving the PDE with a stochastic representation formula where the discounting
is done with the risk-free rate of interest. In order to find the final stock index price distribution, I
use the Fourier-Inversion method introduced by Stein and Stein (1991). They used this technique
for the arithmetic Ornstein-Uhlenbeck process, and Ball and Roma (1994) modified the model for
the CIR-process. In these studies, the prices given by the Fourier-Inversion model and the B-S
model were compared but the pricing methods were not used to back out real-world parameters
and biases. In this paper, the aim is to study the pricing bias in the Swedish OMX-Index
call option market and the Fourier-Inversion model is used both to estimate volatility process
parameters and to price options. While several empirical studies on stochastic volatility option
pricing exist, most of these rely on Monte-Carlo methods to find the option price. By instead
using the Fourier-Inversion method, I get a quicker and more flexible method. For comparison,
I also calculate B-S prices in addition to stochastic volatility prices.

My choice of market is the Swedish OMX-Index option market and, to my knowledge, this
is the first paper applying stochastic volatility option pricing methods to this particular market.
The OMX-Index option market is smaller than the bigger stock option markets in the US and
the UK, but it has many interesting features. All trade is done with a computer system, the
contracts are purely European style, and most important, there are no dividends in the market
for the time periods studied.

To assess the stability of the results, I have looked at two separate time periods, October 1993
to February 1994 and July 1994 to December 1994. Both these periods are relatively tranquil,
compared to, for instance, late 1992 when the Swedish krona was under pressure. Using data
from these periods, I back out parameters for the stochastic processes and with these estimates

as input, I try to judge how efficient option prices are quoted. The fast Fourier-Inversion method



proves to be useful in making it possible to back out the risk neutral (Q-measure) parameters
from quoted option prices (compare yield-curve inversion). This is a fairly new approach in the
area of option pricing, where most authors use historical stock-return data and moment methods
to estimate volatility parameters (Bakshi et al. (1996)). The method has the advantage of
directly giving the risk neutral volatility parameters and giving possibilities to infer the sign and
size of the volatility risk premium.

The bias study in this paper is divided into a static and a dynamic part. The static study
is done on a daily basis and compares, out-of-sample, the market-, the B-S-, and the stochastic
volatility-prices by daily updating model inputs. The dynamic efficiency test consists of a
hedging scheme, where a hedged position in two call options and the underlying index is formed
and daily updated with suitable A:s, and where risk-free arbitrage profits are calculated, ex
ante.

This paper is organized as follows. Chapter 2 looks at the pricing model and the Fourier-
Inversion technique. Chapter 3 describes the OMX-Index Option Market and estimates the
volatility parameters. Chapter 4 contains the static bias study and the dynamic efficiency test.

Finally, chapter 5 concludes the paper.

2 The Model

2.1 Equilibrium Pricing and the Stochastic Volatility Model

In the Black-Scholes model, the call option has a unique price. This is related to the fact that
in the B-S model, every contingent claim can be replicated by a self-financed portfolio. In other
words, the B-S model is complete.

In the stochastic volatility model, the situation is different. Since volatility is not spanned by
assets in the economy, the volatility-risk cannot be eliminated by arbitrage methods. Instead,
we must rely on equilibrium methods. It then follows that the market price of volatility risk

explicitly enters the general partial differential equation for the option price:
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where F is the option price, S is the price of the underlying asset (the OMX-index), o2 is the

index return volatility, and finally, A is the volatility risk premium.



The main difference between the present situation and the B-S setting is that in the B-S
model, arbitrage methods are used to find the price, while here, equilibrium arguments are used.
The option price will only be unique when supply and demand in the market are equalized, and
the forces of supply and demand are, in turn, determined by such phenomena as risk aversion.

One way out is to find situations where the solution to the PDE is independent of risk pref-
erences. This is the case if (a) the volatility is a traded asset or (b) the volatility is uncorrelated
with aggregate consumption (Hull and White (1987)). An alternative way is to treat the volatil-
ity as the non-traded parameter it actually is but putting the risk premium equal to zero, which
is done by Scott (1987) and Hull and White (1987).

The exact form of the risk premium might not be found and one might not be comfortable
with assuming a zero risk premium. Then there is the special case of a non-zero constant risk
premium for the volatility that does not actually change our solution method or the results in
any profound way. In this paper, I will assume a non-zero constant risk premium, so that a
risk adjusted drift rate for the volatility can be defined in (2). The drift rate a(f — o) changes
to a(f' — 02), where the only change is a shift in the constant long-run mean!. \ has now
disappeared from (3) and the new parameters, «, @', and £ are called risk-adjusted parameters,

or Q-parameters?.

2.2 The Fourier-Inversion Technique and Stochastic Volatility Option Pricing

The Fourier Inversion method as a technique to find the stock price distribution was introduced
by Stein and Stein (1991), who focused on the similarity between Moment Generating Functions
(MGFs) and Fourier Transforms and combined this with the averaging over time of the stock
price variance. Ball and Roma (1994) continued this work by even further emphasizing the
important role of the average variance and, in particular, the MGF of the average variance, also
showing its importance in other solution methods. Heston (1993) developed a slightly different
model and suggested the use of a square-root process, which has the advantage of always giving
positive volatilities and being familiar from earlier work by Cox, Ingersoll and Ross (1985) in
the different, but related, context of bond pricing.

The closed-form solution of the option price in (3), F(¢), is derived by following Stein and
Stein (1991) and Ball and Roma (1994) by applying the Feynman-Kac functional (risk adjusted

'In the PDE, all parameters are assumed to be constant. If further assuming a constant risk premium \, then

the variable sustitution a(f — 0?) — A = a(0 — 2 — 0?) = a(f’ — ) can be made.

2Under the assumption of a constant risk premium and if the ordinary parameter # can somehow be found,

an estimate of the risk premium, A, can also be obtained.



expectation)
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where (5) is derived by using the similarity between Moment Generating Functions and Fourier-
Transforms. We end up with the following expression for the call option price, where S; is
the underlying stock index value at the exercise date, X is the strike price, and 7 merely an

integration variable:
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where
I\ = exp(N + Ma?),

03 is the initial variance, and N and M are the following functions:
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What remains is an integration giving the explicit solution. Unfortunately, any attempt to

M =

where

and

find a primitive function to this integrand seems bound to fail, and consequently, we must rely
on the best possible approximations found by some kind of numerical integration. To solve this
problem, a combination of Simpson’s method and the simple Trapetzoid method is chosen, and
all programs are written in the GAUSS programming language. The stochastic volatility option

prices in (6) are calculated with these programs.



3 The Swedish OMX-Index Option Market and Parameter Es-

timates

3.1 Data

In September 1986, the Swedish exchange for options and other derivative securities (OM)
introduced the OMX-index. It consists of a value-weighted combination of the 30 most actively
traded stocks on the Stockholm Stock Exchange. The purpose of the introduction was for the
OMX-index to serve as an underlying ”security” for trading in standardized European style
options and forward contracts. A unique feature of the Swedish stock-index options, at least
compared to US markets, is that during a large part of the year, there are no dividends at
all. The OMX-index must be adjusted for dividends only when the April-, May-, June- and
July-contracts are analyzed. This paper looks at dividend-free August to March contracts.

The OMX-index Option Market consists of European style Call- as well as Put-Options
with different times to expiration. At any time throughout the year, trading is possible in at
least three classes of option contracts with up to one, two and three months left to expiration,
respectively. On the fourth Friday each month, when the exchange is open for trading, one
class of contracts expires and a new class, with time to expiration equal to three months, is
initiated. Furthermore, for options with a given time to expiration, a wide range of exercise
prices is available. When options with a new expiration date are introduced, the exercise prices
are chosen so that they are centered around the current value of the OMX-index.

The set of data used consists of daily closing bid and ask quotes for the two time periods,
October 1993 to February 1994, and July 1994 to December 1994. The option data and index
data are obtained from OM and contain both prices and volumes. Options with a time to
maturity shorter than 15 days, as well as options with very low liquidity, are removed from
the sample. Certain days (very few) have been removed from the data set due to errors in the
data (non-feasible prices, missing bid or ask quotations, erroneous strike prices, etc.) and the
total number of observations is 1694. Both the options exchange (OM) and the stock exchange
(StSE) close at 4.00 P.M., minimizing the possibility of synchronization problems. Interest rates
for 30, 60, and 90 days are obtained from Sveriges Riksbank, and the relevant interest rates are

computed by interpolation between the two closest interest rates.

3.2 Parameter Estimation

The next step is to estimate the parameters in the volatility process and in the PDE. Most
empirical research shows that volatility follows a mean-reverting process, like the one in (2),

which gives three parameters to be determined: the reversion rate, a, the long-run mean, ',



and the volatility of the volatility, £. Volatility is assumed to start at its long-run level.

There are many alternative ways of estimating these parameters. An approach using the
discrete time approximation of continuous time stochastic processes is the method of moments
by Chesney and Scott (1989) and Hansen (1982). By looking at the moments of the stock return
distribution, estimates of the discrete time process parameters as well as the continuous time
parameters can be found.

If choosing to work directly with the continuous time processes, determining the distribu-
tion of stock returns as a function of the parameters in question and then applying maximum
likelihood methods would be a natural approach. The problem with this approach is that stock
returns are dependent over time, and the joint distribution for a sample of observations would
be very difficult to derive, Scott (1987).

The estimation approach chosen here is that of calibrating the model to data. This is
comparable to the way Brown and Schaefer (1994) fit the "yield curve” of bonds, and this
method has the advantage of directly giving the Q- parameters (Martingale), not the objectively
observed parameters.

The calibrating technique works as follows. I choose to model the stock return as a Ge-
ometric Brownian Motion and the volatility process as a mean reverting square-root process.
By specifying these processes under the (Q-measure, option prices with the Fourier-Inversion
method can be calculated as functions of the volatility parameter set 2, where {2 is defined as
Q= {a,0,¢}. Using empirical data, I calculate the midpoint between daily quoted bid and ask
OMX-Index option prices and compare these midpoint values to the modelled option prices. On
any given day, I minimize the sum of the squared differences between the model prices and the

empirical midpoint prices to get estimates of the parameters, {2:

N 2
Il})ill SSE = Il’gll ; (Fmodel,i(Q) - Fmarket,i) 9 (7)

where N is the number of options on a particular day. Since the stochastic volatility option price,
Foqe1 (€2), is highly non-linear in its parameters, the problem (7) is a non-linear least square
minimization problem. Thanks to the Fourier-Inversion method, the least square minimization
method of estimating the parameters is not too costly in terms of computer resources and fully
compiled computer languages are not necessary to implement the routine.

The problem has been implemented in GAUSS and the calculations were made on a Pentium
100MHz PC. At the heart of the computation lies an integration routine and for the nonlinear
least square minimization, the Gauss-Newton algorithm with numerically calculated derivatives
is used. The generalized double integral is truncated to a finite region without too much loss of

information. In addition, the high non-linearity creates a number of local minima, and a range



Table 1: Average volatility parameters.

Oct. 93 to Feb. 94 Jul. 94 to Dec. 94 Both Periods
Parameter Std. Parameter Std. Parameter Std.
o' 0.058 0.002 0.037 0.001 0.048 0.001
«a 3.96 24.71 4.13 18.39 4.04 21.55
13 0.51 0.46 0.39 0.26 0.45 0.36
B-S Implicit Volatility 0.076 0.001 0.036 0.001 0.056 0.001
Parameter = average parameter value over the time period. Std. = average value of the standard deviation

coming from the asymptotic covariance matrix for the parameter estimates.

of initial parameter-values has to be tried as inputs to find the global minimum.

Since I look at two separate time periods I can, to some extent, assess the stability of the
estimates. Running the program each day in the sample periods gives around 250 estimates each
of a, @', and €. Studying how the parameters change over time reveals some time dependency but
the model assumption of constant parameters does not seem very strong. Average parameter
values and average asymptotic standard deviations (from the covariance matrix) are given in
Table 1.3

In Table 1, T also include a calculation of the B-S implicit volatility. This volatility is
calculated by minimizing the squared difference between the market price and the Black-Scholes
price for all options traded on a particular day, which is different from the usual approach of
using an at-the-money option only. Our procedure gives a worse correspondence with empirical

prices at-the-money but gives a lower pricing bias in-the-money and out-of-the-money*.

3The high asymptotic standard deviation for o might seem to be a subject of concern. It is due to the very low
second derivative of the price function F' with respect to «; a large variation in « gives only a slight variation in F'.
However, for different reasons, this should not be subject of too much concern. First, as mentioned, the sensitivity
of I with respect to « is very small. This means that predictions of future option prices do not critically depend
on the estimated value of .. Second, the aim of this paper is not to find as good estimates of the volatility process

as possible.

41 have also tried the usual approach of only inverting options at-the-money. The results are not reported
here but the two average estimates are fairly similar, even though substantial differences are present on particular

days.



4 Pricing Bias
4.1 Static Bias

This chapter looks at the out of sample pricing bias in the Swedish OMX-Index call option
market. I have chosen the previous day’s (yesterday’s) estimates of process parameters as inputs
to compute the current day’s (today’s) model price. These model prices will then be compared
to actual market prices and a possible bias is studied. This approach is supposed to replicate the
behavior of practitioners and one should be aware of its tendency to favor the shortsighted B-S
model; the stochastic volatility model works much better than the B-S model in the unrealistic
setting of no (or not very frequent) updating of parameters. Next, the observed market price is
subtracted from the model price to compute both the percentage pricing error and the absolute
percentage pricing error. This is repeated for all different call options each day in the sample,
both for the stochastic volatility model and the B-S model.

The percentage error is defined as

100 (Pmodel(Q) — Pmarket)
e = 7 8
P odel(Q) ( )

m

and moneyness is defined as

100 - (O]V[X-indem value — Strikeprice - e’T(T’t))

Strikeprice - e=(T—1)

m =

Far-out-of-the-money is defined as m < —5, out-of-the-money as —5 < m < —1, at-the-
money as —1 < m < 1, in-the-money as 1 < m < 5, and finally deep-in-the-money as m > 5.

If the theoretical prices are compared in a scatter plot (with empirical parameters estimated
one day earlier) a smile-shaped bias structure is found between B-S prices and stochastic volatil-
ity prices, Fig. 1.

This smile is predicted by theory and is due to the convexity properties of the B-S model
(as a function of the mean variance over the life of the derivative security). Jensen’s inequality
says that, if F' is concave, E[F(-)] < F(E[:]) where E is the expectation operator (when F' is
convex the opposite holds). This, together with the fact that (6) can be seen as an expectation
of the B-S price over different mean variances and that the B-S price, as a function of the mean
variance, is convex for large (and small) values of S/X, and concave for values of S/X close to
one, where, as before, S is the stock index price and X is the strike price, gives the observed
bias structure.

Fig. 2 is a scatter plot of the bias between stochastic volatility prices and market prices as

a function of moneyness. It can be seen how the options are overpriced out-of-the-money and
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Figure 1: % Bias—Stochastic Volatility Prices minus B-S Prices. Both time periods (1649
obs.).
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Figure 2: % Bias—Stochastic Volatility Prices minus Market Prices. Both time periods (1649
obs.).
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slightly underpriced in-the-money compared to the market valuation. The plot for the B-S model
shows a similar bias structure. For a more quantitative analysis of the pricing bias, we can look
at the results in Tables 2 and 3. In these tables, the results for the different pricing models are
reported, divided into different times to maturity as well as different levels of moneyness. The
tables show how the two models demonstrate percentage errors of a similar magnitude, as well
as a similar bias structure. This behavior is stable over different time periods as well as different
pricing models®; overpricing out-of-the-money, underpricing in-the-money, and somewhat better
correspondence at-the-money. For both models, the prices deviate significantly from the market
price out-of-the-money and in-the-money and the percentage errors (with sign) are significantly
different from zero. The absolute percentage errors confirm this evidence of mispricing and both
models give significant pricing errors. Overall, the absolute percentage error decreases with
moneyness, ranging from around 15% out-of-the-money to 3% in-the-money.

In addition to the strike price bias above, a quick, qualitative look at the time to maturity
bias is also interesting. As a whole, the absolute percentage bias decreases with time to maturity.
In particular, the options with the longest times to maturity have a smaller bias than the options
with shorter maturity. No explanation to this behavior has been found.

For all maturities, both models systematically overprice out-of-the-money and underprice
in-the-money. An explanation of this skewness might be a negative correlation between the
stock return and the volatility taken into account by the market but not by the models. This
would lead to an overvaluation by the models of out-of-the-money options, since the stock
return distribution becomes negatively skewed and really high option prices are less likely to
be achieved; when the stock price increases, volatility tends to decrease, thereby making large
movements in price less likely. The opposite holds when stock prices decrease. On the other
hand, several studies have also shown that the skewness is not significant in the equity markets.

The results are confirmed by many studies, both for the constant volatility B-S model and
the stochastic volatility models. One notable finding, however, is the difference between the B-S
prices in my study and the B-S prices in the study by Hansson et al. (1995) in the same market.
Hansson et al. find out-of-the-money options to be better priced than at-the-money options
and only slightly underpriced compared to the market price. This is somewhat surprising, since
they use at-the-money options to back out the implied volatility. The only explanation for the
difference in results is the different specification of the implicit volatility and the different data

setsf.

5The results for the individual time periods are not presented, but looking at these two time periods, October

1993 to February 1994 and July 1994 to December 1994, separately, there is no significant change in patterns.

5Even if not presented in my paper, it is interesting to notice that the B-S model with at-the-money-estimated
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Table 2: Stochastic volatility average pricing errors. Both time periods (the total number of
options is 1649).

T-t 15-30 days 31-45 days 46-60 days all days
Average % Error 7.17 9.25 8.84 8.81
2.23 0.95 0.93 0.68
Far Out Average Abs. % Error 14.73 14.02 12.39 13.61
1.68 0.67 0.66 0.48
No. of Options 89 256 156 501
Average % Error 3.51 2.67 1.10 2.08
2.15 0.61 0.61 0.47
Out Average Abs. % Error 11.73 7.30 5.93 7.29
1.54 0.42 0.37 0.33
No. of Options 75 258 128 461
Average % Error 1.02 -0.42 -1.90 -0.75
151 0.60 0.61 0.44
At Average Abs. % Error 6.38 5.18 4.22 5.01
1.01 0.36 0.38 0.27
No. of Options 36 123 62 221
Average % Error -0.33 -1.58 -2.30 -1.60
0.75 0.34 0.43 0.26
In Average Abs. % Error 3.96 3.64 3.48 3.61
0.50 0.23 0.30 0.17
No. of Options 454 176 73 303
Average % Error -1.39 -1.12 -0.68 -1.12
0.53 0.31 0.39 0.24
Deep In  Average Abs. % Error 2.91 2.93 1.59 2.73
0.35 0.23 0.23 0.17
No. of Options 44 99 20 163

Small numbers are standard deviations.
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Table 3: Black-Scholes average pricing errors. Both time periods (the total number of options
is 1649).

T-t 15-30 days 31-45 days 46-60 days all days
Average % Error -8.86 5.14 5.83 1.16
3.56 1.09 1.02 0.99
Far Out  Average Abs. % Error 23.57 13.73 11.26 15.55
2.72 0.74 0.90 0.73
No. of Options 89 256 156 501
Average % Error 3.86 2.82 0.58 2.29
1.73 0.58 0.61 0.47
Out Average Abs. % Error 11.27 7.33 5.60 7.42
1.21 0.40 0.38 0.33
No. of Options 75 258 128 461
Average % Error 2.15 -0.12 -1.68 -0.38
1.18 0.59 0.61 0.42
At Average Abs. % Error 6.08 5.20 8.27 4.97
0.79 0.35 0.37 0.26
No. of Options 36 123 62 221
Average % Error 0.10 -1.54 2.31 -1.51
0.64 0.34 0.43 0.25
In Average Abs. % Error 3.77 3.65 3.47 3.59
0.43 0.23 0.30 0.17
No. of Options 454 176 73 303
Average % Error -1.47 -1.29 -1.41 -1.31
0.46 0.31 0.66 2.99
Deep In  Average Abs. % Error 2.73 3.04 2.05 2.79
0.33 0.23 0.31 2.19
No. of Options 44 99 20 163

Small numbers are standard deviations.
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To summarize, the difference between the theoretical B-S price and the stochastic volatility
price is in accordance with theory and shows the expected smile-shaped bias structure. The
difference between market prices and model prices is larger, though, and both models overprice
out-of-the-money and underprice in-the-money. To fully evaluate the pricing performance of the
models, we turn to a dynamic test measuring riskfree profits over time by holding, and each day

rebalancing, risk-free portfolios designed with each of the models.

4.2 Dynamic Efficiency Test

If the B-S price is closer to the ”correct price” than is the market price, then it should be
possible to make riskfree arbitrage profits by trading with the B-S model. Further, since the
variance is observed to vary randomly, a trader using a random variance model may be even
more efficient in identifying mispriced options. To test this hypothesis, I compute ex ante net
gains from a hedged position of options and the underlying variables”. In the B-S case, I use
a standard A-hedge with a call option and a hedged position in the OMX-Index (or the stocks
making up the index). In the random variance case, both the OMX-Index and the volatility
must be hedged, which is accomplished by taking positions in two call options as well as the
underlying index. In this way, both the random sources in the option pricing model are hedged
(Chesney and Scott (1989)).

The dynamic A-neutral hedge for the stochastic volatility model is created in the following
way. Each day, I take a position in the option that is most mispriced. If the model price is
higher than the midpoint of the bid-ask spread, then I buy the option, if it is lower, I sell it.
The position in the second option must be the opposite in order to hedge the volatility risk, and
if I need to sell the second option, I choose one with a model price below the midpoint price.
Finally, a position is taken in the OMX-Index.

The hedged position is

F(Sa(rataKl)+w15t+w2F(570'7t7K2)7 (9)

where w; and w, are

_ OF(S,0,t,Ky) OF (S,0,t,K,)
1= 95 w2 a5 (10)
OF(S,0,t,K;

Oao?
OF (S,0,t,K2) °

002

w2 - -

implicit volatility shows substantially worse pricing behavior than the other two models out-of-money and in-the-

money. This is not very surprising, considering the well-known volatility smile existing in implicit B-S volatilities.

"Bz ante means that model prices at time ¢ are calculated by using parameters estimated at time ¢ — 1.
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Table 4: Risk-free daily profits (SEK per option and day) from using a dynamic trading rule.

Oct. 93 to Feb. 94  July 94 to Dec. 94 Both Periods

Mean 0.43 0.39 0.41
Stochastic Volatility = Median 0.18 0.37 0.29
Mean Std. 0.21 0.33 0.20
Profit
Mean 0.054 0.14 0.090
Black-Scholes Median 0.023 0.19 0.16
Mean Std. 0.37 0.10 0.16

Each day the net gain on this hedge is calculated:

[F(ty, Ky) — F(t, — Ky)] +wy [Sy, = Sy, | +w [Fty, Ky) — F(ty, Ky)] - (11)
Tty [F(t, Kp) +w Sy, +woF(ty, Ky)]

Every transaction is made at the midpoint price in an attempt to exclude transaction costs, due
to the bid/ask spread. For both the B-S model and the stochastic volatility model, positive ex
ante average profits from using the trading rules are found.

Table 3 shows means, medians, and standard deviations for the B-S model and the stochastic
volatility model for the two different time periods. For both time periods, the stochastic volatility
model gives higher profits than the B-S model, whose profits are not significant. The existence
of these profits indicates mispricing in the OMX-Index market, even though it is important to
notice that my hedging scheme assumes that all trade can be done within the bid-ask spread
and without transaction costs. In practice, this is the case for large traders and market-makers

only.

5 Conclusions

The standard Black-Scholes model for pricing European call options assumes a lognormal proba-
bility distribution for the underlying stock-index price and a constant stock-index return volatil-
ity. Considering empirical evidence, a more plausible hypothesis is that volatility changes ran-
domly.

In this paper, I specify the volatility process as a mean-reverting square-root process and
calculate theoretical option prices with the Fourier-Inversion Technique. The option pricing

equation contains a preference term, the volatility risk premium, as volatility is a non-traded
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asset. It is not obvious, a priori, what constitutes a reasonable value for the price of volatility
risk and I have chosen to treat the risk-premium as a constant. In this way, the Fourier-Inversion
method can be used.

I quote actual prices on dividend-free European call options from the Swedish OMX-Index
Option Market, and from these market prices, I estimate daily volatility process parameters by
a non-linear least square minimization of the difference between market and model prices. This
procedure has the advantage of directly giving the risk-neutral parameters.

From a static point of view, I find a smile-shaped bias between the Black-Scholes prices
and the stochastic volatility prices. Both models give prices showing a similar bias compared
to actual prices quoted in the market and both models price options in-the-money and at-the-
money more accurately than out-of-the-money. The absolute percentage bias decreases with
time to maturity for both models.

The dynamic hedging test reveals riskfree arbitrage profit possibilities, at least for the
stochastic volatility model, which supports the existence of mispricing in the OMX-Index Option
Market, when transaction costs are not considered.

My conclusion is that the stochastic volatility model dominates the standard Black-Scholes
model and produces a more efficient market. Considering the easy implementation of the stochas-
tic volatility pricing model, this model is seen as an alternative to the established Black-Scholes
model in actual pricing.

For further research, I suggest a comparative study on stock- and currency options and ex-
changes versus OTC-trading, and a more thorough study of the risk premium, for instance in the
context of different macroeconomics situations (the 1992 currency crisis etc.). The application

of the stochastic volatility model in related areas might also prove to be useful.
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