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Abstract 
 
 
The existence of a financial gas market motivates the analysis of gas storage as a separate 
asset, using the market value context for utilization and valuation. In the recent literature, gas 
storage is typically analysed within a framework with a simple one-factor price dynamics that 
is solved to optimality. We follow a different approach, where the market is represented by a 
forward curve with daily granularity, the price uncertainty is represented by six factors, and 
where we impose a simple and intuitive storage strategy that follows from repeated 
maximization of the intrinsic value. 
 
Based on UK natural gas market price data, we obtain the gas storage value using our 
approach, and compare with results from one-factor models as well as with perfect foresight. 
We find that our approach captures much more of the true flexibility value than the one-factor 
models. Our results indicate that the appropriate framework for analyzing complex assets like 
gas storage is a rich representation of the price dynamics combined with a simple and intuitive 
decision rule. 
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Gas Storage Valuation: 
Price Modelling v. Optimization Methods 

 
 
1. Introduction 
The analysis of natural gas storage has traditionally been integrated with the valuation of 
other activities of the company, for instance production, supply, and demand. However, we 
know from economics and finance that well functioning capital markets pave the way for the 
separation principle and value additivity. The basic message to the company is to maximize 
the market value of the production technology, and to use the financial market to manage 
economic risk. 
 
The existence of a natural gas forward/futures market motivates the use of decision support 
models from finance. The basic idea is to consider gas storage as a separate asset, and use the 
market value framework for valuation and utilization of this asset. The company can deal with 
economic risk by trading in the financial gas market, and cover possible physical imbalances 
in the spot market. 
 
In the recent literature, several of the methods that are applied from finance are aimed at 
solving the gas storage problem to optimality. One example is Least Squares Monte Carlo 
(LSMC) of Longstaff and Schwartz (2001), which is applied to gas storage by for instance 
Boogert and de Jong (2008).  
 
Longstaff and Schwartz (2001) use the LSMC to evaluate an American stock option to 
optimality, assuming the usual stock price dynamics. However, the natural gas market 
consists not only of a spot price but of a whole family of forward prices. Moreover, market 
data show: (i) clear seasonal price patterns; (ii) considerable price uncertainty; and (iii) more 
than a few factors are needed to explain the price uncertainty.  
 
In order to solve the gas storage to optimality and still retain computational efficiency, the 
number of state variables has to be limited, and the problem has to be restrained to 
accommodate the Markov property. This means that the actual problem has to be simplified 
substantially. Optimality is at best attained within the simplified framework. So the 1000-
dollar question is how much of the “true” gas storage flexibility value is assumed away by 
reducing the problem to one that can be solved to optimality.   
 
We apply an alternative approach based on a detailed representation of the forward curve and 
its dynamics, combined with an intuitive and feasible decision rule that follows from repeated 
maximization of the intrinsic value. At each decision point, the market is represented by an 
updated forward curve that obeys value additivity, is compatible with the quoted market 
prices, and reflects historic information (typical time profiles). We apply Principal 
Component Analysis (PCA) to identify the (six) factors and determine their loads from actual 
forward curve movements. We use Monte Carlo simulations to model possible realisation of 
the forward curve dynamics, where the decision that is locked in at each point in time follows 
from maximizing the intrinsic value of the gas storage.  
 
Our valuation model is tested on market data from the UK National Balancing Point (NBP) 
covering a two-year period. We compare the results from our approach with the results from 
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one-factor optimization models as well as with the unfeasible perfect foresight (ex post 
optimization). Based on our numerical examples, we conclude that our approach, with a rich 
representation of the price uncertainty combined with a simple and intuitive decision 
(repeated maximization of the intrinsic value), captures much more of the actual flexibility 
value than solving gas storage to optimality within a one-factor model framework. Our results 
indicate that the appropriate framework for analyzing complex assets like gas storage is a 
multi-factor model combined with a simple decision rule, rather than a model with one (or 
just a few) factors that is solved to optimality. 
 
 
2. Spot price models 
Boogert and de Jong (2008) present a spot price model for valuation of gas storage. They 
assume that the spot price dynamics is 
 

(1) [ ] )()(ln)(
)(
)( tdWdttSt

tS
tdS σμκ +−=  

 
where the mean reversion rate κ  and the instantaneous spot volatility σ  are positive 
constants. The long-term level )(tμ  is a time-varying function that can be used to fit the spot 
price process to the forward curve at the initial evaluation date. This model is referred to as 
log-normal mean-reverting Ornstein-Uhlenbeck price process. Hodges (2004) and Chen and 
Forsyth (2006) consider a similar price model. 
 
Boogert and de Jong (2008) use (1) above to simulate the spot price paths. These paths, 
combined with the characteristics of the gas storage facility, are then analyzed by LSMC. 
Zhuliang and Forsyth (2006) combine this price model with the storage characteristics to set 
up an optimal control problem. The solution to this problem gives the storage value. 
 
In our opinion, neither of these approaches represents the correct starting point. We will give 
several reasons. 
 
Firstly, the model above is a one-factor spot model. A one-factor model for gas and electricity 
is unrealistic. Koekebakker and Ollmar (2005) find that up to 10 factors are needed to explain 
the price movements in the Nord Pool electricity market. Our data indicate that we need six 
factors to explain 90% of the variation in the NBP gas market in UK. 
 
The reason for choosing a one-factor framework is basically the focus on the solution method. 
Boogert and de Jong (2008) find stable results for a number of less than 5000 price paths. 
Increasing the number of factors will dramatically influence this result.  
 
Suppose we extend the model above to a three-factor spot model. Within the LSMC approach, 
we then need to estimate a decision rule that is made conditional on the value of these three 
factors for every time step and for every state of the reservoir. Li (2007) suggest the 
regression 
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where 3,2,1; =iy i
t  are the different factors. The choice might be good but it is still arbitrary. 

It is an endless number of basis functions of the three factors that are not included above. 
Another and even more important point is that the best multifactor forward curve models are 
path-dependent.  
 
The forward curve dynamics we use in this paper requires an even larger state space. 
Although we use only six factors in the simulation of the forward curve in the next stage, the 
simulated curve is a function of the previous curve and the random outcome of six factors. 
Every single factor influences the curve differently for different maturities.  
 
Secondly, the initial forward curve used to calculate the trend above plays an unrealistic role. 
In order to start with a model that is consistent with the current market situation, the trend in 
the above spot price model is calibrated to the forward market prices that are quoted at the 
initial date. This creates sensitivity for the initial forward curve that is unrealistic. It will also 
create problems for a possible hedging strategy.  
 
And thirdly, it is unclear how to back test the model over a given period. We may run into 
problems if we want to compare the value calculated initially with the value we obtain from 
running the storage following this decision rule. In practice we will never assign that much 
weight on the initial forward curve. Since market prices do not follow a one-factor model we 
will observe a new trend function every day. Given that we stick with the old trend function, 
we take positions on a certain market view. The result will depend on whether this market 
view is profitable or not. The outcome will be very erratic.  
 
 
3. Valuation model 
In the following we describe our method for evaluating the storage. We adopt the standard 
assumptions from contingent claims analysis of a complete market with no frictions and no 
riskless arbitrage opportunities, see, e.g., Cox and Ross (1976), Harrison and Kreps (1979) 
and Harrison and Pliska (1981). 
 
3.1 Forward curve 
We assume that the company faces a decision problem with daily granularity. Consequently, 
the company should use information with the same granularity. The key information in the 
gas storage problem is the forward curve, hence we need a forward curve with daily 
granularity. 
 
It follows from economic decision theory that the current forward price for a given day may 
be interpreted as the certainty equivalent value of that day’s future spot price, given the 
current information. We argue that the forward curve should to be consistent with: (i) the 
value additivity principle; (ii) updated market information (quoted forward contract prices); 
and (iii) historic information (typical time profiles).  
 
3.2 Forward curve dynamics 
We assume that the risk adjusted dynamics of the forward curve can be represented by a 
general multifactor model. See, for instance, Heath, Jarrow, and Morton (1992) or Bjerksund, 
Rasmussen, and Stensland (2000), or Clewlow and Strickland (2000). For an overview of 
different forward curve methods, see Geman (2005). 
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The dynamics of the forward curve is represented by the following equation 
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where ),( TtF  represents the forward price at time t  for delivery at time T . The volatility is 
represented by ),( Ttiσ  where Ni ,,1L= . The increments of the N  Brownian motions 

)(tdZi  are assumed independent.  
 
The dynamics just above translates into the future forward price being 
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We let the market data decide the number of factors needed. Every day, we construct a 
forward curve with daily granularity. Next we find a return function for each day as a function 
of time to delivery. Then we perform principal component analysis (PCA) to find typical 
curve movements. The volatility functions follow from the loadings in the (PCA). The method 
is described in Appendix A. 
 
To obtain manageable input estimation of the volatility functions, we assume a time 
homogeneous model, i.e., 
 
(5) NitTTt ii ,,1;)(),( L=−= σσ  
 
This means that the loadings from the PCA depend only on time to delivery. This might be 
relaxed if we find ways of estimating PCA-components as a function of calendar time as well 
as time to delivery.  
 
To perform the simulations we apply the following discrete time representation of (4) 
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Equation (6) is used to simulate the forward curve at time tt Δ+  conditional on the forward 
curve at time t , where we draw N  independent standard normal distributed numbers iε

~  , 
Ni ,,1L= .  

 
3.3   Intrinsic value 
Based on a forward curve with daily granularity we find the optimal deterministic strategy. 
This is done by solving the following dynamic program 
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In the equation above, we need to set the terminal size of the storage. Typically we might 
choose a long horizon to limit the effect of the terminal condition. One alternative is to choose 
a horizon where the storage is returned to the initial size. Another alternative is to require the 
storage to be empty before the filling season.  
 
Some authors (see, e.g., Eydeland and Wolyniec (2003)) refer to the intrinsic value as the 
optimal initial plan that might be locked in using the tradable products. The implicit 
assumption seems to be that the granularity of the decision problem corresponds to the 
product calendar of the market. Now, suppose a problem with a one-year horizon and that 
only a one-year contract were traded in the market. The intrinsic value of storage would then 
be zero, according to the above definition. This is clearly meaningless. In most markets, there 
are traded forward contracts on a monthly delivery (swaps). The definition above would then 
disregard the possibility of following one strategy during weekdays and another strategy 
during weekends, which would translate into an unrealistic low reported number for the 
intrinsic value.  
 
In the following, we define the intrinsic value as the expected value of storage given the risk 
adjusted dynamics in section (3.2) above, conditional on following the best initial 
deterministic plan. The reason for our definition of the intrinsic value is as follows. A contract 
on a monthly delivery can be interpreted as a portfolio of contracts on daily deliveries. 
However, the fact that there is one quoted marked price for the monthly contract does not 
necessarily mean that each daily contract commands the same (forward) market price. 
Although daily contracts are not traded except for in the very short end of the curve, we know 
from empirical data that there typically will be time-dependent price differences in the future, 
for instance between weekends and weekdays. Since we start out with a forward curve with a 
higher granularity (daily) than the product calendar in the market, our intrinsic value will 
exceed the value of the traditional intrinsic plan. 
 
3.4 Repeated intrinsic value method 
We start out with the initial forward curve and find the today’s intrinsic plan. From this plan 
we lock in the decision regarding today. If the decision is to fill, the storage is increased and 
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the cost of filling follows from the current spot price. If the decision is to deplete, the storage 
reservoir is decreased and the revenue follows from the current spot price. If the decision is to 
stay put, there is no cash flow and the reservoir is unaltered.  
 
Next we simulate a realisation for tomorrow’s forward curve conditional on today’s forward 
curve and the price dynamics given in section (3.2). For this new forward curve, tomorrow’s 
intrinsic plan is determined. This problem is updated for the storage decision that is already 
locked in as well as the passage of time (one day closer to the terminal date). This plan is used 
to lock in tomorrow’s storage decision. We continue this procedure until we reach the 
terminal date of our problem.  
 
This procedure gives us one possible realisation of daily cash flows from the storage over the 
relevant time horizon. We repeat the procedure above to obtain the desired number of possible 
cash flow realisations. The value of storage is given by the average net present value of the 
simulated daily cash flows. 
 
3.5 Comparing with one-factor optimization models  
In this paper we claim that the focus on stochastic optimization methods leads to an 
oversimplification of the price modelling that severely undervalues the value of storage. In 
order to compare results, we consider two alternative one-factor methods. 
 
The starting point of the explicit one-factor model is the discrete time version of (1), where 
the spot price dynamics is calibrated to the initial forward curve by (see Appendix B) 
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where )(tS  and )( ttS Δ+  are the spot prices at time t  and tt Δ+ , ),0( tF  and ),0( ttF Δ+  
are the initial forward prices for delivery at time t  and tt Δ+ , respectively, ε~  is standard 
normal, and tΔ  is the time step size. We use (8) to simulate M  possible spot price path 
realisations. From these paths, a transition matrix is created for each day, and the storage 
problem is then solved by stochastic dynamic programming. 
 
The starting point of the implicit one-factor model is the multi-factor model (6) above, which 
is used to simulate M  possible spot price path realisations. From these paths, a transition 
matrix is created for each day. In this way we obtain a one-factor mean-reverting spot price 
model. The reversion rate is not explicitly estimated but will follow from the PCA-
components and the initial forward curve. The storage problem is then solved by stochastic 
dynamic programming. This might be compared to a model where we use several factors to 
generate a realistic spot price process but only use the spot price in the optimization problem. 
 
It is claimed that the advantage of the LSMC method compared to optimal control solution 
techniques is the separation of price paths and the solution method. This is exactly what we 
are doing here.  
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4. Storage valuation – an example 
 
4.1 Data 
We use natural gas price data quoted at NBP from October 1st 2004 - September 30th 2006. 
The prices are quoted by pence/therm. The traded contracts are spot, day ahead, balance of 
week, balance of month, as well as calendar months and seasons.  
 

 
Figure 1 Snapshot of NBP prices on Oct 1st 2004 
 
We use the Elviz Front Manager software to translate this price information into a forward 
curve with the following properties: (i) the curve obeys value additivity; (ii) the curve 
reproduces the market prices of the quoted contracts; and (iii) the curve reflects typical 
seasonalities over the week and over the year. A detailed outline, which includes a solution 
method, is given in Benth, Koekebakker and Ollmar (2007). 
 
The forward curve at NBP at October 1st 2004 is illustrated in Figure 2 below. Observe that 
there are price variations within the week (lower prices during weekends) and within the year 
(higher prices during the winter). 
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Figure 2 Forward curve on Oct 1st 2004 
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Based on the forward curve movements the first year, we apply PCA to estimate the loadings 
of the first six components. The results are given in Figure 3 below. Note that these six factors 
give rise to a rich class of possible forward curve movements. 
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Figure 3 Loadings of the six most important factors 
 
The explanation power of the components is shown in Figure 4 below. Observe that the first 
factor explains about 35% of the variation, whereas six factors explain about 90% of the price 
variation. We conclude that six factors should be sufficient in our analysis. 
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Figure 4 Cumulative percentage variance contribution of principal components 
 
These six factors add up to a volatility curve for the instantaneous movement in the forward 
curve, see Figure 5. A similar volatility curve, where all factors are included, is provided in 
Appendix A. In most commodity markets, the volatility curve is a decreasing function of time 
to delivery. Our data suggests a falling curve with some artifacts. In particular, there are some 
unexplained peaks such as the volatility in the forward price with delivery in 30 days.  
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Figure 5 Volatility term structure 
 
4.2 Storage characteristics 
The characteristics of the stylized storage are given in Table 1 below. 
 
Table 1 Storage characteristics 

Initial storage 125 million therms 
Terminal storage 125 million therms 
Max storage 250 million therms 
Injection 2.5 million therms per day 
Depletion 2.5 or 5 million therms per day 

 
All costs are set to zero, and we disregard the positive interest rate. We consider a problem 
with a one-year horizon, and our objective is to obtain the value of the cash flow from 
operating the storage.  
 
4.3 In-sample analysis 
We start with an in-sample valuation example, where we consider the value of operating the 
storage facility the first year (October 1st 2004 to September 30th 2005), given the initial 
forward curve (Figure 2) and using the PCA factor load estimated from the same period 
(Figure 3).  
 
The traditional intrinsic value that can be locked in using the traded monthly products is 58 
million £. The intrinsic value using daily resolution of the forward curve as well as the storage 
strategy is 76 million £.  
 
The explicit one-factor model in Equation (8) (5 000 simulations used to generate transition 
matrices), optimizing the storage strategy, gives a value of 104 million £. Here we have used 
the short term volatility of 149% per annum and a mean reverting rate of 0.05 per day, which 
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translates into a rate of 36505.0 ⋅=κ  per year. The short term volatility is a proxy for the 
short term volatility in the PCA-components, whereas the mean reverting rate is equal to the 
rate used by Boogert and de Jong (2008). The implicit one-factor model (10 000 simulations 
used to generate transition matrices), optimizing the storage strategy, gives a value of 96 
million £.  
 
Given the initial forward curve and the estimated factor loadings, the six-factor model with 
repeated intrinsic value maximization gives a storage value of 187 million £ (1 000 
simulations). The standard deviation of this estimate is 1 million £. This means that the value 
of flexibility is considerably higher than reported by the other models. In order to obtain 
rather low standard deviation in the estimate using only 1000 simulation we use the value of 
the financial hedging strategy (described in section 5) as a control variate.  
 
As a comparision, we find that the optimal but unfeasible perfect foresight method gives a 
storage value 205 million £ (1000 simulations). The standard deviation of this estimate is 2 
million £. This result is obtained by simulating all the forward prices paths to the horizon, 
finding the corresponding spot price path, and the ex post best strategy for each path.  
 
Our results are summarized in Table 2. 
 
Table 2 Computed storage value 2004 (million £) 

Intrinsic - monthly granularity 58
Intrinsic - daily granularity 76
One-factor model - explicit 104
One-factor model - implicit 96
Dynamic intrinsic model 187
Perfect foresight 205

 
On this background we claim that the simple repeated intrinsic method is close to the optimal 
value. We know that the perfect foresight value of 205 is impossible to obtain. 
 
4.4 Out-of-sample analysis 
Next we consider an out-of-sample analysis. In this example, we consider the value of 
operating the storage facility the second year (October 1st 2005 to September 30th 2006), using 
the initial forward curve at October 1st 2005 and the PCA factor load estimates from the first 
year (October 1st 2004 to September 30th 2005).  
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Figure 6 Forward curve comparison 
 
In this case, the traditional intrinsic value that can be locked in using the traded monthly 
products is 61 million £, whereas the intrinsic value of the storage with daily resolution is 74 
million £. These numbers are quite close to the corresponding values of the first year reported 
in Table 2 above. To explain this, observe that the storage may be interpreted as a 
complicated calendar spread, and that forward curves at October 1st 2004 and October 1st 
2005 basically have the same shape (relative prices), c.f., Figure 6.  
 
The explicit one-factor model, where we use equation (8) (5000 simulations) to generate 
transition matrices, and assume the same short-term volatility and mean reverting rate as 
above, gives a value of 116 million £. The implicit one-factor model gives a storage value of 
111 million £. 
 
The repeated intrinsic method gives a value of 228 million £ (1000 simulations). The standard 
deviation of this estimate is 1.5 million £. As a comparision, we find that the optimal but 
infeasible perfect foresight model gives 258 million £ (1000 simulations) with a standard 
deviation of 3 million £.  
 
Our findings are summarized in Table 3. 
 
Table 3 Calculated storage value 2005 (million £) 

Intrinsic - monthly granularity 61
Intrinsic - daily granularity 74
One-factor model - explicit 116
One-factor model - implicit 111
Dynamic intrinsic model 228
Perfect foresight 258

 
4.5 Conclusions 
The two examples show that our six-factor model, combined with repeated intrinsic value 
maximization, creates a significantly higher value than the one-factor stochastic optimization 
models. Hence, our results indicate that our approach should be the preferred one. 
 
Moreover, we find that there is a marginal additional value from perfect foresight. Perfect 
foresight is of course unfeasible, and represents an upper bound to the true storage value. This 
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indicates that our valuation approach captures most of the storage flexibility value, and 
suggests that there is a limited potential for improvement of our approach.  
 
 
5. Hedging 
A crucial point in option pricing theory is the concept of a replicating portfolio. The rationale 
behind the Black-Scholes option pricing formula is the existence of a dynamic self-financing 
trading strategy that gives exactly the same pay-off at the horizon. To rule out arbitrage, the 
option price must coincide with the cost of creating the replicating portfolio. If we know how 
to replicate an option, we also know how to hedge it, because the two strategies are opposite 
ones. However, the beauty of the theory often breaks down in practice. The most important 
explanation is a mismatch of volatilities between the model and the market.  
 
In the case of risk management of gas storage, it may be instructive to think in terms of a 
replicating portfolio. It will in general consist of positions in the all of the forward contracts. 
Since we are not even close to a formula for the gas storage value, the load on every contract 
has to be simulated.  
 
Consequently, we use an alternative approach to the hedging problem. In particular, we will 
exploit our dynamic intrinsic plan to define a financial forward trading strategy. The cash 
flow from this strategy will be highly negatively correlated with the cash flow generated from 
the gas storage. However, the strategy will not capture the pure flexibility value that accrues 
the owner of the physical facility. Hence we might call this a sub-replicating hedge portfolio. 
 
Suppose that we can trade daily forward contracts at each point in time. As an illustration, 
consider October 1st 2004. The initial hedge portfolio would then have the following 
exposure: 
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Figure 7 Exposure October 1 st from trades in the forward market 
 
Suppose that only monthly contracts are traded. By mapping the daily exposures from the 
intrinsic storage plan to net monthly exposures, we would have the following exposure at 
October 1st 2004: 
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Figure 8 Monthly exposure and initial trades 
 
We consider a dynamic situation where we utilize the storage according to the storage 
strategy that follows from repeated intrinsic value maximization. In addition, we follow a 
dynamic financial hedge strategy. Each day, we liquidate yesterday’s hedge portfolio and take 
new positions that are opposite of the updated intrinsic value maximization storage plan.  
 
Recall that the hedge portfolio consists of forward contract positions. This means that the 
market value of entering each position (as well as the portfolio) is zero. Next day, new 
forward prices are quoted. The old hedge portfolio is then liquidated, yielding a positive or 
negative cash flow. Thereafter, the new hedge portfolio is composed using information from 
the updated intrinsic value storage plan. And so forth. It follows from above that the market 
value of launching the dynamic hedge strategy is zero.  
 
Observe that the hedge strategy can be implemented by any market participant. The gas 
storage ownership per se is no prerequisite for trading in the financial gas market. This asset 
can of course serve as collateral for the company’s financial gas trading and speculation, but 
that is a different matter.  
 
So why bother with such a strategy? The explanation is that the cash flows from the gas 
storage and the hedge portfolio are highly negatively correlated. One obvious practical 
application of our hedge strategy is to reduce the risk from owning and utilizing a gas storage 
facility. Another application is numerical analysis of gas storage. We can use the financial 
hedge strategy as a control variate to improve the accuracy of our estimates. 
 
 
6. Back testing 
In this section, we investigate the performance of our repeated intrinsic value maximization 
strategy on the spot prices that actually were realized in the market. We assume the same 
storage characteristics as above and that terminal storage equals the initial storage. 
 
6.1 Year 1 - Storage 
We start at October 1st 2004 and consider the following year. Maximizing the intrinsic value 
that day gives the strategy that is illustrated in Figure 9. 
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Figure 9 Storage from intrinsic plan 
 
The expected cumulative cash flow from sticking to this strategy is illustrated in the figure 
below, where we use the property that each day’s forward price can be interpreted as the 
expected future spot price that day (using the equivalent martingale measure). 
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Figure 10 Accumulated cash flow from intrinsic plan 
 
The cumulative expected cash flow starts out negative, which reflects that the strategy is to 
start injecting. The cumulative expected cash flow at the horizon is the initial intrinsic value 
of 76 million £, c.f. Table 2 above.  
 
We perform an intrinsic value model every day given updated information. In this example, 
we decide to fill the storage with maximum capacity equal 2.5 million therms this first day. 
The next day we have the following forward curve 
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Figure 11 Forward curve October 2nd 2004 
 
We now optimize the intrinsic value for the remaining period given updated information. The 
current reservoir is 127.5 million therms. There are 364 days to the horizon, and the terminal 
storage must equal 125 million terms.  
 
Note that the strategy is almost unchanged. The best decision day two given that we follow 
the intrinsic plan is also to inject. We continue in this way for every day. For the weekend we 
use the curve given on last Friday to take the decision whether to inject or deplete. 
 
We continue in this way until September 30th 2005. At this time the reservoir equals 125 
million therms. The result for the repeated intrinsic method from October 1st 2004 until 
September 30th 2005 is given in the following figures.  
 
The evolution of the storage is given in Figure 12.  
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Figure 12 Actual storage size with the dynamic intrinsic method Oct 1st 2004 to Sept 30th 
2005 
 
The spot prices that were realized the first year is shown in Figure 13. 
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Figure 13 NBP prices Oct 1st 2004 – Sept 30th 2005 
 
The development of the accumulated cash flow from following the dynamic intrinsic method 
is shown in Figure 14. 
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Figure 14 Realized accumulated cash flow from the dynamic intrinsic method Oct 1st 
2004 – Sept 30th 2005 
 
The result from following this storage strategy is 48 million £.  
 
6.2 Year 1 - Hedged storage 
Above, we found that the realised cash flow from storage by implementing the repeated 
intrinsic value maximization from 1st October 2004 to 30th September 2005 is 48 million £.  
 
Now, suppose that the owner of the gas storage had launched a dynamic financial hedge 
strategy as described in the previous section. Assuming a market with daily forward contracts, 
the realised cash flow generated by the dynamic financial hedge portfolio was 168 million £. 
This large number is explained by reduced seasonal spread. This adds up to a total cash flow 
from the hedged storage 216 million £. The development of the cumulated cash is illustrated 
in Figure 15 below. 
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Figure 15 Accumulated physical and financial value 
 
It may be argued that daily forwards are unrealistic. In order to model a more realistic trading 
strategy, we assume that all exposure from the optimal intrinsic plan is mapped into net 
positions in the traded products. For simplicity we assume that the next 10 days are tradable, 
and thereafter only the relevant trading list from next month and to the horizon. The cash flow 
generated by the dynamic financial hedge is then reduced to 89 million £. This translates into 
a total cash flow from the hedged storage of 137 million £. The results of our back test is 
summarized in Table 4. 
 
Table 4 Back-testing result 2004 (million £) 
 Physical storage Hedge portfolio Hedged storage 
Daily forwards 48 185 233 
Trading calendar 48 89 137 
 
6.3 Year 2 - Storage 
Now we perform the same analysis for the year starting at October 1st 2005 with a one-year 
horizon. The reservoir is the same as in the previous example 125 million therms. The first 
day we obtain the following intrinsic value results. 
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Figure 16 Planned accumulated cash flow from Oct 1st 2005 to the horizon 
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We observe that the realized cash flow for the optimal use of the reservoir next year is £74 
million. This is close the initial guess the year before. It is the seasonal spread in the forward 
curve that creates this value. It is therefore fair to say that this pattern is unchanged.  
 
Next we perform a new intrinsic value model every day until September 30th 2006. The 
reservoir is left at the same size as we started with, that is 125 million terms. The result from 
this strategy is presented below. The evolution of the storage is given in Figure 17.  
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Figure 17 Storage size from dynamic intrinsic Oct 1st 2005 to September 30th 2006 
 
The spot prices that were realized the second year is shown in Figure 18. 
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Figure 18 NBP prices from Oct 1st 2005 – Sept 30th 2006 
 
The development of the accumulated cash flow from following the dynamic intrinsic method 
is shown in Figure 19. 
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Figure 19 Realized accumulated value for the dynamic instrinsic strategy Oct 1st 2005 to 
September 30th 2006 
 
The realized cumulated cash flow from storage is 117 million £.  
 
6.4 Year 2 - Hedged storage 
Assume a market with daily forward contracts. The dynamic hedging strategy in this case 
gives a trading profit of £325 mill. So the value of the hedged storage amounts to £ 440 
million.  
 
If we only include the 10 first days of forward prices + the trading calendar which starts with 
the next full month, the result drops to 190 million £. The results of our back test is 
summarized in Table 5. 
 
 
Table 5 Back-testing result 2005 (million £) 
 Physical storage Hedge portfolio Hedged storage 
Daily forwards 115 325 440 
Trading calendar 115 75 190 
 
 
7. Conclusion 
Storage is traditionally evaluated by models using simple price processes and complicated 
solution methods. We suggest an alternative approach, with a rich representation of prices 
(forward curve with daily resolution) and uncertainty (six factors), combined with a simple 
intuitive decision rule (repeated maximization of intrinsic value).  
 
Based on market price data from the UK gas market, we compare the results from our model 
with one-factor optimization models and the unfeasible perfect foresight model. We find that 
our model captures much more of the true flexibility value than the one-factor models.  
 
Our results indicate that the appropriate framework for analyzing complex assets like gas 
storage is a multi-factor model combined with a simple intuitive decision rule, rather than a 
model with one (or just a few) factors that is solved to optimality. This suggests that the main 
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focus for future research is the modelling of realistic prices rather than efficient solution 
procedure. 
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Appendix A: Construction of Forward Curves and the Principle 
Components Analysis 
 
In order to understand the way the forward curve changes from day to day, especially how the 
volatility and correlation of the different maturities behave, some form of simplifications are 
needed.  
 
It is known from for example stock markets that if you can fit the data to a model (lognormal, 
bivariate) the stocks future development can be simulated using Monte Carlo techniques, to 
replicate the historic behavior. 
 
For commodity markets this is more challenging because the traded products are linked to a 
specific time period. We know from empiric studies that volatility generally changes with 
time to maturity. Therefore we construct a forward curve with daily granularity. Next we 
study this term structure of forward prices.   
 
A1. PCA  Methodology 
Principal components analysis (PCA) is a widely used method for simplifying complex data 
structures.  Instead of attempting to describe everything to a 100% the idea is to filter out the 
most important factors (principal component) and use them to simulate the market.  
It is widely recognized that being able to describe 90-95 % of the variances is acceptable.  
Ollmar and Koekebakker (2000) showed that 10 factors where needed to explain 95% of the 
variations in the electricity market on NordPool. 
 
This study is based on taking out prices from the market forward curve with the same spacing 
between maturities. Ollmar and Koekebakker (2000) used weekly prices retrieved from the 
Smoothed Elviz Forward Curves. 
 
Ollmar and Koekebakker used the Elviz curve to first generate a smooth forward curve, 
keeping all the market quotes inherent in the curve, and pick out weeks in a consistent way. 
We therefore proposed a solution which takes this idea one step further, as we choose daily 
resolution.  
 
A2. Input / variations 
Transform closing prices to forward curves: 
We can not go into the detail of Adam and van Deventer (1994), Bjerksund and Stensland 
(1996) model of a smooth, arbitrage free forward curve here, but we will quickly outline the 
principles. A detailed outline, which includes a solution method, is given in Benth, 
Koekebakker and Ollmar (2007). 
 
First the prices from the forward market (periods can have different length and may also be 
overlapping) are fed into the smoother. The smoother is a spline function optimiser where the 
goal function is to maximise smoothness (the same as minimizing the square of the twice 
differentiated function). 
 
When the curve is smoothed, an hourly profile (historic hourly) is modulated on the curve. 
The gas market is not hourly as electricity, so we used a daily profile calculating the way 
prices normally changes within a week. The resulting curve can look something like this:   
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Figure A1 The forward curve 
 
We repeat a procedure of inputting daily prices 241 times (the period from Oct 1 2004 to Sep 
31 2005) and generated 241 forward curves with daily resolution. These curves are shown in a 
3d plot below with 90 days length. 

 

 

 

Figure A2 The first 90 days of the forward curves 
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The next step is to calculate the daily return using the following formula:  
 

ln[curve2(t1)/curve1(t2)],  
 
meaning that we divide the first day on a curve with the second day on the previous curve and 
so on. This is of course also adjusted for the weekends, such that on a Monday the return is  
ln(Fridaycurve(4)/Mondaycurve(1).  
 
The fourth day on the Friday curve is the same day as the first day on the following Monday 
curve. It can be argued that this return should be weighted differently since it represents the 
return over three days. But we have found no significant difference in the volatilities caused 
by this effect, so we have treated them equally. 
 
A3. Descriptive statistics 
The volatilities of these log returns are calculated for all maturities and presented below. All 
days refer to the calculation incorporating all the curves. The numbers are annualized using 
the square root of 250 (number of trading days).  
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Figure A3 Annualized volatility term structure 
 
As expected we see a quite sharp fall in volatility from the very short end (1 and 2 days 
representing the within day WD and day ahead DA products of over 200%, down to 70-50% 
in the first couple of front months. We also observe a rise 10 days into the curve which have 
no real explanation. This is attributed to an artifact added by the smoothing algorithm. The 
falling volatility confirms findings in other markets. Typically the electricity market inherent 
the same sharp decline in volatility. 
 
The correlation between different maturities is an important part of the PCA, and is calculated 
in S-PLUS after import of the forward curves.  
 



 26

 

1
10

19

28S
1

S
3

S
5

S
7

S
9

S
11

S
13

S
15

S
17

S
19

S
21

S
23

S
25

S
27

S
29

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Correlation

Days Ahead 
on Curve

Days Ahead on Curve
 

Figure A4 Correlation matrix 
 
The way of calculating the principal components is to find the eigenvalue of the eigenvectors 
of the correlation matrix, and simply sort them in a falling order. The eigenvalue vector that 
explains the most of the variations in the forward curves will be the first eigenvalue vector. 
We call this the principal component.  
 
We can calculate the added contribution by each component, and see how many we need to 
get a reasonably good description of the variations in the market. 
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Figure A5 Volatility attribution of the six first components 
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Figure A6. Relative importance of the components, cumulative attribution 
 
We find that three components explain 75% of the variations, and six components are needed 
to explain 90%. The first component is recognized as a parallel shift component. The second 
and third components are more difficult to give intuitive explanations. The second seems to be 
tilting the curves, but it is far from a linear tilt. 
 
The parallel shifting representing almost half the variations in the curve is the factor that 
contributes to no value to the gas storage. 
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Appendix B: Derivation of the dynamics of the explicit one-factor model 
 
In the following, we want to derive the dynamics of the explicit one-factor model that is stated 
in Equation (8) above. 
 
B1. Arithmetic state variable 
We start out with the following generalized Ornstein-Uhlenbeck state variable 
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where k  is the mean-reversion parameter, σ  is the instantaneous volatility, the function )(sμ  
is the mean-reversion level, and sdZ  is the increment of a standard Brownian motion.  
 
As seen from date 0, the expectation is 
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and the variance is 
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It follows immediately from (B1) that 
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Hence, the conditional expectation is  
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and the conditional variance is 
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The dynamics of this state variable is  
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B2. Spot price representation 
Now, define the spot price process by 
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This corresponds to the spot price dynamics used by Cyriel and de Jong (2008). 
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B3. Forward prices 
The dynamics above are with respect to the equivalent martingale measure. Hence, the current 
forward price corresponds to the expected future spot price. Moreover, with our spot price 
representation, the future spot price is lognormal. Consequently, we have that 
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use Eqs. (B2) and (B3) to obtain 
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By definition, we have that )0()0,0( SF = . Note that once the mean-reversion parameter 
k and the instantaneous volatility parameter σ are determined, the drift function )(sμ follows 
from the initial forward curve ),0( sF . 
 
B4. Simulating the spot price dynamics 
Suppose that we have calibrated the model to market information at date 0, and that we want 
to build a simulation model given this information. 
 
First, consider the simulation of )(tS  given the information at time 0, and hence corresponds 
to the first time step. Using log-normality and Eq. (B10), we have  
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where y~  is standard normal, ),0( tF  is defined from the initial forward curve, and the 
variance term is given by (3) above. 
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Next, we want to consider the simulation of )(TS  conditional on the value that is realised for 
)(tS . First, reconsider (B5) above, and take the expectation as of date 0, and use the forward 

price definitions, to obtain the following identity 
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Next, consider the simulation of )(TS  conditional on the simulated realisation of )(tS . 
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where z~  is standard normal and independent of y~ . Insert Equations (B5) and (B13) 
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where the variance expressions follows from Eq. (B3). 




