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Abstract

In many tournaments it is the contestants themselves who deter-

mine reward allocation. Labor-union members bargain over wage dis-

tribution, and many �rms allow self-managed teams to freely determine

internal resource allocation, incentive structure, and division of labour.

We analyze, and test experimentally, a rank-order tournament where

heterogenous agents determine the spread between winner prize and

looser prize. We investigate the relationship between prize spread, un-

certainty (i.e. noise between e¤ort and performance), heterogeneity

and e¤ort. The paper challenges well-known results from tournament

theory. We �nd that a large prize spread is associated with low degree

of uncertainty and high degree of heterogeneity, and that heterogeneity

triggers e¤ort. By and large, our real-e¤ort experiment supports the

theoretical predictions.

1 Introduction

In many areas of economic, political and social life, "the rules of the game"

are determined by its players: Politicians determine rules of election, sports

federations determine rules for leagues and tournaments, and the allocation
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of resourses within �rms and organizations is often decided by its mem-

bers/employees.

Tournament theory provides us with a potential tool for analyzing these

phenomena. The theory was �rst introduced by Lazear and Rosen (1981)

as an e¤ort to understand situations where wage di¤erences are based on

relative di¤erences between the individuals rather than on marginal produc-

tivity. The theory has had enormous impact. In many settings, tournaments

are found to be at least as good as any other incentive mechanism in terms

of inducing e¤ort, 1 and comparative static results on the optimal tourna-

ment solution have provided insights into internal wage policies of �rms (see

Lazear, 1995, for an overview).

So far tournament theory has not been used to analyze games where

the players set the rules. In particular, it�s always assumed that the spread

between winner prize and loser prize (we use the term prize spread through-

out this paper) is determined by a non-participating principal. But in many

tournaments this is not the case. Prize spread is often set by the contestants

themselves. Labor-unions determine prize spread in bargaining over the dis-

tribution of �xed wage pools, and many �rms allow self-managed teams to

freely determine internal resource allocation, incentive structure, and divi-

sion of labour (Osterman, 1995; and Jehn et al.,1999). One should perhaps

expect that the large literature on unions and wage bargaining has addressed

tournaments with prize-setting agents, but to our knowledge the tournament

feature of decentralized bargaining has not yet been analyzed. In this paper

we thus analyze a rank-order tournament where risk neutral heterogeneous

agents determine prize spreads.

Theoretical results: In a tournament between two risk-neutral agents that
di¤er in ability-levels, the low-ability agent (he) will always prefer zero prize

spread. For the high-ability agent (she), however, determining optimal prize

spread is not straightforward. A high prize spread is good since she expects

1By tying compensation to the agent�s relative performance, the principal can �lter
out common noise so that compensation to the largest possible extent is based on real
e¤ort, not random shocks that are outside the agent�s control (see Holmström,1982; and
Mookherjee, 1984). With RPE�s special form, rank-order tournaments, the agents are also
completely insulated from the risk of common negative shocks (see Lazear and Rosen, 1981;
Nalebu¤ and Stiglitz, 1983; Green and Stokey, 1983). Moreover, tournaments need only
rely on ordinal performance measures. It may thus be easier and less costly to measure
relative than absolute performance (Lazear and Rosen, 1981). In addition, it may be easier
for the principal to commit to tournament schemes if output is not veri�able (Carmichael,
1983; Malcomson, 1984; Levin, 2002).
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to win. But it is bad since it triggers e¤ort, and e¤ort is costly. Since op-

timal prize spread for the low-ability-agent is always zero, it is su¢ cient to

characterize the high-ability agent�s optimal choice in order to understand

equilibrium prize spread, i.e. if the high-ability agent has some bargaining-

power, then comparative static results on her optimal prize spread hold for

the bargaining solution between the agents. We characterize the optimal

prize spread for the high-ability agent, and investigate the relationship be-

tween prize spread, uncertainty (i.e. noise between e¤ort and performance)2,

heterogeneity and e¤ort. Our results can be summarized as follows:

First, we �nd that the high-ability agent�s optimization problem entails

corner solutions. Either she wants zero prize spread, or she wants maximal

prize spread. A marginal parameter change may thus dramatically change

prize spread and e¤ort. This is interesting since it can explain why seemingly

similar �rms may di¤er substantially in wage structure and performance (see

Gibbons et al., 2007, for a discussion on persistent performance di¤erences

among seemingly similar enterprises).

Second, we �nd that more heterogeneity (i.e. larger ability-di¤erence)

leads to higher equilibrium e¤ort. This is an interesting result since it chal-

lenges theory stating that heterogeneity reduces e¤ort. In Lazear and Rosen

(1981), e¤ort su¤ers from more heterogeneity, or at best is una¤ected by

ability-di¤erence if the principal can observe the agents� type so that she

perfectly can compensate heterogeneity with higher prize spread. We show

that higher ability-di¤erence increases prize spread more than just to com-

pensate for heterogeneity, leading to higher equilibrium e¤ort.

Third, we �nd that large prize spread is associated with low degree of

uncertainty. This contrasts with the standard tournament result where the

optimal prize spread increases with uncertainty. Our result is not triv-

ial, since there are two countervailing e¤ects: As uncertainty increases, the

probability of winning decreases cet. par. so the high-ability agent might

want to decrease prize spread in order to reduce e¤ort costs. However, the

high-ability agent can �remove�the reduced winner probability by increasing

the prize spread, since higher prize spread increases the e¤ort-di¤erence be-

tween the agents. We show that the former e¤ect dominates under standard

assumptions.

From an incentive perspective, the result o¤ers an alternative explana-

2We use "uncertainty" and "noise" synonymously throughout the paper.
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tion to a negative relationship between uncertainty and incentives. The

standard explanation is risk aversion; the optimal intensity of incentives is

negatively related to uncertainty when agents are risk averse. Our model

shows that tournaments with prize-setting agents can create such a relation-

ship even if agents are risk neutral.

The result also points to the issue of "desert", or whether or not perfor-

mance pay is "fair". According to Konow (2003), a common view is that

di¤erences owing to luck are unfair, and that only di¤erences attributable to

e¤ort are fair. Our high-ability agent seemingly has fairness concerns since

her preferences are aligned with the �rm�s preferences for high prize spread

if e¤ort is important. But if luck is important, then her preferences are

aligned with the low-ability employee. However, this is not because of fair-

ness concerns; she simply makes a trade-o¤between e¤ort costs and expected

monetary payo¤. One should thus be cautious with drawing the conclusion

that employees have fairness concerns if they argue that uncertainty makes

performance pay unfair.

Experimental results: We do not explicitly deduce bargaining solutions

between low and high-ability agents, but as noted above, comparative static

results on the high-ability agent�s optimal prize spread should apply for the

bargaining solution between the agents. We conducted a real e¤ort experi-

ment to test this conjecture for some of our theoretical results. We elicited

subjects�risk preferences and their ability to do head calculation, and we

then got them to bargain over winner prize and loser prize prior to two-player

tournaments in head calculation. This enabled us to test the relationship

between prize spread, ability-di¤erence and e¤ort. We also imposed two un-

certainty levels, high and low, enabling us to study the relationship between

prize spread and noise. By large, the experiment supports the theoretical

predictions. Here are the results:

First, controlling for risk preferences, we �nd that prize spread signi�-

cantly decreases with uncertainty, which supports the theoretical prediction.

We �nd no impact from personality and gender, indicating that fairness con-

cerns do not drive our experimental results.

Second and third, we �nd that prize spread signi�cantly increases in

the ability-di¤erence between the agents, and that e¤ort increases in prize

spread. This supports the theoretical prediction that more heterogeneity

increases prize spread, which thereby increases e¤ort. Controlling for prize
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spread, however, we �nd a signi�cant negative relationship between ability-

di¤erence and e¤ort, supporting previous experimental results.

Related literature: As noted above, neither the tournament literature

nor the union literature have analyzed rank-order tournaments where het-

erogenous agents set prize spread.3 Brunello (1994) analyzes a case where

homogenous agents decide prize spread in a principal-agents game with a

�exible wage pool; and Sutter (2006) analyzes an endogenous prize selection

tournament where the best member of a team is given a right ex post to

propose prize spread within the team. Neither of these papers analyze a sit-

uation where heterogenous contestants determine prize spread prior to the

tournament. Riis (2007) analyzes a tournament where heterogenous con-

testants can choose from a menu of prizes, but the prize menu is de�ned

by the principal ex ante. And while Riis focuses on how the principal can

structure the prize menu so as to implement �rst-best e¤ort, we focus on

the agents�optimal prize spread and the comparative statics that can be

derived from the agents�solution.

Several papers have experimentally tested hypotheses deduced from tour-

nament theory, starting with Bull et. al. (1987).4 Typically, these papers

test the relationship between prize spread, e¤ort and heterogeneity. But

there are only a few real e¤ort experiments testing the theory (van Dijk,

Sonneman and van Winden, 2001; Gneezy, Niederle and Rustichini, 2003;

and Dohmen and Falk, 2006), and no one has examined a case where the

agents set prize spread - although Sutter (2006) runs an experiment (not real

e¤ort) where he tests his model of endogenous prize selection. Moreover, no

one has (to our knowledge) experimentally tested the relationship between

uncertainty and prize spread, not even in tournaments where the principal

sets prize spread.

The rest of the paper is organized as follows: Section 2 presents the

model, Section 3 outlines the experimental design, Section 4 formulates the

hypothesis to be tested, Section 5 presents results and analysis from the ex-

periment, while Section 6 concludes. Proofs and tables are in the appendix.

3Unions composed of identical members has been the basis for representations of union
preferences (see Cahuc and Zylberberg, 2004), although Ross (1948) already 60 years ago
argued that the heterogenity of union members a¤ects its aims.

4See Harbring and Irlenbusch (2004) and Falk and Fehr (2003) for an overview of these
experiments.
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2 The model

Consider a tournament between two risk-neutral agents. The winner of the

tournament receives w1 while the loser receives w2 � w1: Output yi from

agent i is given by

yi = ei + zi

where ei is e¤ort and zi is a random luck component. Expected payo¤ for

agent i is

Pw1 + (1� P )w2 � Ci(ei) (1)

where Ci(ei) is the cost of e¤ort (C 0i > 0 and C 00i > 0) and P is the

probability of winning. Let

P = prob(ei + zi > ej + zj) = prob(ei � ej > zj � zi) = G(ei � ej)

denote the probability that agent i achieves a higher output then agent j:

G(:) is the cumulative distribution function of the random variable zj � zi,
where G(ei � ej) = 1 �G(ej � ei). Each player chooses e¤ort to maximize
expected payo¤ (1). This gives the IC constraint (for interior solution)

(w1 � w2)
@P

@ei
= C 0i(ei) (2)

From Nash-assumptions it follows that each player optimizes e¤ort against

the optimal e¤ort of his opponent. Agent i thus takes agent j0s e¤ort as

given when choosing his e¤ort level, and it follows that

@P

@ei
=
@G(ei � ej)

@ei
= g(ei � ej):

where g(ei � ej) is the density function of G(ei � ej). The IC constraint is
thus

(w1 � w2)g(ei � ej) = C 0i(ei) (3)

We make the common assumption that the total prize pool is �xed, i.e.

that w1 + w2 = R, where R is exogenous and una¤ected by e¤ort levels,

but we discuss later how a change in R a¤ects prize spread. A �xed R may

sound like a strict assumption, but in many tournaments a �xed prize pool

is indeed the case. In pure promotion tournaments for example, the sum of
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prizes is una¤ected by e¤ort-levels. And in larger bureaucratic organizations,

total resource provision to organizational divisions may often be exogenously

given, or at least perceived as exogenous by the employees. Decentralized

wage bargaining is also a good example. In many countries, the size of the

wage pool that is to be allocated locally in each �rm is determined by central

bargaining between labor unions and employer federations. The size of the

local wage pool is then una¤ected by total e¤ort levels, and the only thing

bargained over locally is distribution of the �xed wage pool. Finally, note

that if the absolute value of output is unveri�able to a third party, then

a �xed prize pool may turn out optimal: With a �exible prize pool, total

prize payments increase in e¤ort, making the principal�s incentive to renege

on payments increase in e¤ort. A �xed prize pool removes this problem,

and makes it easier for the principal to commit to prize promises (see e.g.

Carmichael, 1983).

If w1 + w2 = R, then prize spread is w1 � w2 = R � 2w2: Agent i0s
optimal prize spread is then the solution to

max
w2

[w2 + P (R� 2w2)� Ci(ei)] s.t. (3)

where (3) applies to both agents and is assumed to de�ne the tourna-

ment equilibrium. With identical (homogenous) agents, P = 1
2 in equilib-

rium, hence expected prize for each agent is 1
2R and does not vary with

prize spread. The agents will simply minimize costs, which is to set zero

prize spread, R � 2w2 = 0, such that optimal e¤ort level is zero. This is

the collusion logic, �rst thoroughly analyzed by Mookherjee (1984). When

prizes are �xed, agents have incentives to collude on low e¤ort equilibria. It

follows here that if they are to decide prizes, they set them so that e¤ort is

minimized.

Heterogeneous agents: A tournament model with prize-setting agents

�rst becomes interesting when we introduce heterogeneity in ability-levels.

Of course, the agents still have incentives to collude on zero prize spread

by using side payments. It is, however, a quite standard assumption in the

tournament literature to assume that collusive contracts are not enforceable.

We thus make the assumption that side payments are impossible.

We model di¤erences in ability-level by assuming that the net marginal

return from e¤ort is higher for the high-ability agent, and the standard
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assumption is then C 0i(ei) < C
0
j(ej) for all ei = ej , meaning that the marginal

cost from e¤ort is lower for the high-ability agent i. Symmetric density

function g(ej � ei) = g(ei � ej) implies that C 0i(ei) = C 0j(ej) in equilibrium,
which for interior solutions implies ej < ei and thus 12 < G(ei � ej) < 1:

With no restrictions on prize spread, a prize-setting principal can easily

achieve �rst-best if ability-level is common knowledge. The problem with

heterogenous agents arises if their types cannot be identi�ed. For prize-

setting agents, however, �rst-best implementation is not the objective if the

wage pool is �xed in advance. For simplicity, we thus assume that the agents

know each others�ability-levels. It can easily be shown that the comparative

static results we achieve apply also when ability-level is uncertain.

From the restriction w1 � w2, it is straight-forward to see that the

optimal prize spread for the low-ability agent j is zero. He has nothing

to gain from increasing prize spread, since this implies costly e¤ort and a

reduced chance of winning the tournament. Hence,

Proposition 1 If w1 � w2; and C 0i(ei) < C 0j(ej) for all ei = ej, then

the low ability agent j0s optimal prize spread is zero, yielding zero e¤ort in

equilibrium.

It is less trivial to �nd the optimal prize spread for the high-ability agent

i: As noted in the introduction, we assume that the parties cannot use side

payments in order to collude on low e¤ort / zero prize-spread. Taking this

into account, agent i solves

max
w2

W (w2) = [w2 +G(ei � ej)(R� 2w2)� Ci(ei)] s.t. (3) (4)

where e¤ort levels ei; ej are determined as functions of w2 in the tour-

nament. Agent i will choose (R � 2w2) > 0 if there exist equilibrium e¤ort
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levels ei; ej where5

G(ei � ej)(R� 2w2) > Ci(ei) (5)

For the rest of the paper, we assume that the ability-di¤erence is su¢ -

ciently large such that (5) holds in equilibrium. This is not a strict assump-

tion. With Inada conditions, i.e. Cl(el), l = i; j continuously di¤erentiable

and strictly increasing in el and Cl(0) = C 0l(0) = 0, then (5) holds in equi-

librium for arbitrarily small ability di¤erences.

From (4) we have

W 0(w2) = 1� 2G(ei � ej) + (R� 2w2)g(ei � ej)(
@ei
@w2

� @ej
@w2

)� C 0i(ei)
@ei
@w2

From the IC constraint (3) we then get

W 0(w2) = 1� 2G(ei � ej)� (R� 2w2)g(ei � ej)
@ej
@w2

(6)

Equation (6) shows that the marginal value for agent i of increased w2
(reduced prize spread) has two components. First, for given e¤orts her

expected payment is a¤ected. This marginal payment e¤ect is 1� 2G(ei �
ej) < 0, where the inequality follows from the fact that she will exert higher

equilibrium e¤ort (ei > ej) due to her ability advantage, and hence win with

a probability exceeding 1=2. Second, there is an indirect e¤ect induced by

reduced e¤ort on the part of the other agent ( @ej@w2
< 0), and this e¤ect will

increase agent i�s probability of winning the tournament.6 Thus, a reduced

prize spread (increased w2) yields one negative and one positive e¤ect for

agent i. We will show below that under reasonable assumptions either the

�rst or the second of these e¤ects will dominate, so that the agent will then

choose either maximal spread (w2 = 0) or minimal spread (w2 = R=2).

Consider now the marginal value W 0(w2). The IC constraints de�ne

5Note that the tournament equilibrium underlying this analysis will exist only if the IC
conditions for the agents�e¤orts re�ect truly optimal choices. In particular, the second-
order conditions must hold, hence we must have (R � 2w2)g0(e) � C00i (ei) � 0 and (R �
2w2)g

0(�e) � C00j (ej) � 0, where e = ei � ej . Since g0(e) < 0 for e > 0, the �rst will
hold for convex costs, but the second may not, since g0(�e) = �g0(e) > 0. It follows that
the level of uncertainty has to be su¢ ciently large for a tournament equilibrium to exist.
This also applies for standard tournament models where the principal sets prize spread
(see Lazear and Rosen, 1981).

6The indirect e¤ect induced by agent i�s own e¤ort response is zero due to the IC
constraint.
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simultaneously the two e¤ort levels as functions of w2. It is convenient

here to think of these as being de�ned recursively; �rst ei = ei(ej) being

de�ned by equality of marginal costs (C 0i(ei) = C
0
j(ej)), and then ej = ej(w2)

de�ned by the IC condition (3) for agent j, substituting for ei = ei(ej) in

this condition. Let e = ei(ej)� ej denote the e¤ort di¤erence as a function
of agent j�s e¤ort ej , and let Ee(ej) denote the elasticity of this function

(Ee(ej) =
ej
e
de
dej
). The marginal value W 0(w2) in (6) can then be written in

the following form (see the appendix):

W 0(w2) = 1� 2G(e)�
2g(e)ej

Eg(e)Ee(ej)� EC0j (ej)
(7)

where Eg(e) =
g0(e)
g(e) e is the elasticity of the probability density, and EC0j (ej) =

C00j (ej)

C0j(ej)
ej is the elasticity of the marginal cost function for agent j.

Consider now the case of minimal wage spread, i.e. w2 = R=2. In this

case both agents will exert minimal e¤ort (ei = ej = 0), so the marginal

value W 0(w2) for w2 = R=2 is given by the expression on the RHS of (7)

calculated at e = ej = 0. If now the elasticity of agent j�s marginal cost

function is bounded away from zero (EC0j (0) > 0), we see that the value on

the RHS is zero, and hence that W 0(w2) = 0 for w2 = R=2. Under this mild

assumption (the elasticity is bounded away from zero for all strictly convex

power functions; see below), it is thus the case that a minimal prize spread

and hence minimal e¤ort is a candidate for an optimum.

To examine this issue we introduce further assumptions. In the following

we assume Ci(ei) = kieni and Cj(ej) = kje
n
j where n > 1 and kj > ki. Note

that the elasticity of marginal cost is then constant; EC0j (ej) = n � 1 > 0.
The IC constraints imply equality of marginal costs;

nkie
n�1
i = nkje

n�1
j (8)

and the e¤ort di¤erence e is then given by:

e � ei � ej =
�
(
kj
ki
)

1
n�1 � 1

�
ej �

1

K
ej (9)

where K =
�
(
kj
ki
)

1
n�1 � 1

��1
. This yields elasticity Ee(ej) = 1, and substi-

tuting for the other elasticities and for ej = Ke we then see that (7) here
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can be written as

W 0(w2) = 1� 2G(e)�K
2g(e)e

g0(e)
g(e) e� (n� 1)

� F̂ (e), e = e(w2) (10)

where the e¤ort di¤erence as a function of w2 (e(w2)) is de�ned by (9) and

the IC constraints.

At an interior optimum we will have W 0(w2) = 0, and the optimal e¤ort

di¤erence e given by F̂ (e) = 0. The second-order condition for an optimum

requires W 00(w2) = F̂ 0(e)e0(w2) � 0. From the IC constraints and (9) we

can see that e0(w2) < 0 when g0(e) � 0 for e � 0, which we will assume to
be the case. The SOC for an optimum thus requires F̂ 0(e) � 0.

Note that e = 0 is always a solution to F̂ (e) = 0. We will show below

that this solution, which corresponds to minimal prize spread (w2 = R=2),

is optimal for a range of parameters, and that the other corner solution

(w2 = 0) is optimal for other parameters. Moreover, for a class of distribu-

tions including the normal and uniform ones, we will show that the optimal

solution is always a corner solution.

Assume now that the noise is of the form

zl = �"l + a, � > 0 (11)

where "l has some �xed distribution and �; a are constants. (This holds

e.g. for normal and uniform distributions.) Denote the CDF of "j � "i by
�(d) = Pr("j � "i < d), with density 
(d) = �0(d). Then we have

G(e) = Pr(zj � zi < e) = Pr("j � "i <
e

�
) = �(

e

�
)

and g(e) = G0(e) = 
( e� )
1
� . By de�ning d =

e
� we have g(e)e = 
(d)d and

g0(e)
g(e) e =


0(d)

(d) d, and hence (10) can be written as

W 0(w2) = F (d) � 1� 2�(d)�K
2
(d)d


0(d)

(d) d� (n� 1)

, d =
e(w2)

�
(12)

We see that at an interior optimum the optimal e¤ort di¤erence e would

be given by e = �d, where d is a solution to F (d) = 0. The SOC then

requires F 0(d) � 0. The other possibilities are corner solutions; either w2 = 0
or w2 = R=2.

11



For w2 = R=2 and thus e = e(w2) = 0, we see that W 0(w2) = F (0) = 0.

For this to be a maximum, the SOC requires F 0(0) � 0. It turns out that his
condition is satis�ed i¤K � n�1, i.e. i¤ the degree of heterogeneity is �small�
(kjki �

�
n
n�1

�n�1
). In such a case, minimal e¤ort and spread (e = d = 0

and w2 = R=2) are then a local maximum.7 Moreover, this maximum is

also a global one if F (d) > 0 for 0 < d < dm = emax=�, where emax is the

largest feasible e¤ort spread for the given R, i.e. the spread corresponding

to w2 = 0. We show (see appendix) that this is indeed the case if R is

su¢ ciently small and/or � is su¢ ciently large. For such parameters (R and

�) it is thus overall optimal to induce minimal e¤ort and spread when the

degree of heterogeneity is small. By a similar reasoning we can also show

that for small R and/or large � it is optimal to induce maximal e¤ort spread

when the degree of heterogeneity is �large�. We have:

Proposition 2 (i) For low heterogeneity (kjki <
�

n
n�1

�n�1
) we have: there

is r1 > 0 such that for R=�n < r1, i.e. for R su¢ ciently small and /or �

su¢ ciently large, the optimal solution entails minimal e¤ort and minimal

prize spread; e = ei = ej = 0 and w2 = R=2. (ii) For large heterogeneity

(kjki >
�

n
n�1

�n�1
) we have: there is r2 > 0 such that for R=�n < r2 the

optimal solution entails maximal e¤ort and prize spread; e = emax and w2 =

0.

By invoking more assumptions we can be more precise:

Proposition 3 For a class of distributions including the normal and uni-

form ones the following holds. (i) For low heterogeneity (kjki <
�

n
n�1

�n�1
) we

have: the optimal solution entails either (a) minimal e¤ort and prize spread

(e = 0 and w2 = R=2) or (b) maximal e¤ort and prize spread (e = emax and

w2 = 0). There is r1 > 0 such that the former is optimal for R=�n < r1, and

the latter is optimal for R=�n > r1 (provided the tournament equilibrium ex-

ists for this case). (ii) For large heterogeneity (kjki >
�

n
n�1

�n�1
) we have:

for all parameters R; � for which the tournament equilibrium exists, the op-

timal solution entails maximal e¤ort and prize spread; e = emax and w2 = 0.

(iii) When the solution entails maximal spread we have emax = �dm(R=�n),

7More precisely, it is a local maximum if strict inequality K > n�1 and thus F 0(0) > 0
hold.
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where d0m() > 0. E¤ort is then increasing in R and non-monotone in �

(increasing for � small and decreasing for � large).

Proof. See appendix.
The proposition shows that the high-ability agent�s optimal prize spread

is high for low uncertainty (low �) and low for high uncertainty. Hence,

the standard result that prize spread increases in noise when agents are

risk neutral is not robust to a setting where heterogeneous agents deter-

mine prize spread. We also �nd that prize spread and e¤ort are low for

low heterogeneity and high for high heterogeneity. This is not trivial Higher

ability-di¤erence increases the chance of winning, cet. par. This calls for

higher prize spread. But higher ability-di¤erence makes it possible for the

high-ability agent to reduce e¤ort, and thereby reduce e¤ort costs without

a¤ecting the probability of winning. We show that the former e¤ect domi-

nates under quite general assumptions. Our results thus contrast with the

well known result from tournament theory saying that performance su¤ers

from heterogeneity. In existing theory, more heterogeneity never increases

e¤ort. If ability-level is common knowledge, then the principal can perfectly

compensate more heterogeneity with higher prize spread, making equilib-

rium e¤ort una¤ected by ability di¤erence, while if not, heterogeneity weak-

ens the agents�marginal return from e¤ort. In our setting, heterogeneity is

in fact good for e¤ort since it increases prize spread more than just to com-

pensate for higher heterogeneity. This result is robust to a setting where the

agents do not know their ability-level. If there is a probability � < 1 that

an agent has high ability, it would only imply that the high ability agent

calculates a probability (1 � �) that she runs against a weaker contestant.
The higher �, the higher is the threshold heterogeneity and the lower is the

threshold uncertainty for when the high ability agent will choose max prize

spread.

We also see that emax (and hence both e¤orts) is �rst increasing in �;

and then decreasing. Hence, the optimal uncertainty-level is strictly positive.

This is in contrast to standard tournaments where e¤ort su¤ers from more

uncertainty, or at best is una¤ected by the uncertainty-level if the principal

can perfectly compensate noise with higher prize spread. The result com-

plements Krakel and Sliwka (2004), who �nd that more noise may increase

e¤ort in a setting where agents can choose risk levels. Finally, observe that

e¤ort is increasing in R, so if the principal can control prize pool but not

13



prize spread, then one should expect a higher pool, R, the less heterogenous

the agents are.

We have focused on the agents�optimal choices, and have not deduced

a speci�c bargaining solution between the agents. But if we stick to the

restriction that w1 � w2,8 then in any bargaining game over the prize spread
between agent i and agent j (prior to e¤ort decisions), comparative statics

on the optimal choice for agent i weakly holds for the bargaining solution,

since optimal spread for agent j is zero. Hence, we can make the following

conjecture:

Conjecture 1 In any bargaining game over the prize spread between agent
i and agent j, we have (i) equilibrium prize spread weakly decreases in noise

(�), (ii) equilibrium prize spread weakly increases in ability di¤erence kj�ki
(iii) equilibrium e¤ort weakly increases in ability di¤erence kj � ki.

In the following we will report on an experiment testing this conjecture.

3 Experimental design

The experimental design re�ects our aim to investigate conjecture 1. We

conducted a real e¤ort experiment in order to make the ability-di¤erence

between the subjects natural rather than imposed. We also believe that real

e¤ort makes the meaning of noise, or luck, clearer to the subjects.

The work task for the subjects participating in the experiment consisted

of doing head calculations; multiplying one- and two-digit numbers (e.g. 7

x 83).9 The task nicely mimics real world work tasks and also ensures het-

erogeneity in productivity. Doing head calculations is shown to be rather

insensitive to learning and is therefore well-suited for experimentation. A

problem with real e¤ort tasks in experiments is the potential for excessive

intrinsic motivation, blurring the e¤ect of monetary incentives. We therefore

wanted to make the work task boring enough to be a¤ected by monetary in-

centives. As we shall see, monetary incentives indeed a¤ected performance,

and the lack of intrinsic motivation was to some extent con�rmed by the

8w1 � w2 is a weak restriction. We did not make this restriction in our experiment,
but no one ever proposed w2 > w1:

9The actual assignments were borrowed from Thomas Dohmen and Armin Falk who
used them in Dohmen and Falk (2006).
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subjects�"moaning and groaning" when they learned that the experiment

consisted of doing head calculations. 10

Altogether 108 undergraduate students from the University of Stavanger

were recruited by E-mail to participate in the experiment. They were told

that they had the opportunity to participate in an economic experiment

and if they did well they could earn a nice sum of money. The experiment

was programmed in z-Tree (Fischbacher, 1999). The instructions were given

both verbally and on the computer screen. The subjects were told that no

form of communication was allowed throughout the experimentand and that

all results were to be held anonymous. We had 18 subjects in each out of six

sessions. Each session lasted for about 50 minutes. Total average earnings

in the experiment were NOK 302 (38 Euro).

The subjects went through �ve steps. Subjects were informed that they

would go through several steps, but they did not know what these steps

would involve, i.e. when they were informed about step 1, they did not

know what would happen in step 2 and so on.

Step 1, risk preferences: In step 1 we applied a method for eliciting risk

preferences similar to Dohmen and Falk�s (2006) , which is a simple version of

Holt and Laury (2002). Upon arrival the subjects were seated at a computer

lot and given a table with 12 rows. For each row the subject where asked

to decide whether they pre¤ered a lottery or a safe alternativ. The lottery

was a �fty-�fty probability of NOK 200 or zero, and was the same for all

rows. The safe alternative was NOK 15 in row one, increasing with NOK

15 for each row. By examining the shifting point from the lottery to the

safe option, we get information on the subjects� risk attitudes. With the

chosen value of the safe option, a risk neutral participant with monotonous

risk preferences would choose the lottery for the six �rst situations and then

switch to the safe option for the remaining situations.11

Step 2, ability revelation: In step 2 of the experiment, subjects revealed

their ability levels by multiplying one- and two-digit numbers for a period

of �ve minutes. They were paid by a piece rate scheme giving NOK 5 per

10Also Dohmen and Falk (2006), who used exactly the same work task, found that
monetary incentives signi�cantly a¤ected performance.
11For two reasons, we do not test for reference-dependent risk preferences (see Koszegi

and Rabin, 2007, for a general treatment). First, the tournament literature, which our
model is deduced from, does assume expected utitity maximizing agents with reference
independent preferences. Second, in our experiment the reference is approximately the
same in the lottery choice and in the tournament.
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correct answer. The problems were given on the computer screen and the

subject typed the answer to the problem using the keyboard. A message

appeared on the screen telling the subject wheter the answer was correct

or not. After the �ve minute work period they received either the grade A,

B or C, depending on how well they did compared to the others, and they

were told that 1/3 received grade A, 1/3 grade B, and 1/3 grade C.

Step 3, bargaining: In step 3, subjects were told that they in the next

step were going to compete against another subject in doing similar kinds

of head calculations for �ve minutes. The subjects were then asked to split

NOK 200 by deciding a winner prize and a loser prize (w1; w2) prior to

this competition. Subjects were randomly picked to either propose prizes

(proposer) or choose to accept or reject prize proposals (responder). Ac-

cept yielded the proposed solution, but if an o¤er was rejected, then prizes

were set to (150,0).12 We imposed uncertainty by telling the subjects that

a random variable, called a bonus, would be drawn after the competition

(tournament) and added to the subjects�number of correct answers. We

imposed two levels of uncertainty: the random bonus either had uniform

distribution between �3 and 3 ("low uncertainty"), or uniform distribution

between �10 and 10 ("high uncertainty"). Ability-levels (for proposer and
responder) and the uncertainty-level were common knowledge when they

bargained.

Each subject participated in four rounds of bargaining, where they met

new opponents each round. They were told that one out of the four rounds

would be picked at random to determine the prizes for the oncoming tour-

nament. There were two bargaining rounds where subjects where told that

the random bonus was distributed between �3 and 3, and two rounds where
they were told that the bonus was distributed between �10 and 10. After
each round of bargaining, subjects were informed about the outcome of the

bargaining.

Step 4, tournament. Subjects went through a new �ve-minute work

period multiplying one- and two-digit numbers. They knew the grade of

their opponent (as well as their own), the size of the prizes and level of

uncertainty. The sequence of problems were the same for all subjects and in

case of a tie, randomization determined the winner. After the work period,

12The rejection prizes re�ect the cost of barganing break down (lower total surplus),
and the idea that a principal in general would like a higher prize spread than the agents.
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winners and losers were revealed together with the number of correct answers

and the random individual bonus (luck component).

Step 5, questionnaire. We gathered questionnaire data on gender, age

and personality. Personality was measured by the Big-Five scale used by

psychologists, which measures the degree of Openness, Conscientiousness,

Extraversion, Agreeableness and Neuroticism.13

4 Hypothesis

Assume that the subjects believe their ability assignment. In equilibrium,

the responder then accepts the proposer�s o¤er in the bargaining game out-

lined above. In games where the best subject proposes (A to B, A to C

or B to C), she has all the bargaining power since the low ability subject

has nothing to earn from rejecting the o¤er. In games where the low-ability

subject proposes (B to A, C to A or C to B), the high-ability subject has

some bargaining power, since she can gain from refusing an o¤er with su¢ -

ciently low prize spread. The low-ability subject will o¤er the lowest prize

spread that the high-ability subject is expected to accept. Hence, the quali-

tative comparative statics results on the optimal spread for the high-ability

agent applies for the bargaining solution also when the low ability subject

proposes. The model thus predicts the following outcomes from our experi-

ment:

H1: Among heterogenous pairs, prize spread is higher when the random
bonus has distribution U(�3; 3), than when it has distribution U(�10; 10).

H2: Prize spread increases with ability-di¤erence.
H3: E¤ort increases with ability-di¤erence.
E¤ort in our model equals number of correct answers, while output is

number of correct answers plus the randomly chosen bonus.

5 Results and analysis

In this section we present the main results. Table 1 displays summary sta-

tistics on prize spread by pair composition and level of uncertainty.

13The Big-Five questionnaire measures personality traits by asking subjects how they
assess themselves. We used a 20 item version of the questionnaire. The subjects indicate
their assesments on a seven-point scale for each item.
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AC AB BC Homogeneous Heterogeneous pairs All pairs

Average prize spread 121.9 98.3 105.7 55,0 108.6 99.7

low uncertainty (33.9) (48.1) (34.5) (39.5) (40.2) (44.6)

Average prize spread 102.3 93.7 97.7 62.2 97.9 91.9

high uncertainty (39.9) (53.5) (48.4) (64.2) (47.2) (51.8)

Average prize spread 112.1 96 101.7 58.6 103.3 95.8

total (38.0) (50.5) (41.9) (52.5) (44.0) (48.4)

Observations

(low/high/total) 30/30/60 30/30/60 30/30/60 18/18/36 180 216

An "AB" pair consists of a subject graded A who is bargaining against a

subject graded B. A bargaining solution from an AB pair is either the out-

come from an A�s o¤er to a B, or a B�s o¤er to an A. The same goes for "AC"

pairs and "BC" pairs. "Homogeneous" pairs consist of bargaining solutions

from A vs. A, B vs. B or C vs. C. "Low" refers to random bonus distribution

U(�3; 3), while "High" refers to random bonus distribution U(�10; 10).
Two tendencies are shown in Table 1: First, we observe that prize spread

decreases with uncertainty-level. Except for the homogenous pairs, prize

spread is lower under high uncertainty than under low uncertainty. This

supports H1. Second, we see that prize spread increases quite strongly with

ability-di¤erence. It is lowest for the homogeneous pairs and highest for the

AC pairs. This also corresponds with the prediction of the model and seems

to support H2 above.

Let us examine H1 more closely. First, we report on a t-test of H1,

dropping homogenous pairs from the sample (since H1 does not apply for

homogenous pairs). We test the hypothesis that prize spread is the same

under both low- and high uncertainty against the one-tailed alternative that

prize spread is higher under low uncertainty than under high uncertainty. A

two sample t-test14 makes us reject the null-hypothesis of equal prize spread;

prize spread is signi�cantly higher under low uncertainty (t(178) = 1:65,

p = 0:05, one-tailed). When we run a regression, controlling for risk aver-

sion, pair composition (heterogeneity) and gender, we get the same picture15,

see Table 2. The coe¢ cient on uncertainty-level ("high") is statistically sig-

ni�cant within a 90 % con�dence interval (p = 0:09). Controlling for risk

14Since the two samples have unequal variances we use Welchs�t-test.

15The Breusch-Pagan test cannot reject heteroskedasticity, requiring us to make a robust
regression.
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preferences, pair composition and gender, the regression shows a decrease

in prize spread of NOK 11.0 when going from low uncertainty to high un-

certainty. Importantly, we see that risk preferences cannot explain prize

spread. It can also be shown that interaction variables on risk preferences

and uncertainty-level are highly insigni�cant. This may seem surprising,

but the majority of subjects are risk neutral or close to risk neutral over the

relatively low stakes o¤ered here. We thus establish our �rst main result

from the experiment:

Result 1 Controlling for risk preferences, prize spread is higher under
low uncertainty than under high uncertainty.

Result 1 supports H1. Note also that the result indicates that e¤ort is

costly in our experiment. Recall that there are two e¤ects of more noise on

agent i�s optimal choice: It decreases the probability of winning cet. par.

so agent i might want to decrease prize spread in order to save on e¤ort

costs, or she can eliminate the reduced winner probability by increasing the

prize spread, since higher prize spread increases the e¤ort-di¤erence between

the agents. The experiment indicates that the former e¤ect dominates,

suggesting substantial e¤ort costs.

An alternative explanation for result 1 is that subjects have some kind of

fairness concerns: High prize spread is OK if e¤ort is important, but not if

luck is important (see Cappelen et al., 2007, for an interesting experiment on

the relationship between e¤ort and distributive justice). In our experimental

setting, we cannot make certain conclusions whether or not these e¤ects

exist. One would, however, expect that if fairness concerns play a role, then

gender and/or personality have an impact on prize spread per se, and on the

relationship between prize spread and uncertainty. Several studies show that

social preferences are stronger among women (see Croson and Gneezy, 2004,

for a survey), and concerns for distributive justice16 have been shown to

be correlated with personality traits derived from the Big-Five personality

test (see Skarlicki et al. 1999). However, we �nd no signi�cant e¤ects

from personality and gender, indicating that neither gender nor fairness

concerns drive result 1. We tested for a number of interaction variables.

Only one of these turned out signi�cant: A decrease in prize spread from

16Concerns for distributive justice are in the psychology literature measured by indi-
vidual di¤erences in reward allocation decisions, and individual di¤erences in reaction to
inequity, see Major and Deaux (1982) for an early review.
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higher uncertainty is signi�cant among pairs where women are present, while

there is no e¤ect in pairs with only men. However, the e¤ect was larger in

pairs with one man and one woman than in pairs with only women, making

it tendentious to conclude that gender a¤ects the relationship between prize

spread and uncertainty.

Let us now consider H2: Prize spread increases with ability-di¤erence.

Table 2 indicates that there is a positive relationship between prize spread

and ability-di¤erence among heterogenous pairs, but since the corollary also

applies when kj is reduced from kj = ki to kj < ki, we must also include the

homogenous pairs in the sample. We �rst report on t-tests on the relation-

ship between prize spread and each pair composition. Let s(h), h = AC;

AB;CB;HOMO denote prize spread as a function of ability-di¤erence. The

tests support that s(AC) > s(AB) = s(BC) > s(HOMO): From Table 3,

we see that all tests are signi�cant within a 90 % con�dence interval except

for s(BC) vs. s(AB), as predicted. We can thus state

Result 2 Prize spread increases with ability-di¤erence.
Result 2 supports H2.17 As predicted by the model, Result 2 should

also imply that e¤ort increases with ability-di¤erence. This leads us to

H3. Table 4 displays a robust regression where e¤ort, i.e. number of right

answers (random bonus excluded) is the dependent variable. We see that

prize spread has a signi�cantly positive e¤ect on e¤ort (p = 0:017).18 For

a NOK 1 increase in prize spread, the number of correct answers increases

with 0:034: This may seem like a small e¤ect, but it means that an increase

from zero prize spread to max prize spread of NOK 200 increases the number

of correct answers with 6:8. We thus have

Result 3 E¤ort increases with prize spread.
Results 2 and 3 support H3: Higher ability-di¤erence increases prize

spread, which in turn increases e¤ort. But note from Table 4 that when we

control for prize spread, ability-di¤erence has a negative e¤ect on e¤ort. This

�ts with other �ndings in the literature (starting with Bull et al.,1987) and

17 It can be shown that Results 1 and 2 hold when we control for who is proposer and
who is responder. In particular, we �nd the same results when we examine the high-ability
subjects�proposals.
18Although there is a positive relationship between dependent variables in this regression

(ability-di¤erence and prize spread), we do not have an endogeneity problem since prize
spread and ability-di¤erence are not determined simultaneously. Moreover, tests shows
that the level of multicolinarity is su¢ ciently limited, allowing us to use the robust OLS-
regression presented here.
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supports our model. From the IC constraints, we see that for a given prize

spread, e¤ort decreases with ability-di¤erence. This result is well known and

traces back to Lazear and Rosen (1981).

6 Conclusion

In this paper we analyze and experimentally test a tournament model where

heterogenous agents determine prize spread. We �nd some results particu-

larly interesting. First, our corner solutions elucidate empirical puzzles on

�rm characteristics and wage structure, since marginal di¤erences in hetero-

geneity, uncertainty and size of the prize pool can signi�cantly impact on

prize spread.

Second, our theoretical result on the positive relationship between het-

erogeneity and prize spread, supported by the experiment, challenges the

idea that heterogenous agents should not participate in the same contest.

Higher ability-di¤erence triggers higher prize spread, resulting in higher ef-

fort.

Third, our model shows that if agents set prize spread in an asym-

metric tournament, then we can expect a negative relationship between

noise/uncertainty and prize spread. This result is supported experimentally

and has important empirical implications. It suggests that the relationship

between wage structure and uncertainty in an industry is a¤ected by em-

ployee power, such as the degree of unionization. Moreover, it implies that

an observed negative relationship between prize spread and uncertainty does

not have to be explained by risk aversion or fairness concerns.

As noted in the introduction, several wage-setting regimes have the fea-

ture of being tournaments where the contestants themselves set prizes, and

it is thus important to understand these tournaments. Our paper is just a

small contribution as compared to what should be investigated. Future the-

oretical research should explore sorting, risk aversion, and social preferences

within the setting presented here. The constraint on the total prize should

also be relaxed, and richer bargaining environments that include bargaining

between agents and principal should be investigated. Future experimental

work should not only include real-e¤ort experiments, since some control is

lost when we do not know the agents�cost functions.
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Appendix
Proof of (7)
From the IC constraint (R� 2w2)g(e) = C 0j(ej) we have

(R� 2w2)g0(e)
@e

@ej

@ej
@w2

� C 00j (ej)
@ej
@w2

= 2g(e)

Substituting from this and the IC constraint in (6) we then get

W 0(w2) = 1� 2G(e)� (R� 2w2)g(e)
2g(e)

(R� 2w2)g0(e) @e@ej � C
00
j (ej)

= 1� 2G(e)� 2g(e)

g0(e)
g(e)

@e
@ej

� C00j (ej)

C0j(ej)

The last expression coincides with the one in (7), and hence proves the

formula.

Proof of Proposition 2
Consider

F (d) � 1�2�(d)�K 2
(d)d

0(d)

(d) d� (n� 1)

= 1�2�(d)+2K 
(d)2d

�
0(d)d+ (n� 1)
(d)

We have

F 0(d) = �2
(d)+2K (2
(d)d+
(d)
2)(�
0(d)d+(n�1)
(d))�
(d)2d(�
00(d)d�
0(d)+(n�1)
0(d))

(�
0(d)d+(n�1)
(d))2

and so

F 0(0) = 2
(0)

�
�1 +K (n� 1)
(0)2

((n� 1)
(0))2

�
= 2
(0)

�
�1 +K 1

(n� 1)

�
Hence F 0(0) > 0 i¤ K > n � 1. For K > n � 1, i.e. low heterogeneity

(kjki <
�

n
n�1

�n�1
), we then have by continuity F (d) > 0 for 0 < d < d1,

some d1 > 0.

Let emax be the e¤ort spread corresponding to w2 = 0; it is from the IC

constraint and (8)-(9) given by

Rg(emax) = nkj(Kemax)
n�1 � k(emax)n�1 (13)

where k = nkj(K)
n�1 is de�ned by the identity. Since g(e) = 
( e� )

1
� we
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then have emax = �dm, where dm is given by

(R=�n)
(dm) = k(dm)
n�1, (dm = emax=�) (14)

We see that dm ! 0 as R=�n ! 0, hence there is r1 > 0 such that

dm < d1 for R=�n < r1. It thus follows that for R=�n < r1 we have

F (d) > 0 for 0 < d < dm, and hence W 0(w2) > 0 for 0 < w2 < R=2. The

minimal spread w2 = R=2 (and e = 0) is thus optimal here.

By a similar reasoning we can also show that for small R and/or large � it

is optimal to induce maximal e¤ort spread when the degree of heterogeneity

is �large�. Consider high heterogeneity: K < n� 1. We then have F 0(0) < 0
and hence F (d) < 0 for 0 < d < d2, some d2 > 0. From (14) we now see that

there is r2 > 0 such that dm < d2 for R=�n < r2. For R=�n < r2 we thus

have F (d) < 0 for 0 < d < dm, and hence W 0(w2) < 0 for 0 < w2 < R=2.

The maximal spread w2 = 0 (and e = emax) is thus optimal here. This

completes the proof.

Proof of Proposition 3
Consider

F (d;K) � 1� 2�(d)�K 2
(d)d

0(d)

(d) d� (n� 1)

; 0 � d � �d

where �( �d) = 1. We show below that for normally or uniformly distrib-

uted noise terms the following conditions are satis�ed:

(c1) F (d;K) < 0 for all d 2 (0; �d) when K � n� 1
(c2) F (d;K) ? 0 as d 7 d0, d 2 (0; �d), when K > n� 1
(c3) 
0(d) < 0 for d 2 (0; �d), and 
(d)d! 0 as d! �d.

Let D be the class of distributions that satisfy (c1-c3).

(i) Consider �rst low heterogeneity; K > n� 1.
Let dm = dm(R=�n) be de�ned as in the proof of Proposition 1, see (14).

We see that d0m() > 0 and dm ! �d as R=�n ! 1, and hence that there is
r0 > 0 such that dm 7 d0 as R=�n 7 r0, where d0 is the root de�ned in

(c2). For R=�n < r0 we thus have F (d;K) > 0 all d 2 (0; dm) and therefore
W 0(w2) > 0 all w2 2 (0; R=2). This implies that w2 = R=2 (and thus e = 0)
is optimal for R=�n < r0. The optimal value is then W (R=2) = R=2.

For R=�n > r0 we have dm > d0 and hence F (d;K) ? 0 as d 7 d0, d 2
(0; dm). There is thus w20 such thatW 0(w2) ? 0 as w2 ? w20, w2 2 (0; R=2).
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Hence either w2 = R=2 (e = 0) or w2 = 0 (e = emax) is then optimal.

For w2 = 0 the value is

W0 = G(eim � ejm)R� Ci(eim)
where eim; ejm are the agents�respective e¤orts when w2 = 0, and thus

eim � ejm = emax. Consider now how the value W0 varies with R. Since

e¤orts depend on prizes via R � 2w2, we will have @elm
@R = �1

2
@el
@w2
. By the

same reasoning that led from (6) to (10) and (12) we then obtain

@

@R
W0 = G(eim � ejm) + g(eim � ejm)

�
@eim
@R

� @ejm
@R

�
R� C 0i(eim)

@eim
@R

= �1
2

�
F̂ (em)� 1

�
, em = e(0) = emax

= �1
2
(F (dm)� 1) , dm =

em
�

Comparing the values corresponding to w2 = R=2 and w2 = 0 we thus have
@
@R(W (R=2)�W0) =

1
2 �

@
@RW0 =

1
2 +

1
2 (F (dm)� 1) =

1
2F (dm)

From the properties of F (dm) it then follows that the value di¤erence is

increasing for R < r0�
n (where dm < d0) and decreasing for R > r0�n. If

the di¤erence is negative for R su¢ ciently large, it then follows that there

is R1 > 0 such that W (R=2) ?W0 as R 7 R1.
Consider

W0 = G(eim � ejm)R� Ci(eim) = G(em)R�Ki(em)n

= �(dm)R�Ki(dm)n�n,
whereKi = ki

�
1� ( kikj )

1
n�1
��n

, and dm = em
� is determined by 
(dm)(R=�

n) =

kdn�1m . So we have

W0

W (R=2)
= 2

�
�(dm)�

Ki(dm)
n

(R=�n)

�
= 2

�
�(dm)�

Ki(dm)
n

kdn�1m =
(dm)

�
= 2

�
�(dm)�

Ki
k

(dm)dm

�

whereKi
k = 1

n

�
1� ( kikj )

1
n�1
��1

. Since dm ! �d and thus 
(dm)dm ! 0 as

R!1, we see that W0 > W (R=2) for R su¢ ciently large. Since moreover

dm and hence the ratio W0
W (R=2) depends on R and � via R=�

n, we see that

there is indeed r1 > 0 such that W0 > W (R=2) i¤ R=�n > r1. This proves

statement (i) in the proposition.

(ii) Consider next high heterogeneity; K < n� 1.
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It follows from property (c1) that we then have F (d;K) < 0 for all

d 2 (0; �d), and therefore W 0(w2) < 0 for all w2 2 (0; R=2), for any (feasible)
R > 0. Hence w2 = 0 is always optimal in this case. This proves statement

(ii).

Finally, consider statement (iii).

We have emax = �dm(R=�n), where d0m() > 0, and hence
@
@�emax = dm(R=�

n)+�d0m(R=�
n)(�nR��n�1) = dm(R=�n)�n(R=�n)d0m(R=�n)

De�ning r = R=�n we have dm given by 
(dm)r = kdn�1m and hence


(dm) + r

0(dm)d0m = k(n� 1)dn�2m d0m, i.e.

d0m =

(dm)

k(n�1)dn�2m �r
0(dm)
= 
(dm)

r
(dm)(n�1)d�1m �r
0(dm)
> 0

(The inequality follows from 
0 < 0.) Hence
@
@�emax = dm � nrd

0
m = dm � nr


(dm)

r
(dm)(n�1)d�1m �r
0(dm)

= dm

h
1� n
(dm)


(dm)(n�1)�
0(dm)dm

i
For � ! 0 we have r !1 and dm ! �d, hence

�
@
@�emax

�
=dm ! [1� 0] >

0

For � ! 1 we have r ! 0 and dm ! 0, hence
�
@
@�emax

�
=dm !h

1� n
(0)

(0)(n�1)+0

i
< 0.

This proves statement (iii).

It remains to show that uniformly or normally distributed noise yields

distributions that satisfy (c1 - c3).

Consider �rst the uniform case: "l � U [0; 1] (so zl � U [a; a+ �]). Here
we have �(d) = Pr("j � "i < d) = 1 � 1

2(1 � d)
2 for 0 � d � 1, and thus


(d) = 1� d. From (12) we then have

F (d) = 1� 2
�
1� 1

2(1� d)
2
�
�K 2(1�d)d

�1
(1�d)d�(n�1)

= �1 + (1� d)2 +K 2(1�d)2d
d+(n�1)(1�d)

This yields

F 0(d) = 2(1� d)K[�2d(d+(n�1)(1�d))+(1�d)(n�1)]�(d+(n�1)(1�d))
2

[d+(n�1)(1�d)]2

� 2(1� d) f(d;K)

[d+(n�1)(1�d)]2

Note that the sign of F 0(d) is determined by the 2nd-order polynomial

f(d;K). We have

f(0;K) = (n� 1) (�n+ 1 +K), f(1;K) = �2K � 1 < 0,
f 00(d;K) = 2 (n� 2) (2� n+ 2K)

For K � n � 1 we have f(0;K) < 0 and f(1;K) < 0. Suppose there

is d 2 (0; 1) such that f(d;K) � 0. Then the term multiplying K in the
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de�nition of f() must be positive, and hence

f(d;K) � f(d; n� 1) = d
�
(n� 2)nd+ 1� n2

�
But the last parenthesis is smaller than

�
(n� 2)n+ 1� n2

�
= 1� 2n <

0, hence we have a contradiction. Thus f(d) < 0 and hence F 0(d) < 0 for

all d 2 (0; 1), thus condition (c1) holds.
For K > n � 1 we have f(0;K) > 0, f(1;K) < 0 and f 00(d;K) > 0,

hence f(d;K) ? 0 as d 7 d1 for some d1 2 (0; 1), and the same is then true
for F 0(d). Since F (1) < 0, it is thus the case that F (d) = 0 has a unique

root for d 2 (0; 1), and hence that condition (c2) holds.
Consider �nally normally distributed noise. As a normalization suppose

"i � "j � N(0; 1), and let �() and �() be the corresponding density and

CDF, respectively. Note that we have �0(d) = �d�(d), and thus from (12)

F (d;K) � 1� 2�(d)�K 2�(d)d
�0(d)
�(d)

d�(n�1)
= 1� 2�(d) + 2K �(d)d

d2+(n�1)

This yields

F 0(d;K) = �2�(d) + 2K (�(d)+�0(d)d)[d2+(n�1)]��(d)d2d
[d2+(n�1)]2

= 2�(d)

�
�1 +K (1�d

2)[d2+(n�1)]�2d2

[d2+(n�1)]2

�
Consider �rst K � n � 1. Suppose F 0(d;K) � 0 for some d > 0. Then

the term multiplying K must be positive and hence

F 0(d;K) � F 0(d; n� 1) = 2�(d)
h
�d2 n�2+d2n+n2

(d2+n�1)2
i

This yields a contradiction, hence F 0(d;K) < 0 for all d > 0 when

K � n� 1. This shows that (c1) holds.
Consider next K > n � 1. Let y = d2, and note that F 0(d;K) has the

same sign as the 2nd-order polynomial

f(y;K) = � (y + (n� 1))2 +K ((1� y) (y + (n� 1))� 2y)
We have here

f(0;K) > 0, f(1;K) < 0, f 00(y;K) = �2K � 2 < 0
Hence there is y1 2 (0; 1) such that f(y;K) ? 0 as y 7 y1, and conse-

quently F 0(d;K) ? 0 as d 7 d1 for some d1 > 0. Since F (d;K) ! �1 as
d!1, we then see that (c2) holds.

This completes the proof.
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Tables and �gures

Table 2: Prize spread and uncertainty
Dependent variable: Prize spread

High -10.976*
(p=0.093)

AB -15.780*
(p=0.053)

BC -10.935
(p=0.139)

Male 11.113
(p=0.326)

Averse -3.364
(p=0.682)

Love -5.552
(p=0.501)

Non-monotonic -8.891
(p=0.200)

Constant 119.826***
(p<0.000)

R-squared  0.052
Sample size  180

Notes:  Robust OLS estimates. Level of significance: * = 0.10, ** = 0.05, *** = 0.01. Homogenoues pairs not
included."High" is the uncertainty dummy, which is equal to one if uncertainty is high and zero if uncertainty is low.
"Male" is the gender dummy, which equals one if the pair consists solely of men and zero if a woman is a part of a pair.
The reference group for pair composition is AC pairs. The dummy "AB" equals one if the pair is an AB pair and zero
otherwise. The same goes for the "BC" dummy. For risk preferences we use the lottery choices elicited in step 1 of the
experiment, and categorize pairs in four different risk categories. As in Dohmen and Falk (2006) there were some
subjects that did not have a unique switching point, making us have a "non-monotonic" dummy. The "averse" dummy is
equal to one if the pair is risk averse and zero if not, and "love" equals one if a pair is risk loving, and zero otherwise.
Risk neutral pairs are the reference group. In risk averse pairs at least one is risk averse and no-one is risk loving. In risk
loving pairs at least one is risk loving and no-one is risk averse, while in risk neutral pairs both are risk neutral, or one is
risk loving while the other is risk averse.

Table 3: Prize spread and ability-difference
Welch`s

Prize spread t-test

AC versus AB p =.03

AC versus BC p =.08

BC versus AB p =.51

AC versus HOMO p <0.001

AB versus HOMO p <0.001

BC versus HOMO p <0.001

Notes :  The t-tests are one-sided except for BC
versus AB witch is a two-sided test.
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Table 4: Effort and ability-difference
Dependent variable:
Effort Coef.

Prize spread 0.034**
(p=0.017)

AC -5.267**
(p=0.022)

AB -1.458
(p=0.528)

BC -3.206
(p=0.104)

A 9.186***
(p<0.001)

C -6.141***
(p<0.001)

Constant 10.981***

R-squared 0.510
Sample size 108

Notes: Robust OLS estimates.  Level of significance: *=0.10, **=0.05, ***=0.01.
Here the data are on individuals, not pairs, making the dummies AB, AC and BC
equal one if the subject was part of the relevant pair. The reference group consists of
subjects that were part of homogeneous pairs. The dummies A and C are ability-
levels, with B as reference group.

Table 5: Effort data
Effort piece rate
Ability level: A B C
Mean effort: 21,4 9,5 3,2
Std. Dev 4,76 3,38 1,62
Median 20,5 9,5 3
Min 16 4 1
Max 33 17 6
# Obs 36 36 36

Effort tournament
Ability level: A B C
Mean effort: 20,4 12,6 4,6
Std.Dev 9,71 6,34 3,1
Median 19,5 13 4
Min 5 1 1
Max 38 25 12
# obs 36 36 36
Effort means number of right answers in a 5 minute work period
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