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Abstract
We compare the Nash bargaining solution in a reinsurance syndi-

cate to the competitive equilibrium allocation, focusing on uncertainty
and risk aversion. Restricting attention to proportional reinsurance
treaties, we find that, although these solution concepts are very differ-
ent, one may just appear as a first order Taylor series approximation
of the other, in certain cases. This may be good news for the Nash
solution, or for the equilibrium allocation, all depending upon one’s
point of view.

Our model also allows us to readily identify some properties of the
equilibrium allocation not be shared by the bargaining solution, and
vice versa, related to both risk aversions and correlations.

KEYWORDS: Nash’s Bargaining Solution, Equilibrium, Pareto
Optimal Risk Exchange, Reinsurance Treaties, Uncertainty, Risk Aver-
sion, Correlations, Multinormal Universe

I Introduction

We consider the situation of two or more parties who negotiate with the view
of concluding a reciprocal reinsurance treaty. We assume that the agents are

∗
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under no compulsion to reach an agreement. This means that if the parties
conclude a treaty, it must be such that all parties consider themselves better
off than without any treaty. We further assume that no outside party can
break into the negotiations. This means that the agents either have to come
to terms, or be without any reinsurance.

Cooperative game theory come into play in situations like these, where a
set of Pareto optimal allocations are characterized, termed the core, but this
theory alone is generally unable to provide a unique solution to a bargaining
situation. An equilibrium can be considered as such a solution, although an
equilibrium need not always be unique. Another principle we shall discuss in
this paper is the Nash bargaining solution, which leads to a unique solution
of a bargaining problem.

The core of the standard reinsurance syndicate was analyzed by Baton
and Lemaire (1981a), where it was characterized in the case of negative
exponential utility, and shown to be nonempty. Different aspects of the core
were further developed in Aase (2002). The bargaining set, first introduced
by Aumann and Maschler (1964), was analyzed in Baton and Lemaire (1981b)
for a reinsurance syndicate. The bargaining set contains the core, and is
accordingly not related to Nash’s bargaining solution.

Nash (1950) proposed a set of axioms which leads to a determinate solu-
tion in the general case. In addition to the axioms that guarantee an expected
utility representation, Nash requires (weak) Pareto optimality, an assump-
tion about ”symmetry” and a third assumption we may call ”independence
of unchosen alternatives”, all of which seem plausible in most situations.

In Nash’s terminology, consider two player bargaining games defined by
a pair (S, d) where d is a point in the plane, and S is a compact convex
subset of the plane containing d and at least one point x such that x > d.
The interpretation is that S is the set of feasible expected utility payoffs to
the players, any one of which will result if agreed to by both players. If no
agreement is reached, the disagreement point d results.

Nash proposed that bargaining between rational players be modeled by
a function called a solution, which selects a feasible outcome for every bar-
gaining game. If B denotes the class of all two-player bargaining games, a
solution is a function c : B → R2 such that c(S, d) is in S. His last two
assumptions are then: (i) If (S, d) is a symmetric game (i.e., if (x1, x2) ∈ S
implies (x2, x1) ∈ S and if d1 = d2), then c1(S, d) = c2(S, d). (ii) If T contains
a set S and c(T, d) is in S, then c(T, d) = c(S, d).

The assumption of ”symmetry” was asserted by Nash (1950) to ”express
equality of bargaining skills” but later (1953) he disavows this interpretation.
It says that the labels of the agents do not matter: if switching the labels
of the members leaves the bargaining problem unchanged, then it should

2



leave the solution unchanged. The ”independence of unchosen alternatives”
assumption was initially termed ”independence of irrelecvant alternatives”.
Nash (1950) then shows that these axioms imply that the solution is the one
that maximizes the product of the utility gains.

The Nash solution of the bargaining problem is essentially an elegant
mathematical derivation of the solution from a few, simple and apparently
acceptable axioms. Harsanyi (1965) has pointed out that Nash’s solution is
identical with a solution offered by Zeuthen (1930) more that 20 years earlier.
Zeuthen reaches his result after an analysis of how the actual bargaining takes
place.

Nash showed that this procedure and no others satisfies the assumption
of ”independence of unchosen alternatives”1, meaning that the point chosen
remains the same if unchosen points are removed from the feasible set.

In the context of fair division it has been pointed out (see Pratt (2007))
that unchosen points may not be irrelevant, because they represent what
agents have given up. This criticism is relevant if the objective is to infer
preferences from observations of the choices that people make. In the present
model revealed preferences is not the issue, since the utility functions are
exogenous, so we find this assumption acceptable in our setting. The Nash-
framework is, however, used in several other situations in economics, where
this assumption is not considered innocuous. These assumptions have been
discussed amply elsewhere (cf. Nash (1950), Luce and Raiffa (1957), Harsanyi
(1977) and Roth (1977-79).

Just to illustrate some of the arguments from the lively debate that has
been going on around the axioms of Nash, let us cite a passage from Luce
and Raiffa (1957) regarding the ”independence of unchosen alternatives” ax-
iom. The discussion is centered around an example where the solution is the
midpoint of the two players feasibility sets, and then one of the players gets
his set halved. Is it now reasonable that the same point is still the solution?
Or, starting with this solution point, and then one of the players gets his
fesibility set doubled: Is it reasonable for this player to argue that he now
deserves more? If so, this axiom is violated. Luce and Raiffa write (p 133)

”We feel at this time - the implications being that we have changed our
minds in the past - that this argument against assuming independence of ir-
relevant alternatives loses its appeal when applied to bargaining problems; the
reason is that the naturally distinguished trade, the status quo, serves to point

1This axiom should not be confused with one of the key assumptions behind the ex-
pected utility representation of von Neumann and Morgenstern, also part of Nash’s as-
sumptions, called the substitution or the independence axiom.
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out that certain aspirations are merely empty dreams.”

They also point out about this axiom that although it may itself be rea-
sonable, there are numerous related assumptions which appear to be equally
plausible at first glance but which are not. The typical problem with these
alterantives is that they are internally inconsistent with the axiom of Pareto
optimality.

Our description of the bargaining problem so far follows the usual custom
in describing bargaining games solely in terms of the feasible utility payoffs
available to the members (players), without specifying the particular bargains
which yield those utilities. To consider the effects of uncertainty and e.g., risk
aversion, we need to consider alternatives over which bargaining is conducted.

In the model that we present below, the status quo is represented by a
random vector X = (X1, X2, · · · , XI), and the space of feasible outcomes
are realizations of random vectors Y = (Y1, Y2, · · · , YI). The significance of
these variables will be explained in the next section. Each random variable
Yi is some function of X, i.e., Yi = fi(X1, X2, · · · , XI), where fi are Borel-
measurable functions. The random variables Yi are members of the infinite-
dimensional vector space L2(Ω,F , P ). Here Ω signifies the set of states and
F the set of events, where F = σ(X1, X2, · · · , XI), i.e., F is generated by
the ”status quo” random vector X. Finally he probability measure P is
intimately connected to the probability distribution function F of X:

Formally this connection is the following: If F (x1, x2, · · · , xI) is a a cumu-
lative probability distribution function, it gives rise to the probability space
(RI ,B, µF ) on Euclidian RI-space, where B is the Borel sets in RI , and µF

is the associated probability measure on B generated by F , i.e., the one in
which µF ((−∞, x1]×· · ·×(−∞, xI ]) = F (x1, · · · , xI) for all x ∈ RI . Then we
know that there exists a random vector X and a probability space (Ω,F , P )
such that X : (Ω,F) → (RI ,B) and P (A) := PX−1(B) = µF (B) for any
A ∈ F and B ∈ B. We then consider L2(Ω,F , P ) as the bargaining set in
this paper.

In the model that we analyze, F is the joint cumulative normal distri-
bution function, in which case situations of the kind discussed in Luce and
Raiffa (1957) simply can not arise.

The paper is organized as follows; Section 2 characterizes Nash’s bargain-
ing solution in an exchange economy, interpreted as a reinsurance syndicate,
and focuses on proportional reinsurance treaties. Section 3 develops new
results for the competitive equilibrium under joint normality of the initial
portfolios, providing the computational basis for the rest of the paper. Sec-
tion 4 extends the results obtained for the equilibrium model to the Nash
bargaining model, and focus in particular on the effects of risk aversion, and
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correlations. In this section we compare the two types of solutions to the
bargaining problem. Section 5 concludes.

The conditions of the Nash solution follow next.

II The Bargaining Solution

We consider a one-period model of a syndicated market with two time points,
zero and one. The initial portfolio allocation of the members is denoted by
X = (X1, X2, · · · , XI), i.e., the one which realizations would result at time
one if no reinsurance exchanges took place. Ay time zero X is a random
vector with a probability distribution F (x) = P [X1 ≤ x1, · · · , XI ≤ xi].
As indicated above, the random vector X corresponds to the disagreement
point d in Nash’s terminology, or the point of status quo (”the naturally
distinguished trade”). After reinsurance at time zero the random vector
Y = (Y1, Y2, · · · , YI) results, the final portfolio. The bargaining solution is
the allocation Y which solves the problem

max
Z1,···ZI

I∏
i=1

(
E(ui(Zi))− E(ui(Xi)

)
(1)

and satisfies

λ1u
′
1(Y1) = λ2u

′
1(Y2) = · · · = λIu

′
1(YI) (Pareto optimality) (2)

and
I∑

i=1

Yi =
I∑

i=1

Xi := XM (market clearing). (3)

Here ui(·), i = 1, 2, · · · , I are the utility functions of the agents, or the mem-
bers of the syndicate. We assume that these are all strictly increasing and
concave.

The criterion (1) represents the maximization of the utility gains, which
becomes the objective in the Nash bargaining solution. In order to explain
the constraint (2), let us first define what is meant by a Pareto optimum. The
concept of Pareto optimality offers a minimal and uncontroversial test that
any social optimal economic outcome should pass. In words, an economic
outcome is Pareto optimal if it is impossible to make some individuals better
off without making some other individuals worse off.

Let us call a treaty Y feasible if it satisfies
∑I

i=1 Yi ≤
∑I

i=1 Xi := XM ,
where by XM we mean the ”market portfolio”, which is just the aggregate
of the initial portfolios of the members. Formally our definition of (strong)
Pareto optimality is the following
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Definition 1 A feasible allocation Y = (Y1, Y2, . . . , YI) is called Pareto op-
timal if there is no feasible allocation Z = (Z1, Z2, . . . , ZI) with Eui(Zi) ≥
Eui(Yi) for all i and with Euj(Zj) > Euj(Yj) for some j.

We can then give the following characterization of Pareto optimal alloca-
tions (see e.g., Aase (2002-04)):

Proposition 1 Suppose ui are concave and increasing for all i. Then Y is a
Pareto optimal allocation if and only if there exists a nonzero vector of agent
weights λ ∈ RI

+ such that Y = (Y1, Y2, . . . , YI) solves the problem

sup
(Z1,...,ZI)

I∑
i=1

λiEui(Zi) subject to
I∑

i=1

Zi ≤ XM . (4)

Pareto optimal allocations can now be further characterized under the
above conditions. The next result is known as Borch’s Theorem (see e.g.,
Borch (1960-62)):

Proposition 2 A Pareto optimum Y is characterized by the existence of
non-negative agent weights λ1, λ2, . . . , λI and a real function λ(·) : R → R,
such that

λ1u
′
1(Y1) = λ2u

′
2(Y2) = · · · = λIu

′
I(YI) := λ(XM) a.s. (5)

Proposition (2) can be proven from Proposition (1) by the Kuhn-Tucker
theorem and a variational argument (see e.g., Aase (2002)). We notice that
the constraint (2) is the same as (5).

Karl Borch’s characterization of a Pareto optimum Y = (Y1, Y2, · · · , YI)
simply says that there exist positive ”agent” weithts λi such that the marginal
utilities at Y of all the agents are equal modulo these constants.

The constraint (3) that we have called ”market clearing” is part of the
definition of Pareto optimal allocations which are assumed to be feasible as
we have just seen. The equality sign in (3) is a consequence of strict mono-
tonicity of the utility functions, since there are no ”satiation points” under
this condition. Finally, it is a result of Ruohonen (1979) that the concepts
of weak Pareto optimality and strong Pareto optimality are the same under
strict monotonicity and strict concavity. Thus Definition 1 is consistent with
Nash’s condition of (weak) Pareto optimality under the present conditions.

II-A The Affine Model

In this section we characterize Nash’s bargaining solution for proportional
reinsurance treaties.
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Borch (1960a-b) discuss the Nash solution in the standard reinsurance
model with two parties only, and illustrate for various utility functions, in
particular for the quadratic case.

We choose a situation not discussed by Borch. It is the setting where
we have a full characterization of the Pareto optimal solutions for the case
of affine contracts with zero sum side-payments. These contracts are suffi-
ciently general to be of interest in the present setting, and are also in use in
reinsurance markets, often referred to as proportional reinsurance treaties.
The contracts originate when the agents have CARA-utility functions with
constant risk tolerances, or negative exponential utility functions, in which
case the Pareto optimal exchanges satisfying (2) are affine and given by

Yi =
ai

A
XM + bi, for all i, (6)

where ai is agent i’s risk tolerance, A =
∑

j aj and bi are the zero-sum
side payments, here represented by constants bi satisfying

∑
j bj = 0. The

problem is then to find these constants bi consistent with a solution to (1)
and (3).

If the ranges of values, or the supports of the random variables Yi and Xi

are the same for all i, the ”levels of aspiration” of the members are the same
before and after reinsurance, indicating that the axiom ”independence of
unchosen alternatives” will not be restrictive. This will hold in the present
context, since we later make an assumption about joint normality of X.
Under this assumption also Yi is normal, since it is a linear function of normal
variables.

Since the logarithm is a monotonically, strictly increasing function, the
problem can be reformulated as follows: Solve

max
b1,b2,··· ,bI

L(b1, b2, · · · , bI ; λ), (7)

where

L(b1, b2, · · · , bI ; λ) =
I∑

i=1

ln
(
E(ui(Yi))− E(ui(Xi)

)
− λ

( I∑
i=1

bi

)
, (8)

and

E(ui(Yi))− E(ui(Xi)) = ai

(
E(e−Xi/ai)− E(e−XM/A)e−bi/ai

)
, (9)

where the marginal utilities of the members are given by u′i(x) = e−x/ai for
i = 1, 2, · · · , I, satisfying strict monotonicity and strict concavity.
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The first order conditions of an optimum are given by

∂L(b1, b2, · · · , bI ; λ)

∂bi

=
E(e−XM/A)e−bi/ai

ai

(
E(e−Xi/ai)− E(e−XM/A)e−bi/ai

) = λ,

for i = 1, 2, · · · , I.
In terms of the Lagrange multiplier λ, the side payments are given by

bi = ai

(
ln

(
E(e−XM/A)(1 + aiλ)

)
− ln

(
aiλE(e−Xi/ai)

))
(10)

for all i, and from the constraint that the side payments sum to zero we get
that

I∏
i=1

(1

λ
+ ai

)ai =

∏I
i=1

(
aiE(e−Xi/ai)

)ai(
E(e−XM/A)

)A
. (11)

We have shown the following:

Theorem 1 The bargaining solution for proportional reinsurance, or affine
reinsurance contracts of the form (6), is the solution to the problem (7)-(9),
and is given by the equations (10) and (11).

In order to gain some insights of the bargaining solution, consider the
special case of I = 2 in the above. If the attitudes towards risk are the same
for both parties, a1 = a2 := a and A = 2a, the side payments are

b1 = a ln

(√
E(e−X2/a2)

E(e−X1/a1)

)
and b2 = a ln

(√
E(e−X1/a1)

E(e−X2/a2)

)
.

Suppose X1 ≥ X2 a.s., i.e., agent 1 is at least as wealthy as agent 2 in
(almost) all contingencies of the world, then it is easy to see from the above
two expressions that b1 ≥ b2, which implies that the final exchange satisfies
Y1 ≥ Y2 a.s., which seems reasonable. If the probability distributions of X1

and X2 are the same (but they need not be independent), then b1 = b2 = 0,
in which case both parties end up with Y1 = X̄(2) = 1

2
(X1 + X2), i.e., with

the mean of the two initial portfolios. This mean is, of course, more stable,
or less dispersed than the individual risks, which seems like a reasonable
solution under risk aversion and full symmetry between the two parties.

III The Competitive Equilibrium Solution

In this section we develop new results for the competitive solution under joint
normality.

8



Classical economics sought to explain the way markets coordinate the
activities of many distinct individuals each acting in their own self-interest.
An elegant synthesis of two hundred years of classical thought was achieved
by the general equilibrium theory. The essential message of this theory is that
when there are markets and associated prices for all goods and services in the
economy, no externalities or public goods and no informational asymmetries
or market power, then competitive markets allocate resources efficiently.

Let us briefly describe what we mean by a competitive equilibrium in the
reinsurance syndicate: First, the problem each member is supposed to solve
is the following:

sup
Zi∈L2

Eui(Zi) subject to π(Zi) ≤ π(Xi). (12)

The formal definition is:

Definition 2 A competitive equilibrium is a collection (π; Y1, Y2, . . . , YI) con-
sisting of a price functional π and a feasible allocation Y = (Y1, Y2, . . . , YI)
such that for each i, Yi solves the problem (12) and markets clear;

∑I
i=1 Yi =∑I

i=1 Xi.

Since we do not have any restrictions on contract formation in this model,
it can be shown that (e.g., Aase (2002)) the pricing functional π must be
linear and strictly positive if and only if there does not exist any arbitrage.
Since any positive, linear functional on L2 := L2(Ω,F , P ) is also continuous,
by the Riesz Representation Theorem there exists a unique random variable
ξ ∈ L2

+, the positive cone of L2(Ω,F , P ), such that

π(Z) = E(Zξ) for all Z ∈ L2.

Notice that the system is closed by assuming rational expectations. This
means that the market clearing price π implied by agent behavior is assumed
to be the same as the price functional π on which agent decisions are based.
The main analytic issue is then the determination of equilibrium price be-
havior.

Assume that π(Xi) > 0 for each i. It seems reasonable that each member
of the syndicate is required to bring to the market an initial portfolio of
positive value. In this case we have the following:

Theorem 2 Suppose the preferences of the agents are strictly monotonic and
convex, i.e., u′i > 0 and u′′i ≤ 0 for all i ∈ I, and assume that a competitive
equilibrium exists, where π(Xi) > 0 for each i. The equilibrium is then
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characterized by the existence of positive constants αi, i ∈ I, such that for
the equilibrium allocation (Y1, Y2, . . . , YI)

u′i(Yi) = αiξ, a.s. for all i ∈ I, (13)

where ξ is the Riesz representation of the pricing functional π.

Proof: The proof can be found in Aase (2002). �
In order to explain the variational argument used in this theorem, for

problems like (12) we can use the Kuhn-Tucker Theorem which says that,
granted a suitable constraint qualification, any optimal solution Yi will be
supported by a Lagrange multiplier αi: That is, there exists αi ≥ 0 such that
the Lagrangian

Li(Zi; αi) = Eui(Zi)− αih(Zi)

is maximal in Zi at Zi = Yi. Moreover, complementary slackness holds:
αih(Yi) = 0, where h(Zi) := π(Zi)− π(Xi).

In order to find the first order condition, we compute the directional
derivative of Li at Yi in the ”direction” Z, here denoted (5Li(Yi))(Z). It
can here be shown to be given by

(5Li(Yi))(Z) = E{(u′i(Yi)− αiξ)Z}. (14)

A necessary condition for a maximum of Li at Yi is that the linear func-
tional in equation (14) is zero in all directions Z, which leads directly to the
condition (13). This condition is also sufficient for an optimum due to the
concavity of ui.

As for the existence issue of a CE, it is usually a delicate mathematical
matter, which we need not consider here (see e.g., Bühlmann H. (1984), Aase
(1993) among others).

For the affine model it is known that the equilibrium solution is also of
the form (6), i.e., the optimal portfolios Yi are given by the expressions

Yi =
ai

A
XM + bc

i , i = 1, 2, · · · , I,

where the side-payments, here denoted by bc
i , are given by (see e.g., Aase

(1993) and (2002))

bc
i =

E(Xie
−XM/A)− ai

A
E(XMe−XM/A)

E(e−XM/A)
, i = 1, 2 · · · , I. (15)

These we found by applying the budget constraints π(Yi) = π(Xi) of each
of the syndicate members i, given in (12), where equality follows from strict
monotonicity of preferences.
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An equilibrium exists in this situation provided the expectations in these
expressions are well-defined. When X is jointly normal as we shall assume
below, the relevant expectations will be shown to exist, so an equilibrium
both exists and is unique in this case.

Since the market premium in this syndicate is given by

π(Xi) =
E(Xie

−XM/A)

E(e−XM/A)
,

we notice that the side-payment of agent i’s reinsured portfolio is this port-
folio’s value in excess of the agent’s ”proportion” of the value of the market
portfolio, where the ”proportion” is the ratio of agent i’s risk tolerance to
the risk tolerance of the market. Although there is no price mechanism in
the bargaining solution, the fact that there exist side-payments bi makes a
comparison between these two solutions both possible and meaningful, since
these side-payments can be interpreted as some sort of risk premiums.

In the paper on ”fair (and not so fair) division”, Pratt (2007) introduces
precisely a ”geometric-mean” pricing mechanism derived from the partici-
pants utilities, and the resulting solution is compared to, among others, the
Nash solution. Uncertainty did not play any major role in this paper, and
the problems discussed are fair divisions of

· · · ”everything from a box of bonbons to all the fish in the sea.”
A central theme is that for each item i, the agents have different valu-

ations for this item, which calls for the setting of some kind of an auction.
In our framework, ”item” i is simply the risk Xi which the agents may have
different valuations (utilities) of because of different attitudes towards risk.
Their initial allocations may be far from optimal according to the preferences
of the agents, which is what gives rise to seeking out a reinsurance arrange-
ment. We are able to use the market prices in a comparison between the two
different solution concepts, where uncertainty plays an essential role. The
issue of a ”fair division” is thus relative to the agents’ initial, random en-
dowments (X1, · · · , XI), and we assume the agents are content in comparing
two different Pareto optimal sharing rules.

Returning to the Nash bargaining solution of the last section for the
symmetric case when I = 2, we notice from the above formula (15) that
the Nash solution coincides with the competitive equilibrium. From the
difference between the two sets of formulas, one may conjecture that this is
about the only case where these allocations coincide exactly. However, below
we shall see that this is true only to a certain extent.

First notice how different these two principles appear to deal with stochas-
tic dependence, at least in the case where I = 2. Suppose the probability
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distributions of X1 and X2 are the same, but that they are negatively corre-
lated. Normally risk averse agents would be further motivated for a reinsur-
ance exchange due to a decreasing correlation from a diversification point of
view, whereas an increasing correlation would similarly lead to less demand
for reinsurance. We shall return to this conjecture below as well.

Only the fact that the marginal distributions are different will have an
effect on the Nash solution, but the side-payments does not seem to depend
on the degree of stochastic dependence, or at least this is how it appears
from these formulas. This may be be different for the competitive solution,
where the side payments apparently depend on the correlations as well. In
order to analyze these loose observations more closely, we need to specify the
probability distribution F (x) for the random vector X. Here we choose the
mulitnormal universe for an investigation.2

III-A Binormal Initial Portfolio

To start with, we assume that I = 2 and that (X1, X2) is jointly normally
distributed with mean vector (µ1, µ2), variances σ2

1 and σ2
2 and cov(X1, X2) =

ρσ1σ2. Here XM = X1 + X2, µM := E(XM) = µ1 + µ2, σ2
M := var(XM) =

σ2
1 + σ2

2 + 2ρσ1σ2, and the covariance between XM and and X1 is given by
cov(XM , X1) = σ2

1 + ρσ1σ2. The correlation coefficient ρ1,M between X1 and
XM is

ρ1,M =
σ2

1 + ρσ1σ2

σ1

√
σ2

1 + σ2
2 + 2ρσ1σ2

,

and similarly for the correlation coefficient between X2 and XM , ρ2,M . Let
us denote the joint probability density of X1 and X2 by f1,2(x1, x2), the joint
density of Xi and XM by fi,M(xi, y) and the conditional density of XM given
Xi = xi by fM |i(y|xi). While the latter density is univariate normal with
mean µM + ρi,MσM(xi−µi)/σi and variance σ2

M(1− ρ2
i,M), i = 1, 2, the three

former ones are all bivariate normal. We then have the following result:

Proposition 3 Under the above distributional assumption, we have that

E
(
e−

XM
A

)
= e−

µM
A

+ 1
2

σ2
M

A2 , (16)

E
(
XMe−

XM
A

)
= e−

µM
A

+ 1
2

σ2
M

A2
(
µM − σ2

M

A

)
, (17)

2This is a relevant choice for the study of the theoretical properties of these solutions, in
particular since correlations are easy to interpret. We are, however, not claiming anything
about the realism of this joint distribution in a reinsurance market.
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and

E
(
Xie

−XM
A

)
= e−

µM
A

+ 1
2

σ2
M

A2
(
µi −

1

A
(σ2

i + ρσ1σ2)
)
, (18)

for i = 1, 2. Furthermore, the side-payments are given by the expressions

bc
i = µi −

1

A
(σ2

i + ρσ1σ2)−
ai

A
(µM − σ2

M

A
), i = 1, 2. (19)

Proof: The expression (16) follows from the known formula for the moment
generating function of the normal distribution, namely E(eθX) = exp(µθ +
σ2θ2/2) when X is normal with mean µ and variance σ2, and where θ is a
real parameter; here use θ = − 1

A
.

Consider the expression in (18). We focus on i = 1 and have to compute

E
(
X1e

−XM
A

)
=

∫ ∞

−∞
x
( ∫ ∞

−∞
e−

y
A f1,M(x, y)dy

)
dx

=

∫ ∞

−∞
x
( ∫ ∞

−∞
e−

y
A fM |1(y|x)dy

)
f1(x)dx (20)

where f1(x) is the marginal probability density of X1. Using the moment
generating function of the univariate normal distribution, the expression in
parentheses in (20) is

E
(
e−

XM
A |X1 = x

)
= exp

(
− 1

A
(µM +ρ1,MσM(x−µ1)/σ1)+

1

2A2
σ2

M(1−ρ2
1,M)

)
.

It follows that

E
(
X1e

−XM
A

)
=

∫ ∞

−∞
E

(
e−

XM
A |X1 = x

) x√
2πσ2

1

e
− 1

2

(
x−µ1

σ1

)2

dx.

The key to the proof is now to form a full square in the exponent of this
integral. Doing this, we obtain

E
(
X1e

−XM
A

)
= e−

1
A

µM+ 1
2A2 σ2

M (1−ρ2
1,M )

∫ ∞

−∞

x√
2πσ2

1

e
− 1

2

(
x−κ
σ1

)2

eσ2
Mρ2

1,M/2A2

dx,

where κ = µ1 − 1
A
(σ2

1 + ρσ1σ2). From our last expression we get

E
(
X1e

−XM
A

)
= κ · e−

1
A

µM+ 1
2A2 σ2

M

which is the conclusion in (18) for i = 1, the case i = 2 following similarly.
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Using the same technique as above, we can also compute the following:

E
(
XMe−

XM
A

)
=

∫ ∞

−∞
ye−y/A 1√

2πσ2
M

e
− 1

2

(
y−µM

σM

)2

dy =

e−
1
A

µM+ 1
2A2 σ2

M

∫ ∞

−∞
y

1√
2πσ2

M

e
− 1

2

(
y−b
σM

)2

dy,

where b = µM − σ2
M

A
. This gives (17). Using the expression (15) for the

side-payments, and the three formulas just derived, the conclusion in (19)
follows. �

Looking into one of the conjectures presented above, we can now state
the following:

Theorem 3 Consider the situation of a bivariate normal distribution where
µ1 = µ2 and σ1 = σ2. For the most risk tolerant agent, the correspond-
ing side-payment decreases when the correlation coefficient ρ decreases. For
the most risk averse agent, the corresponding side-payment increases when ρ
decreases.

Proof: This can best be seen by rewriting the side-payments in (19) as follows:

bc
i = µi +

ρσ1σ2

A

(2ai

A
− 1

)
− 1

A
σ2

i −
ai

A

(
µM − 1

A
(σ2

1 + σ2
2)

)
.

Suppose a1 > a2. Then 2a1/A > 1 since A = a1 + a2, and the conclusion for
the most risk tolerant agent follows from the second term above. If a1 < a2

then 2a1/A < 1, so now the second term is negative for the most risk averse
agent, so the side-payment increases when ρ decreases. �

The theorem says that the most risk averse agent benefits after reinsur-
ance from e.g., a negative correlation between X1 and X2. This conclusion
agrees with the above conjecture.

We also have the following corollary:

Corollary 1 When (µM >
σ2

M

A
), then the most risk averse agent obtains the

largest side-payment under the conditions of Theorem 3. This conclusion is

reversed when (µM <
σ2

M

A
); then the most risk tolerant participant gets the

highest side-payment.

Proof: This follows from (19) of Proposition 3 and Theorem 3. �

One way to interpret this is to consider the inequality (µM >
σ2

M

A
) for

given µM and σM . This inequality holds for large enough A, so the most risk
averse agent has an advantage after pooling in a group that is typically risk

tolerant. The inequality (µM <
σ2

M

A
) holds when A is small enough, which

says that in a group which is typically risk averse, the most risk tolerant has
an advantage after reinsurance.
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III-B Multinormal Initial portfolio

The above proposition can be generalized to I > 2. Suppose the number
of agents I is arbitrary, and that (X1, X2. · · · , XI) is multivariate normally
distributed. Then (Xi, XM) is bivariate normally distributed for any i, where
XM =

∑I
i=1 Xi. Here

σ2
M =

I∑
i=1

σ2
i + 2

∑
i>j

ρi,jσiσj

where ρi,j is the correlation coefficient between Xi and Xj, and µM =
∑I

i=1 µi.
Furthermore

cov(Xi, XM) =
I∑

j=1

σi,j = σ2
i +

∑
j 6=i

ρi,jσiσj.

We have the following corollary to Proposition 3:

Corollary 2 Under the above distributional assumption, we have that

E
(
e−

XM
A

)
= e−

µM
A

+ 1
2

σ2
M

A2 , (21)

E
(
XMe−

XM
A

)
= e−

µM
A

+ 1
2

σ2
M

A2
(
µM − σ2

M

A

)
, (22)

and

E
(
Xie

−XM
A

)
= e−

µM
A

+ 1
2

σ2
M

A2
(
µi −

1

A
(σ2

i +
∑
j 6=i

ρi,jσiσj)
)
, (23)

for i = 1, 2, · · · , I. Furthermore, the side-payments are given by

bc
i = µi −

1

A
(σ2

i +
∑
j 6=i

ρi,jσiσj)−
ai

A
(µM − σ2

M

A
), i = 1, 2, · · · , I. (24)

Proof: By going through the same steps as in the proof of Proposition 3, only
minor changes need to be carried out. �

Consider any two agents i and j, with the same attitudes towards risk,
so that ai = aj, where the initial portfolios Xi and Xj have a correlation
structure where one is positively correlated, the other is negatively correlated
with the market portfolio. In this case, ceteris paribus, the agent with the
negative correlations has the highest side-payment after reinsurance. More
generally we have:
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Theorem 4 Consider two agents i and j in the multi agent model where
ai = aj, and the initial portfolios satisfy µi = µj and σi = σj. If ρi,k ≤ ρj,k

for k 6= i, j, then bc
i ≥ bc

j.

Proof: This follows from a closer inspection of the expression for the side-
payments in (24) for agents i and j, which can be rewritten as:

bc
i = µi +

∑
k 6=i ρi,kσiσk

A

(ai

A
− 1

)
− 1

A
σ2

i −
ai

A

(
µM − 1

A

( I∑
k=1

σ2
k

))
,

and

bc
j = µj +

∑
k 6=j ρj,kσjσk

A

(aj

A
− 1

)
− 1

A
σ2

j −
aj

A

(
µM − 1

A

( I∑
k=1

σ2
k

))
.

The second terms on the right hand side have the same negative factors
(ai

A
− 1) < 0 since ai = aj and A =

∑
k ak. Since all other terms are equal

in these two expressions by assumption, the highest side-payment is the one
with the lowest correlations. �

This theorem partly transforms the property of a market value of the
initial portfolios to statistical properties of the underlying risks. Notice that
if the market values satisfy π(Xi) > π(Xj), then π(Yi) > π(Yj), which holds
in equilibrium because of the budget constraints. To check this, we see that

π(Xi) =
E(Xie

−XM/A)

E(e−XM/A)
= µi −

1

A
(σ2

i +
∑
j 6=i

ρi,jσiσj)

by the result of Corollary 2, and

π(Yi) =
E(Yie

−XM/A)

E(e−XM/A)
=

E((ai

A
XM + bc

i)e
−XM/A)

E(e−XM/A)
=

ai

A
(µM − σ2

M

A
) + bc

i ,

which by equation (24) is seen to imply that π(Xi) = π(Yi) as the case should
be.

The result of the theorem points out how valuable a security (portfolio)
is compared to the rest of the securities (portfolios) provided it has, for
example, a negative correlation with the rest of the market. Recall that
for most securities in any market it is usually the case that covariances are
non-negative with the rest of the market, or that for any j, ρj,k ≥ 0 for any
k.

Next we explore the effects of risk aversion. We consider two otherwise
identical individuals i and j, except from having different risk aversions.
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Assume in particular that that member i is more risk averse than member
j, i.e., that ai < aj. In this situation i’s share of the total market portfolio
XM is smaller than j’s share, since Yi = ai

A
XM + bc

i . Thus it is sufficient to
investigate the effects on the side-payments under the above assumptions:

Theorem 5 (a) Suppose µM >
σ2

M

A
; then the corresponding side-payments

satisfy bc
i > bc

j.

(b) Suppose µM <
σ2

M

A
; then the corresponding side-payments satisfy bc

i < bc
j.

(c) Suppose µM =
σ2

M

A
; then the corresponding side-payments satisfy bc

i = bc
j.

Proof: This follows from an inspection of the expressions for the side-payments
bc
i in (24). �

The intuition for the case (a) of the theorem is that if the syndicate
performs well, since the more risk averse syndicate member holds a relatively
smaller share of the market portfolio, the better the terms of the treaty which
he must be offered in order to induce him to reach an agreement.

On the other hand, if the syndicate does not perform all that well as in
case (b), again since the more risk averse agent still holds a relatively smaller
share of the market portfolio, he needs not be offered quite that good terms
of the treaty in order to induce him to participate.

In case (c) of the theorem, risk aversion is seen to have no influence on
the side-payments, only on the fractions held of the market portfolio.

We notice that in a relatively risk tolerant syndicate (A is large), the risk
averse agent needs to be offered an advantage in terms of the side payment
to induce him to participate. In a relatively risk averse syndicate there is
no need to compensate the risk averse agent in this way, meaning that the
”odd” agent gains after pooling, as observed in the previous section when
I = 2.3

IV A Comparison Between Nash and the CE

The competitive solution is not always the best in predicting the outcomes
of negotiations between parties. This is particularly the case when strategic
considerations play a major role. However, the competitive equilibrium has
the pleasant feature of providing prices, on which the merit of the model can
readily be judged in many situations.

3An analogue from the property market could be that a deaf person could benefit from
buying a home close to an airport, or a blind person could get a bargain by buying a house
without a view.
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One would presume that there must exist a connection between the static
axiomatic theory of bargaining and the sequential strategic approach to bar-
gaining. And yes, there is such a connection. Under certain conditions it
has been demonstrated that the strategic solution approaches the Nash bar-
gaining solution, which provide a guide for the application of the bargain-
ing solution in economic modeling (cf. Binmore, Rubinstein and Wolinsky
(1986)).

On the other hand, the connection between the Nash bargaining solution
and the competitive equilibrium is also a topic of independent interest. In
this section we discuss this issue, relying on the results developed in the
previous sections. In particular we are in a position where we may explore
the effects of risk aversion.

Several investigators have considered how risk aversion influences the out-
come of bargaining, as modeled by Nash’s model, and related models. For
example, Kannai (1977) noted that when bargaining concerns distribution
of a divisible commodity between two risk averse individuals, then Nash’s
solution assigns a larger share of the commodity to a bargainer as his utility
function displays less risk aversion. Thus, risk aversion is a disadvantage in
this situation, according to Nash’s model.

Roth and Rothblum (1982) consider a more general case, in which bar-
gaining may be over risky as well as riskless outcomes. However they only
analyze the case in which the ”disagreement outcome” X is riskless. We, on
the other hand are in a position to study the case where also X is a random
vector. In fact, all the randomness, or uncertainty, in our model stems form
the randomness of X. According to Roth and Rothblum (1982), in some
cases, risk aversion continues to be a disadvantage in bargaining; in some
cases it has no influence; and in some cases, risk aversion turns out to be an
advantage. As we have seen in the last section, this description is general
enough to be satisfied also by the competitive equilibrium. Our model differs
so much from the one by Roth and Rothblum, that it is difficult to compare
results any further.

IV-A The symmetric two agent case

Starting with the case of two agents, we notice that the side-payments of the
competitive solution will in general depend on the correlation coefficient ρ
between the initial portfolios X1 and X2, but in the special case that the risk
tolerances are equal, a1 = a2, the correlation coefficient ρ drops out of the
expressions for the side-payments. This follows since

bc
1 =

1

2
(µ1 − µ2) +

1

2A
(σ2

2 − σ2
1), (25)
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and

bc
2 =

1

2
(µ2 − µ1) +

1

2A
(σ2

1 − σ2
2). (26)

Notice that if µ1 > µ2 and σ2 > σ1, then bc
1 > 0 and bc

2 < 0, i.e., agent 1 acts
as a ”net lender” and agent 2 as a ”net borrower” in the exchange. As long
as σ2 > σ1 this effect is strengthened when the risk tolerance A decreases, or
put differently, when the risk aversion increases.

Curiously enough, the same conclusions follow from the Nash solution in
the case when a1 = a2. To see this, consider the Nash side-payments in this
case

b1 = a ln
(
e

1
2a

(µ1−µ2)e
1

4a2 (σ2
2−σ2

1)
)
, (27)

and
b2 = a ln

(
e

1
2a

(µ2−µ1)e
1

4a2 (σ2
1−σ2

2)
)
. (28)

Using a first order Taylor series approximation of b1 we obtain bc
1 of equation

(25) and similarly for b2. We formulate this as

Theorem 6 For proportional reinsurance treaties, the Nash solution and the
equilibrium solution differ only by the side-payments, the leading term ai

A
XM

being identical for both these solutions. In the symmetric case where the risk
tolerances are equal, the side-payments for the two solutions coincide to a
first order Taylor series approximation.

The symmetric case is easiest to study when the Nash solution is analyzed,
due to the symmetry assumption. We may conclude that the two solutions
are very similar for this model when I = 2.

IV-B More than two agents

We now turn to a comparison in the general case where ai 6= aj and with
more than two agents. At first glance this case seems more complicated
analytically. This involves to investigate the situation where correlations
matter, which here means situations when the attitudes towards risk differ
among the members. The results of theorems 3 - 5 are typical equilibrium
properties, which we can not expect carry over to the bargaining solution
with no caveats added.

First notice that from the expression (10) for the Nash side-payments and
the results of Corollary 2 that

bi =
(
µi −

1

2

σ2
i

ai

)
− ai

A

(
µM − 1

2

σ2
M

A

)
+ ai ln

(1 + aiλ

aiλ

)
, (29)
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where the Lagrange multiplyer λ is given by equation (11). We observe
that the first and third terms on the right-hand side of this expression are
increasing functions of ai for a given value of λ, while for the second term

this property depends on the sign of (µM − 1
2

σ2
M

A
).

Let us define the quantity Bi,j by

Bi,j =
A

µM − 1
2

σ2
M

A

(
1

2
σ2

i

( 1

ai

− 1

aj

)
+ aj ln

(1 + ajλ

ajλ

)
− ai ln

(1 + aiλ

aiλ

))
,

and consider two otherwise identical individuals i and j except that i is more
risk averse than j, i.e., aj > ai. In particular this means that in (29) µi = µj

and σi = σj, and λ, which depends on all the parameters of the problem in a
symmetrical manner, is a given constant, the same for side-payment bi as for
bj (since λ does not depend on the index i). It is easy to see in this situation

that Bi,j > 0 provided µM > 1
2

σ2
M

A
. Also in this situation i’s share of the total

market portfolio XM is smaller than j’s share for the same reason as in the
competitive case.

We are now in position to explore the effects on the side-payments, cor-
responding to Theorem 5 for the competitive solution:

Theorem 7 (a) Suppose µM > 1
2

σ2
M

A
. If member i is more risk averse than

member j, and in addition aj > ai + Bi,j, the corresponding Nash side-
payments satisfy bi > bj.
If member i is more risk averse than member j, but ai < aj ≤ ai + Bi,j, the
corresponding Nash side-payments satisfy bi ≤ bj.

(b) Suppose µM ≤ 1
2

σ2
M

A
. If member i is more risk averse than member j, the

corresponding Nash side-payments satisfy bi < bj .

Proof: Consider first (b). From the expression for the side-payments bi in (29)
we notice that all three terms on the right-hand side are increasing functions
of the risk tolerance parameter, given λ, and this shows (b).

In the case (a) only the second term on the right-hand side of (29) is a
decreasing function of the risk tolerance parameter a, the two other terms
are still increasing. Starting with bi > bj in this situation, we see that this is
equivalent to aj − ai > Bi,j > 0, which proves (a). �

Comparing this result to the corresponding result of Theorem 5 (b) for
the competitive solution, we notice that the conclusions are the same when
the syndicate is not doing so well, except that ”not doing so well” in the
Nash solution involves a more restricted region than for the competitive

solution. Also notice that when µM = 1
2

σ2
M

A
, then bi < bj in the Nash solution,

and similarly is bc
i < bc

j in the competitive solution since this case satisfies
requirement (b) of Theorem 5.
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In a relatively risk averse syndicate (small A), there is accordingly less
need to compensate the risk averse agent than the more risk tolerant one. In
this case risk aversion continues to be a disadvantage in the Nash solution
also under uncertainty and with an uncertain ”disagreement point”.

Turning to (a) where ”the syndicate is doing well”, we first notice that
”doing well” here is not so demanding as ”doing well” in the competitive
solution. However in order for the Nash side-payment of the most risk averse
member to be the largest in this situation, the difference between the risk
tolerances must in addition be large enough, i.e., aj > ai + Bi,j. Merely the
statement that member i is more risk averse that member j is not enough
to secure this result, contrary to the case for the competitive equilibrium
(Theorem 5 (a)). In fact, when ai < aj ≤ ai + Bi,j in this situation, we
obtain the same conclusion as in (b).

We notice from the expression for Bi,j that the better the syndicate is
doing and the less risky the initial portfolio of agent i is, the larger is the
parameter region in which the most risk averse agent benefits from increased
risk aversion in terms of the Nash side-payments. From the last two terms
in Bi,j we observe that this conclusion is further strengthened both for large
as well as small values of the Lagrange multiplyer λ.

Finally, consider two agents i and j in the multi agent model where ai =
aj, and the initial portfolios satisfy µi = µj and σi = σj. Contrary to the
case of the competitive solution (see Theorem 4), we get that bi = bj in this
situation. For the competitive solution we have that if ρi,k ≤ ρj,k for k 6= i, j,
then bc

i ≥ bc
j. For the Nash solution correlations do not play the same role as

in equilibrium.

V Conclusions

In his discussion of the problem of reinsurance in the case of quadratic utility
functions, Borch (1960a) comments:

”That the aim of reinsurance arrangements is to reduce the variance, and
at the same time retain as much as possible of the net premium is assumed,
more or less explicitly, by many writers.”

From our analyses we notice that the competitive solution does more than
this, and that the side-payments compensate the agent with the ”best” port-
folio, taking into consideration both the means, the variances, the covariance
between the different portfolios and also the risk aversions of the agents. All
these elements are reflected in the market value π(Xi) of agent i’s portfolio,
and we notice from the general expression for the side-payments that the
agent with the highest market value will obtain the highest side-payment as
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well, ceteris paribus, and act as a net lender in the reinsurance exchange.
Thus the aim of ”retaining as much as possible of the net premium” seems
more than fulfilled by the competitive solution.

In the Nash bargaining solution there are no market premiums, so a direct
comparison is not possible regarding prices. However, in both solutions to
the bargaining problem there exist side-payments having about the same
interpretations, and the risky parts of the sharing rules are identical. This
facilitates a comparison, and makes it both possible and meaningful.

Furthermore, we have demonstrated that for contracts of the affine type,
the Nash solution has many of the same qualitative properties as the com-
petitive equilibrium, in particular in the two member case with equal risk
aversions.

In the multi member situation, risk aversions play a similar qualitative
role for the Nash solution as for the equilibrium allocation, except for the
situation of equal risk aversions, in which case correlations influence the two
solutions differently.

Both models of this article are axiomatic ones. The advantage with this
is that when observations of individuals behavior is contradictory with the
predictions of any of these models, we can go back and check the axioms.
This makes the models more readily refutable. Since no model is entirely
”correct” (models are only more of less fruitful), we need models that are
rejectable in order to learn something new.
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