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1 Introduction

In the operations research literature, numerous algorithms and heuristics for network op-
timization problems are offered. In game theoretic approaches to this type of problems,
different agents control the elements of the network. Therefore, next to finding optimal
solutions, this adds the problem of dividing the costs or benefits generated by such so-
lutions over the involved agents. An overview of several classes of games arising from
problems in operations research is provided by Curiel (1997).
Only recently two game theoretical approaches have been initiated to shortest path

problems: Fragnelli, Garćıa-Jurado, and Méndez-Naya (2000) and Voorneveld and Grahn
(2000). The present paper follow the model of Voorneveld and Grahn (2000). In this
model each player owns arcs or connections in a finite network. There are costs associated
to the use of each arc. For each player there is a reward (possibly equal to zero) if he
transports his goods from source to sink.The value of a coalition is the maximal profit
it can generate by transporting its goods from source to sink via a shortest path owned
by this coalition. In these shortest path games, which are briefly reviewed in Section 3,
it is shown that the core and the bargaining set of Davis and Maschler (1963) and Zhou
(1994) coincide.
Solymosi (1999) provided necessary and sufficient conditions for the core and the

Davis-Maschler bargaining set to coincide. According to these conditions, certain games,
induced by imputations in the bargaining set, have to be balanced. In practice however,
it is very hard to prove that a certain class of games satisfy these conditions. Therefore
this paper gives a more direct approach.
Basic game theoretical definitions are given in Section 2. In Section 3 shortest path

games are defined. Section 4 contain the main result of the paper: the core and the
bargaining sets of Davis-Maschler and Zhou are shown to coincide in shortest path games.

2 Preliminaries

This section settles matters of notation and defines basic game theoretic concepts.

For a finite set N , 2N = {S : S ⊆ N} denotes the collection of all subsets of N . IR
denotes the set of reals, IR+ = [0,∞) the set of nonnegative reals. For (xi)i∈N , where
xi ∈ IR for each i ∈ N , and for a subset S ⊆ N , we denote x(S) =

P
i∈S xi. The end of

proofs is indicates with the symbol 2, the end of definitions, examples, and remarks with
the symbol /.
Recall that a cooperative game with transferable utility (TU-game) is a tuple (N, v),

where N is a finite set of players and v : 2N \ {∅}→ IR is a function that assigns to each
coalition S ∈ 2N \ {∅} its value v(S) ∈ IR.
Definition 2.1 Let (N, v) be a TU-game. A vector (xi)i∈S of real numbers is an S-feasible
payoff vector if x (S) = v (S). /

An N-feasible payoff vector is refered to as a feasible payoff profile.
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Definition 2.2 An imputation of (N, v) is a feasible payoff profile x ∈ IR for which
xi ≥ v ({i}) for all i ∈ N. The set I (N, v) is the set of all imputations of (N, v) :

I (N, v) =
©
x ∈ IRN : x (N) = v (N) and xi ≥ v ({i}) ∀i ∈ N

ª
/

The bargaining set is a solution concept for cooperative games and consists of those
imputations for which every objection is refuted by a counterobjection.
Let x be an imputation of a TU-game (N, v). Following Davis and Maschler (1963)

objections and counterobjections are defined as follows:

• A pair (y, S), where S is a coalition and y is an S-feasible payoff vector, is an
objection of i against j to x if S includes i but not j and yk > xk for all k ∈ S.

• A pair (z,K), where K is a coalition and z is a K-feasible payoff vector, is a
counterobjection to the objection (y, S) of i against j if K includes j but not i,
zk ≥ xk for all k ∈ K\S, and zk ≥ yk for all k ∈ K ∩ S.

The bargaining set is defined as follows:

Definition 2.3 The bargaining set B(N, v) of a TU-game (N, v) is the set of all imputa-
tions x with the property that for every objection (y, S) of any player i against any other
player j to x there is a counterobjection to (y, S) by j. /

Definition 2.4 The core of a game (N, v) is the set

C(N, v) = {x ∈ IRN | x(N) = v(N) and x(S) ≥ v(S) for each S ∈ 2N \ {∅}}.

/

Note that an imputation is in the core if and only if no player has an objection against
any other player; hence the core is a subset of the bargaining set.

3 Shortest path games

This section summarizes the model of shortest path games of Voorneveld and Grahn
(2000). In this model there is a finite set of players. Each player owns arcs or connections
in a finite network. There are costs associated to the use of each arc. Each player receives
a nonnegative reward if he manages to transport a good from the source of the network
to its sink.

Definition 3.1 A shortest path problem is a tuple hN, V, (Ai)i∈N , w, (ri)i∈Ni, where

• N is a finite set of players;
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Figure 1: A shortest path problem

• V is a finite set of vertices with two special elements: the source So and the sink
Si;

• each player i ∈ N owns a set Ai ⊆ V × V of directed arcs in the network;
• the function w : ∪i∈N{i} ×Ai → IR+ assigns a cost (or length, or weight) to all the
arcs owned by the players. The cost assigned to arc (a, b) owned by player i ∈ N is
w(i, (a, b)) ∈ IR+;

• each player i ∈ N receives a reward ri ∈ IR+ for transporting his goods from the
source to the sink.

/

Notice that more than one player can own an arc between two vertices, and that the costs
of an arc can depend on its owner. The following example illustrates the definition of a
shortest path game.

Example 3.2 The shortest path problem with player set N = {1, 2, 3}, vertex set
V = {So, Si, v}, the players respectively owning arc sets A1 = {(So, v), (So, Si)}, A2 =
{(v, Si)}, A3 = ∅, and costs w(1, (So, v)) = w(2, (v, Si)) = 1, w(1, (So, Si)) = 3 is de-
picted in Figure 1 (where it is assumed that arcs are directed from left to right). The
numbers 2; 1 next to the arc (v, Si), for instance, indicate that this arc is owned by player
2 and that the costs of this arc owned by player 2 equal 1. Take the rewards equal to
r1 = r2 = r3 = 2. /

Let S ∈ 2N \{∅} be a coalition of players. A path owned by the players in S is a sequence
(v1, i1, v2, i2, . . . , im−1, vm) of vertices vk and players ik such that v1 = So, vm = Si, and
for each k ∈ {1, . . . ,m− 1} the arc (vk, vk+1) is owned by player ik ∈ S. Let P (S) denote
the collection of all paths owned by coalition S.
The costs associated to a path p = (v1, i1, v2, i2, . . . , im−1, vm) ∈ P (S) are defined as

the sum of the costs of its arcs:

cost(p) =
m−1X
k=1

w(ik, (vk, vk+1)).
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Obviously, if a coalition S has to go from source to sink, it will choose among its alterna-
tives in P (S) the path with minimal costs. Define for each S ∈ 2N \ {∅}:

c(S) =

½
minp∈P (S) cost(p) if P (S) 6= ∅,
∞ otherwise.

Shortest paths in directed networks can be determined, for instance, by the algorithm of
Dijkstra (1959).
From now on, when we refer to ‘a shortest path’ without explicitly stating a coalition

owning it, we mean a shortest path owned by the grand coalition N .
The cooperative game associated with a shortest path problem reflects the following

intuition: if a coalition S ∈ 2N \ {∅} transports its goods from source to sink, it will
receive a total reward r(S) =

P
i∈S ri and incur costs c(S), the costs of the cheapest

alternative S has to go from source to sink. If r(S) − c(S) > 0, coalition S makes a
profit. If r(S)− c(S) ≤ 0, coalition S can generate profit zero by simply doing nothing.
Therefore, coalition S can make a profit max{r(S)− c(S), 0}.

Definition 3.3 Let hN, V, (Ai)i∈N , w, (ri)i∈Ni be a shortest path problem. The associated
shortest path game (N, v) is defined as follows:

∀S ∈ 2N \ {∅} : v(S) = max{r(S)− c(S), 0}.

/

Let S, T ∈ 2N \ {∅}, S ⊆ T . Then r(S) ≤ r(T ) and c(S) ≥ c(T ), so v(S) ≤ v(T ): the
shortest path game (N, v) is monotonic.

Example 3.4 In the shortest path problem of Example 3.2, coalition {2}and {3} do not
own a path: c({i}) =∞ for i = 2, 3. The cooperative game associated with the shortest
path problem is given by v({1}) = max{r1 − c({1}), 0} = max{2 − 3, 0} = 0, v({2}) =
v({3}) = max{2−∞, 0} = 0, v({1, 2}) = max {r ({1, 2})− c ({1, 2}) , 0} = 2, v({1, 3}) =
1, v({2, 3}) = 0, v(N) = 4. /

Voorneveld and Grahn (2000) prove that shortest path games are totally balanced, in-
dicate easy ways to construct core elements and provide the existence of population
monotonic allocation schemes (Sprumont, 1990). Moreover, they provide a cost allo-
cation mechanism taking into account opportunity cost and the role of players that are
crucial to the construction of the shortest path.

4 Core and bargaining set coincide

In this section, the bargaining set is shown to coincide with the core for shortest path
games. We already know that C (N, v) ⊆ B (N, v) for each TU-game (N, v). The intuition
behind the proof of C (N, v) ⊇ B (N, v) is roughly as follows:
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Let x be an imputation that is not in the core. Let T be the set of players who get
less then their reward by allocation x. Let S be the ”best” coalition for T to join if the
players in T have to pay c (S) and x (S\T )− r (S\T ) (the cost of the shortest path owned
by S and the cost of players in S who get more then their reward). The players in T are
the only players who contribute to the cost of the used path and to the cost of players
who according to allocation x, get more than their reward. S also is the ”best” coalition
for every subset P ⊂ T to join. Let j ∈ argmaxt∈N\S xt − rt, i.e., the player outside S
who is most ”costly”. For each i ∈ T there is an objection (S, y) against player j. For
player j to counterobject there has to be a counterobjection (K, z) such that i /∈ K. We
prove that P = K ∩ T 6= ∅, i.e. to counterobject player j has to use players in T. Since
S is the best coalition for P ⊂ T to join, we know that the cost of P for joining coalition
K is equal or larger to the cost of joining coalition S. But since i /∈ K and xi < ri it is
clear that the cost of P joining K is larger then the cost of joining S. This means that
at least one player in P must be worse off in (K, z) than in (S, y). Hence, there is no
counterobjection (K, z), so x /∈ B (N, v) .

Lemma 4.1 Let hN,V, (Ai)i∈N , w, (ri)i∈Ni be a shortest path problem and (N, v) the as-
sociated shortest path game. Let x ∈ I (N, v) \C (N, v) and T = {i ∈ N : xi < ri} . Let
S ∈ minP∈2N x (P )− v (P ), then
i) T 6= ∅;
ii) S 6= N, x (S)− v (S) < 0 and T ⊆ S;
iii) S\T solves minP⊆N\T x (P )− r (P ) + c (P ∪ T ) .
Proof. i) Assume that T = ∅. Then xi ≥ ri ∀i ∈ N. Since x (N) = v (N) ≤ r (N)

we have that xi = ri ∀i ∈ N . But if x ∈ I (N, v) \C (N, v), then r = x ∈ C (N, v), since
x (R) = r (R) ≥ v (R) for each R ⊆ N , contradicting the assumption that x /∈ C (N, v) .
ii) x ∈ I (N, v) \C (N, v) implies that x (P ) − v (P ) < 0 for some coalition P. Since
S ∈ minP∈2N x (P )−v (P ) and x (N) = v (N) it follows that S 6= N , and x (S)−v (S) < 0.
Assume that i ∈ T\S, then

x (S)− v (S) > xi − v (S)− ri + x (S)
≥ x (S ∪ {i})− v (S ∪ {i}) ,

contradicting that S ∈ argminP∈2N x (P )− v (P ) . Hence T\S = ∅ so T ⊆ S.
iii) T ⊆ S and S ∈ minP∈2N x (P )− v (P ) gives that S\T solves

min
P⊆N\T

x (P ) + x (T )− r (P )− r (T ) + c (P ∪ T )

=

·
min
P⊆N\T

x (P )− r (P ) + c (P ∪ T )
¸
+ x (T )− r (T ) ,

so S\T ∈ minP⊆N\T x (P )− r (P ) + c (P ∪ T ) . 2
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Lemma 4.2 Let hN,V, (Ai)i∈N , w, (ri)i∈Ni be a shortest path problem and (N, v) the as-
sociated shortest path game. Let x ∈ I (N, v) \C (N, v) and sets S and T as in Lemma
4.1. Let i ∈ T object to

j ∈ arg max
t∈N\S

xt − rt
via an objection (S, y). Assume that (K, z) is a counterobjection of j to (S, y) , i.e. z is a
K-feasible payoff vector such that:

zk ≥ xk ∀k ∈ K\S
zk ≥ yk > xk ∀k ∈ K ∩ S.

then

i) v (K) = r (K)− c (K) ;
ii) P = K ∩ T 6= ∅.
Proof. i) Assume that r (K)−c (K) < 0. Then v (K) = 0 which gives that z (K) = 0.

By the definition of a counterobjection and individual rationality of x, it follows that
0 = z (K) ≥ x (K) ≥ Pi∈K v ({i}) ≥ 0 so x (K) = 0. This gives that xj = rj = 0, and
since j ∈ argmaxt∈N\S xt − rt it follows that xk = rk = 0 ∀k ∈ N\S. This gives that
x (S) − v (S) = x (N) − v (S) ≥ x (N) − v (N) = 0 contradicting Lemma 4.1 ii). Hence
v (K) = r (K)− c (K) ≥ 0
ii) Discern two cases:

CASE 1: c (K) > 0
If K ∩ T = ∅, then zk ≥ xk ≥ rk ∀k ∈ K implies z (K) ≥ r (K) > r (K)− c (K) = v (K),
contradicting that z is K-feasible payoff vector. Hence K ∩ T 6= ∅.
CASE 2: c (K) = 0
c (K) = 0 gives that xj − rj > 0. Otherwise, rk = xk ∀k ∈ N\S. But then c (N) = 0 im-
plies that x (N) = v (N) = r (N), so x (S) = r (S) ≥ v (S), contradicting v (S)−x (S) > 0.
Assume that K ∩ T = ∅, then zk ≥ xk ≥ rk ∀k ∈ K and xj − rj > 0 implies
z (K) > r (K) = v (K) , contradicting that z isK-feasible payoff vector. Hence K∩T 6= ∅.
2

Lemma 4.3 Let hN,V, (Ai)i∈N , w, (ri)i∈Ni be a shortest path problem and (N, v) the as-
sociated shortest path game. Let x ∈ I (N, v) \C (N, v) . Let S and T be defined as in
Lemma 4.1 and take K, P, y and z as in Lemma 4.2. Define

MS := x (S\T )− r (S\T ) + c (S)
and

MK := z (K\P )− r (K\P ) + c (K) .
Then MK ≥MS.
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Proof.

MK = z (K\P )− r (K\P ) + c (K)
≥ x (K\P )− r (K\P ) + c (K)
= x (K\T )− r (K\T ) + c (K)
≥ x (K\T )− r (K\T ) + c (K ∪ T )
≥ x (S\T )− r (S\T ) + c (S\T ∪ T )
= MS,

where the first inequality follows from the definition of a counterobjection, the second
from decreasingness of the cost function, and the third inequality from Lemma 4.1 iii). 2

Proposition 4.4 Let hN,V, (Ai)i∈N , w, (ri)i∈Ni be a shortest path problem and (N, v) the
associated shortest path game. Then the core and the bargaining set of (N, v) coincide.

Proof. We already know that C (N, v) ⊆ B (N, v). To prove that C (N, v) ⊇ B (N, v).
Let x ∈ I (N, v) \C (N, v) and T = {i ∈ N : xi < ri}. Then lemma 4.1 i) gives T 6= ∅. Let

S ∈ arg max
P∈2N

v (P )− x (P ) .

Then lemma 4.1 iii) gives that S\T solves
min
P⊆N\T

x (P )− r (P ) + c (P ∪ T ) .

Let (S, y) be an objection of player i ∈ T against player j ∈ N\S with
j ∈ arg max

t∈N\S
xt − rt.

Suppose that (K, z) is a counterobjection of j ∈ N\S i.e. z is a K-feasible payoff vector
such that:

zk ≥ xk ∀k ∈ K\S
zk ≥ yk > xk ∀k ∈ K ∩ S.

Let P := K ∩ T, so P ⊂ T. Lemma 4.2 ii) gives that P 6= ∅. Define
MS := x (T\S)− r (T\S) + c (S)

and
MK := z (K\P )− r (K\P ) + c (K) .

Discern five cases:
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CASE I: c (S) > 0 and S = T
Define

yk = xk +
rk − xk

r (T )− x (T ) (v (S)− x (S)) ∀k ∈ S = T.

Then y (S) = v (S) and rk > yk > xk ∀k ∈ S = T , since rk > xk for all k ∈ S = T and
0 < v (S) − x (S) = r (S) − c (S) − x (S) < r (S) − x (S) = r (T ) − x (T ) implies that
v(S)−x(S)
r(T )−x(T ) ∈ (0, 1) . So (S, y) is an objection. Then:

MK ≥ MS

= c (S)

= r (T )− y (T )
= r (T\ {i})− y (T\ {i}) + ri − yi
> r (T\ {i})− y (T\ {i})
≥ r (P )− y (P )
≥ r (P )− z (P )
= MK.

where the first inequality follows from Lemma 4.3. The first equality follows from S = T
and y (T ) = v (T ) = r (T ) − c (T ) . The second inequality follows from ri > yi when
c (S) > 0. The third inequality from P ⊂ T and rk > yk ∀k ∈ T. The last inequality
follows from z (P ) ≥ y (P ) by definition of a counterobjection. But MK > MK is a
contradiction. Hence there is no counterobjection (K, z).

CASE II: c (S) > 0, S 6= T
Then

0 < v (S)− x (S)
= r (S)− c (S)− x (S)
= r (S\T )− x (S\T )− c (S) + r (T )− x (T )
< r (T )− x (T ) ,

where the last inequality follows from r (S\T ) − x (S\T ) ≤ 0 and c (S) > 0. Hence
v(S)−x(S)
r(T )−x(T ) ∈ (0, 1).
Let ε ∈

³
0, (ri − xi) v(S)−x(S)r(T )−x(T )

´
and define

yk = xk +
rk − xk

r (T )− x (T ) (v (S)− x (S)) ∀k ∈ T\i

yi = xi +
ri − xi

r (T )− x (T ) (v (S)− x (S))− ε

yk = xk +
ε

|S\T | ∀k ∈ S\T.

9



Then y (S) = v (S) and rk > yk > xk ∀k ∈ T , yk > xk ∀k ∈ S\T, so (S, y) is an objection
of i against j. Then

MK ≥ MS

= x (S\T )− r (S\T ) + c (S)
= r (T )− x (T ) + x (S)− r (S) + c (S)
= r (T )− x (T ) + [x (S)− v (S)]
= r (T )− y (T )− ε

= r (T\ {i})− y (T\ {i}) + ri − yi − ε

> r (T\ {i})− y (T\ {i})
≥ r (P )− y (P )
≥ r (P )− z (P )
= MK ,

where the first inequality follows from Lemma 4.3. The fourth equality follows from
y (T ) = x (T ) + v (S) − x (S) − ε. The second inequality follows from ri − xi > 0 and
v(S)−x(S)
r(T )−x(T ) ∈ (0, 1) . But MK > MK is a contradiction. Hence there is no counterobjection

(K, z).

CASE III: c (S) = 0, S = T
Let yk = rk ∀k ∈ S = T . Then (S, y) is an objection. By monotonicity c (N) = 0. Hence
x (N) = v (N) = r (N) and v (S) = r (S) > x (S) implies r (N\S) < x (N\S), so rj < xj.
Then

zk ≥ xk ≥ rk ∀k ∈ K\S, k 6= j
zj ≥ xj > rj

zk ≥ yk = rk ∀k ∈ K ∩ S.
This gives z (K) > r (K) ≥ v (K), contradicting that z (K) = v (K) . Hence there is no
counterobjection (K, z).

CASE IV: c (S) = 0, S 6= T , rk = xk ∀k ∈ S\T
Let

yk = rk if k ∈ T\ {i}
yi = ri − ε

yk = rk +
ε

|S\T | if k ∈ S\T.

with ε ∈ (0, ri − xi) . Then y (S) = r (S) = v (S) and yk > xk ∀k ∈ S, so (S, y) is an
objection. As in CASE III rj < xj . Then

zk ≥ xk ≥ rk ∀k ∈ K\S, k 6= j
zj ≥ xj > rj

zk ≥ yk = rk ∀k ∈ K ∩ S.
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So z (K) > r (K) ≥ v (K) , a contradiction. Hence there is no counterobjection (K, z).

CASE V: c (S) = 0, S 6= T , rk < xk for some k ∈ S\T
Then

0 < v (S)− x (S)
= r (S)− c (S)− x (S)
= r (S\T )− x (S\T )− c (S) + r (T )− x (T )
< r (T )− x (T ) ,

where the last inequality follows from r (S\T ) − x (S\T ) ≤ 0 and c (S) > 0. Hence
v(S)−x(S)
r(T )−x(T ) ∈ (0, 1).
Proceeding as in Case II yields a contradiction. Hence there is no counterobjection

(K, z).

Since the five cases are exhaustive, there exists an uncountered objection for each
x ∈ I (N, v) \C (N, v) . This shows that C (N, v) ⊇ B (N, v), finishing the proof. 2

Notice that case II and IV are almost identical and that case III and IV are similar to
each other.
The bargaining set of Zhou (1994) imposes additional conditions on the counterobjec-

tion (K, z) in the proof above, namely:

• K\S 6= ∅, which is true since j ∈ K\S;
• S\K 6= ∅, which is true since i ∈ S\K;
• S ∩K 6= ∅, which is true since S ∩K = P 6= ∅.

Consequently the proof also indicates that the core coincides with Zhou’s bargaining set.
It is easy to see that the core and bargaining set do not necessarily coincide in the

shortest path games of Fragnelli et al. (2000); their games are not necessarily balanced,
while the bargaining set always is nonempty.
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