
 

 

SOCIAL INTERACTIONS AND UNEMPLOYMENT # 
 

 

 Yvonne Åberg* 

 Peter Hedström* 

 Ann-Sofie Kolm** 

 

This version: June 2003 

 

 

 

 

Abstract 
 

This paper is concerned with social interactions and their importance for unemployment. A 
theoretical model is specified in which the social and psychological costs of unemployment 
depend upon the unemployment level. The theoretical analysis reveals social multiplier 
effects, and shows that multiple unemployment equilibria may emerge. Data on all 20- to 24-
year-olds living in the Stockholm metropolitan area during the 1990s are used to test key 
hypotheses derived from the model. The focus is on the role of neighborhood-based reference 
groups, and the results support the theoretical predictions: unemployment levels vary more 
across neighborhood-groups than what would be expected based on variation in observable 
characteristics, and individuals’ transition rates out of unemployment appear to be strongly 
influenced by the unemployment level within their neighborhood-based reference groups.  
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1. Introduction  

During the last several years, social scientists and policy makers have paid increasing 

attention to the importance of neighborhood-based social interactions. Although part of the 

neighborhood effects reported in the literature are undoubtedly due to unobserved differences 

among the individuals residing in different neighborhoods,1 the weight of evidence seems to 

suggest that neighborhood-based interactions are important for explaining the emergence and 

persistence of various kinds of social problems. Some of the best empirical work to date (e.g., 

Katz, Kling, and Liebman 2001; Ludwig, Duncan, and Hirschfield 2001) strongly suggests 

this to be the case, and given what we know about individual behavior in other realms of 

society, it would be most surprising if neighborhood-based interactions were of negligible 

importance.  

 

While economic theory has traditionally assumed that all interactions are mediated via the 

price mechanism, the study of social interactions has a long tradition in sociology, and in 

many ways social interactions are what sociology is all about.2 Most sociologists would be as 

surprised to learn that social interactions were of negligible importance as most economists 

would be to learn that individual choices were unimportant. In both cases, the prior belief is 

so strong that only the most persuasive evidence could lead to its revision. This being said, it 

is obvious that much of the sociological research on social interactions is open to different 

interpretations, and that the processes must be specified with much more precision than is 

often done today.   

 

In this paper we focus on the role of social interactions in explaining unemployment. We will 

try to be fairly precise as to why we believe that social interactions are likely to influence 

unemployment, and we will use a large-scale dataset to try to assess their importance. In the 

next section, we will define more precisely what we mean by a social-interaction effect, and 

we will distinguish between different types of social-interaction effects on the basis of how 

the action of one individual influences that of another. Thereafter we develop a theoretical 

model that allows us to consider how unemployment levels and transition rates out of 

unemployment are likely to be affected if social-interaction processes are at work. We start 

off within a partial equilibrium framework (section 3) and then we consider the implications 

                                                 
1 See Jencks and Mayer (1989), Evans, Oates, and Schwab (1992), Manski (2000), Ginther, Haveman 
and Wolf (2000), Moffitt (2001), and Sampson, Morenoff, and Gannon-Rowley (2002) for surveys and 
critical discussions of the literature on neighborhood effects. 
2 As Max Weber, one of the founding fathers of sociology, once expressed it: “Sociology (…) is a 
science concerning itself with the interpretative understanding of social action and thereby with a 
causal explanation of its course and consequences.” An action is “social” if “its subjective meaning 
takes account of the behavior of others and is thereby oriented in its course.” (Weber [1921-2] 1978:4). 
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of social interactions within a general equilibrium framework (section 4). In section 5 we use 

empirical data to test some of the key predictions of the model. First, we focus on variations 

in unemployment levels between different neighborhoods, and then we examine whether the 

unemployment levels within neighborhood-based reference groups appear to systematically 

influence individuals’ transition rates out of unemployment as the theoretical model suggests 

that they should. Finally, in section 6, we summarize our results and discuss some 

implications of our results. 

 

We believe that this paper contributes to the existing literature both theoretically and 

empirically. Economic modeling of social processes has made substantial progress since the 

highly influential work by Akerlof (1980). For example, social norms and social customs 

have now been incorporated into models of criminal behavior (Glaeser et al. 1996), savings 

and growth (Cole et al. 1992), and tax evasion (Gordon 1989). The modeling in the present 

paper is most closely related to the analyses of welfare stigma and welfare use by Besley and 

Coate (1992) and Lindbeck et al. (1999). These studies focus on the individual’s voluntary 

choice between living off of social welfare benefits or earning one’s own living. The 

modeling in the present paper differs from these in that we focus on the social and 

psychological costs of involuntary unemployment, and we use a model in which wages and 

unemployment are endogenously determined.  

 

Our model extends the basic search model of Pissarides (2000) and takes into account the 

interaction-based costs of being unemployed. More precisely, our model assumes that the 

social and psychological costs of being unemployed fall when the unemployment level among 

others increases. We start off in a partial equilibrium framework with exogenous wages.  

Thereafter we endogenize wages and consider the implications of social interactions for 

general equilibrium. In equilibrium, the unemployment level is affected by social interactions 

because the social and psychological costs they give rise to influence the search intensity of 

the unemployed and the wage bargains being struck. We show that multiple unemployment 

equilibria may emerge.  

 

Considering that it is rather well recognized in the public debate that social interactions can 

reduce the social and psychological costs of being unemployed and thereby lead to the 

establishment of unemployment ‘cultures’, one would have expected there to be a significant 

number of relevant models featuring unemployment as an endogenous outcome. However, to 

the best of our knowledge, this is the first model of equilibrium unemployment that shows 

how social and psychological costs of involuntary unemployment can influence 

unemployment levels. 
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Our paper is also related to a growing body of empirical work on the importance of social 

interactions for various social and economic processes. Crane (1991) analyzed the importance 

of social interactions for teenage childbearing and school dropout in the United States. 

Hedström (1994) studied the diffusion of trade unions in Sweden at the turn of the 19th 

century from a social-interaction perspective. Glaeser et al. (1996) examined the role of social 

interactions in explaining crime and crime rates in contemporary United States. Ichino and 

Maggi (2000) analyzed the role of social interactions in explaining differences in absenteeism 

from work between northern and southern Italy. Kohler et al. (2001) studied fertility decisions 

in Kenya from a social-interaction perspective, and Bearman and Brückner (2001) analyzed 

the importance of social interactions and ‘virginity pledges’ among contemporary adolescents 

in the United States for the timing of the first intercourse. Many more examples could have 

been mentioned.  

 

Our paper differs from these studies not only in terms of its substantive focus but also in its 

research design.3 We have access to a rather unique dataset that reduces some of the problems 

encountered in previous analyses of social-interaction processes.4 First of all, our dataset has 

sufficiently many data points that we can confine the analysis to individuals residing within 

the same local labor market. We thereby reduce the risk of mistaking spatial variations in 

vacancy rates and other environmental conditions for social-interaction effects. Second, and 

to anticipate one of the empirical findings reported later in this paper, there appears to be a 

great deal of individual heterogeneity in the susceptibility to social influence from others. In 

order to control for such heterogeneity, it appears essential to use micro-level data. Our 

dataset is a nine-year panel with information on the exact length of all unemployment spells 

and detailed information on a range of relevant covariates for approximately 95,000 20- to 24-

year-olds who resided in the Stockholm metropolitan area during the 1990s. In combination 

with fixed-effect specifications this type of data gives precision to the analysis and is likely to 

reduce omitted-variable bias. Finally, we have data on all individuals residing in this 

geographical area, including information on their residential addresses. This gives us more 

flexibility in defining and measuring the behavior of potentially important reference groups 

                                                 
3 See Topa (2001) and Topa and Conley (2002) for two studies with a substantive focus similar to ours. 
Their research design is rather different, however, in that they base their analyses on aggregate data.  
4 Broadly speaking, three general types of problems are at the core of empirical analyses of social 
interactions: (1) Section effects and omitted-variable bias can easily be mistaken for social-interaction 
effects. (2) It is difficult to identify social interaction effects because of the ‘reflection problem’, 
particularly when using cross-sectional data. (3) Existing datasets do not typically allow the behavior of 
relevant peer groups to be properly measured. See Manski 1995, Durlauf 2001, and Moffitt 2001 for 
more details.  
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than has typically been possible in previous studies. Our research design most closely 

resembles that of Bertrand et al. (2000) in that we focus on how individuals’ behavior is 

related to the typical behavior in tightly defined reference groups after controlling for time-

invariant omitted variables using fixed-effect specifications. An important difference between 

our study and that of Bertrand et al. is that we have access to detailed panel data, while they 

based their analyses on cross-sectional data. 

 

2. Social-interaction effects 

As mentioned above, this study is motivated by a prior belief in the importance of social 

interactions. Before analyzing how social interactions are likely to influence unemployment, 

we will try to define more precisely what we mean by a social-interaction effect, and how such 

effects differ from other related types of behavioral patterns. 

 

One can distinguish between at least three types of effects that can result in individuals in a 

group acting in a similar manner, and only one of these has anything to do with social 

interactions. We can use the following example from Max Weber to clarify the differences 

between these types of effects: 

 

Social action is not identical with the similar actions of many persons.... Thus, 

if at the beginning of a shower a number of people on the street put up their 

umbrellas at the same time, this would not ordinarily be a case of action 

mutually oriented to that of each other, but rather of all reacting in the same 

way to the like need of protection from the rain. (Weber, [1921-22] 1978:23) 

 

This piece of everyday behavior is not ‘social action’ explained by some form of interaction 

between the people on the street, but is due to an environmental effect, in this case a rainfall 

that made all actors adjust their action in a similar manner. Such environmental effects can 

easily be mistaken for interaction effects. Assume that Weber’s rainfall started at one end and 

gradually spread along the street. The pattern of umbrella use would then ‘diffuse’ in a way 

that could easily give the impression of being a genuine social-interaction effect, where one 

individual’s umbrella use increased the likelihood that adjacent persons would use one as well 

(Hedström, Sandell, and Stern 2001).  

 

Even if during said rainfall we observed that the frequency of umbrella use was higher among 

those walking on one street than on another, this would not necessarily mean that we were 

observing the outcome of some sort of interaction process. It could simply be due to a 
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selection effect, in this case that individuals with a preference for using umbrellas for some 

reason ended up walking on one of the streets rather than on the other. For example, if the 

stores on one street catered to young people, the observed pattern simply could be due to an 

age-based selection effect since young people are less likely to use umbrellas. If we do not 

take such differences into account we may easily mistake selection effects for social-

interaction effects.  

 

Environmental effects and selection effects differ from social-interaction effects in that the 

correlated behavior they give rise to has nothing to do with individuals influencing one 

another. A social-interaction effect exists if -- and only if -- it was the umbrella use of others 

that influenced the focal individual’s use of the umbrella. A bit of introspection on our part 

suggests that we sometimes hesitate to use an umbrella for reasons of vanity; being the only 

person using an umbrella could indicate to others that we were excessively concerned with our 

appearances. Although we would have liked to use an umbrella, we decided against it in order 

not to send such signals. But once others started to use their umbrellas we quickly followed 

suit. This would then be an example of a social-interaction effect because it was the actions of 

others that influenced our decision to use the umbrella.  

 

The distinctions introduced so far may be summarized as follows: An environmental effect is 

operative if we do what we do because we are where we are. A selection effect is operative if 

we do what we do because we are who we are. And finally, a social-interaction effect is 

operative if we do what we do because others do what they do. 

 

Social-interaction effects can arise for rather different reasons, and in order to better 

understand why we observe what we observe it is useful to try to distinguish between them. 

As suggested by Hedström and Swedberg (1996), one can distinguish between at least three 

broad types of social interactions, opportunity-based, belief-based, and desire-based 

interactions (see also Manski 2000 for similar distinctions). Consider the case of an 

unemployed individual and an action that influences the likelihood that the individual will 

remain unemployed. How can the unemployment level among others influence this action? 

The general answer is that this can occur in three different ways: (1) the unemployment 

level among others can influence the focal individual’s opportunities, and thereby his or her 

choice of action; (2) it can influence the focal individual’s beliefs, and thereby his or her 

choice of action; and/or (3) it can influence the focal individual’s desires, and thereby his or 

her choice of action.  
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In the theoretical model to be developed in the next section we focus on desire-based 

interactions, i.e., on how the unemployment level among others influences the social and 

psychological costs of being unemployed and thereby subsequent unemployment levels and 

unemployment spells. Our focus on desire-based interactions does not mean that we 

consider the other two types of mechanisms to be of lesser importance. As unemployed 

individuals often find jobs via employed friends or acquaintances (Granovetter 1995, Topa 

2001, Calvo-Armengol and Zenou 2001), and as the unemployment levels among others 

often influences unemployed individuals’ beliefs about the prospect of finding a job and 

thereby their search intensity (Sweitzer and Smith 1974), opportunity-based and belief-

based interactions are likely to be important as well. At least as far as the unemployed 

individuals’ likelihood of leaving unemployment is concerned, these opportunity- and 

belief-based interactions are likely to operate in the same direction as the desire-based 

interactions. That is to say, the changes in beliefs and opportunities that result from other 

individuals’ becoming unemployed are also likely to lower the rate at which individuals 

leave unemployment. Therefore, they are likely to amplify rather than counteract the social-

interaction effects focused upon in the theoretical analysis.5 

 

One reason for expecting desire-based interactions to be important in the context of 

unemployment is the existence of strong normative pressures to earn one’s living. Being 

unemployed usually means that one cannot live up to this norm, and this may bring about 

feelings of shame or embarrassment (Elster 1983). In Zawadski and Lazarsfeld’s classical 

study of the psychological effects of unemployment in Poland in the 1930s one can find the 

following autobiographical note of an unemployed mason: 

 

How hard and humiliating it is to bear the name of an unemployed man. When I 

go out, I cast down my eyes because I feel myself wholly inferior. When I go 

along the street, it seems to me that I can’t be compared with an average citizen, 

that everybody is pointing at me with his finger. I instinctively avoid meeting 

anyone. Former acquaintances and friends of better times are no longer so 

cordial. They greet me indifferently when we meet. They no longer offer me a 

cigarette and their eyes seem to say, ”You are not worth it, you don’t work.” 

(Zawadski and Lazarsfeld 1935:239) 

 

Although the details of the Polish mason’s experiences may seem a bit dated, they highlight 

an important aspect of the unemployment experience that is as present today as it was in 

                                                 
5 The empirical analysis is likewise concerned with social interactions in general and not only with 
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Poland in the 1930s: being unemployed is often associated with strong feelings of shame and 

embarrassment.  

 

An important reason why the unemployed often experience emotions such as these is that 

their situation deviates from what is considered normal or typical in their own reference group 

(Sherif and Sherif 1964). Since reference groups vary from individual to individual, however, 

the normative pressure is not likely to be felt equally intensely by everyone. In particular, the 

more common it is to be unemployed in a group, the weaker the normative pressure is likely 

to be, and the less likely it is that an unemployed individual will experience such emotions. 

As Lindbeck has expressed it: “Habits and social norms among individuals may often be more 

connected with subgroups in society than with the values of the population as a whole. This 

means that ‘unemployment cultures’ may develop within groups of interacting individuals 

who share similar unemployment experiences” (1996:18).  

 

Desire-based interactions are also likely to be important for reasons that are unrelated to 

social norms. Being the only unemployed individual, for example, is likely to be a rather 

lonely and dull existence compared to one in which many of one’s friends and acquaintances 

also are unemployed.6 Thus, an increase in unemployment among an individual’s friends and 

acquaintances is likely to reduce the social and psychological costs of being unemployed 

through several different types of mechanisms.  

 

There is a paucity of research on how the unemployment level among others influences the 

social and psychological costs of being unemployed. One important exception is Clark 

(2003). Using data from the British Panel Household Study, he reported results suggesting 

that the unemployment of others indeed influences an individual’s unemployment experience. 

He found that it was easier for individuals to cope with unemployment (as measured with an 

index of subjective well-being) if they lived in places where many other people were 

unemployed, or if others in the household were unemployed.  

 

The ‘others’ who influence a focal individual’s social and psychological costs can either be 

specific individuals with whom the individual interacts, or be some form of ‘generalized 

                                                                                                                                            
desire-based interactions. 
6 As part of this study we conducted a series of in-depth interviews with unemployed individuals in the 
Stockholm region (see Wallander 2002). In these interviews the importance of the unemployment of 
friends and acquaintances is a recurrent theme. One person expressed himself in the following way: 
“Now with this beautiful weather it is wonderful to be unemployed. I have many friends who are 
unemployed, so I can meet them during the days. Instead of being locked up inside an office all the day 
one can be outside and play soccer. […] But if all my friends were working I would want to do so as 
well. Otherwise I would just sit at home without anything to do.” 
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other’ representing a typical individual or a typical standpoint. In the latter case we no longer 

have an example of direct interaction between individuals, but an interaction between an 

individual and a social aggregate. The difference is well described in the following everyday 

example from Schelling: “I interact with an individual if I change lanes when his front 

bumper approaches within five feet of my rear bumper; I interact with a social aggregate 

when I adjust my speed to the average speed on the highway” (1998:33). In the model to be 

developed in the next section we assume that the interaction is mediated via a social 

aggregate, i.e., via the overall unemployment level. 

 

3. A partial equilibrium search model with social interactions 
In this section we present a theoretical model that in a straightforward way captures some 

core features of social interactions. More specifically, we extend the basic search and 

matching model of Pissarides (2000) to take into account desire-based social interactions. We 

start off in a partial equilibrium framework where wages are assumed to be exogenous. This 

allows for a clear focus on how the search behavior of the unemployed is likely to be affected 

by social interactions. As will become clear, due to social interactions, individual search 

behavior will be altered in such a way that it reinforces the effects on unemployment of 

exogenous chocks. The mechanisms behind these social-multiplier effects will later be the 

focus of our empirical analysis. Thereafter we take the theoretical analysis one step further 

and ask what the implications of social interactions are likely to be for unemployment in 

general equilibrium. As will become clear, the multiplier effects due to adjustments in search 

behavior will be reinforced by wage adjustments. Moreover, we show that multiple 

unemployment equilibria may emerge.  

 

3.1 Matching  

Consider an economy with a fixed labor force, the size of which, for simplicity, is normalized 

to unity. Workers are either employed or unemployed. The economy is characterized by 

trading frictions due to the costly and time-consuming matching of workers and firms. The 

matching process is captured by a concave and constant-returns-to-scale matching function, 

H=h(v,su) , which relates new hires, H, to the number of vacancies supplied by firms, v, and 

to the number of effective job searchers, su. s denotes search intensity and u the number of 

unemployed workers. As the labor force is normalized to unity, we interpret u as the 

unemployment rate and v as the vacancy rate. Firms fill vacancies at the rate H/v=q(θ), where 

θ = v/su is labor market tightness. The rate at which an average unemployed worker finds a 

job is given by sH/u=sλ(θ). Clearly we have λ′(θ) > 0 and q′(θ) < 0. 
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In equilibrium the flow into unemployment equals the flow out of unemployment, i.e., φ(1−u) 

= sλ(θ) u, where φ is the exogenous separation rate. Unemployment is then given by: 

( )θλφ
φ
s

u
+

= ,             (1) 

which depends positively on the exogenous separation rate, φ, and negatively on search 

intensity, s, and tightness, θ.  

 

3.2 Workers and firms  

Let U and E denote the expected present value of unemployment and employment, 

respectively. The flow values for an unemployed worker with search intensity is  and for an 

employed worker are then: 

( ) ( ) ( )( )iiii UEsucszrU −+−−= θλσ ,       (2) 

( )UEwrE −−= φ ,         (3) 

where z is positive returns to unemployment, which may include unemployment benefits, 

home production, or some pure value of leisure; ( )isσ  is the cost of search, where ( ) 0.' >σ  

( ) 0.'' >σ ; w  is the exogenously given wage; and r is the discount rate. The term c(u) 

captures that the worker experiences a social and psychological cost of being unemployed. 

This cost is lower the higher the unemployment level is, i.e., c′(u) < 0. By introducing a cost 

function that depends negatively on unemployment, we capture that the wellbeing of an 

unemployed worker is greater when he or she interacts with many other unemployed workers, 

and vice versa when the unemployment level is low. Recall from the previous discussion that 

this is in line with what Clark (2003) found in his analysis of British survey data. 

 

We assume that the unemployed worker chose search intensity, is , so as to maximize the 

present discounted value of income during search, iU , taking macro variables as given. This 

yields: 

( ) ( )( )ii UEs −= θλσ ' ,                  (4) 

where the left-hand side is the marginal cost of search, and the right-hand side is the expected 

return from increased search. Search effort will be greater the tighter the market is, and the 

greater the utility gain of getting a job is. 

 

Let J and V represent the expected present values of an occupied job and a vacant job, 

respectively. The marginal product of a worker is constant and denoted y. The cost of holding 
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a vacancy open is equal to ky.7 The arbitrage equations for a firm with an occupied job paying 

wage w , and for a firm holding a vacancy, are then given by:  

( )JVwyrJ −+−= φ ,         (5) 

( )( ) .kyVJqrV −−= θ          (6) 

In equilibrium, firms will open vacancies as long as it yields positive rents. This drives rents 

from vacant jobs to zero, i.e., at equilibrium we will have V=0. If we impose this free entry 

condition, V=0, on equations (5) and (6), we derive the following expression:  

( )
( ) 







 +
−=

θ
φ

q
rkyw 1 .         (7) 

As the wage is exogenously given by w , we have: 





=

−+−−−

φθθ ,,,, yrkw . 

 

With tightness given by (7) and search intensity, is , given by (4), we can use (2) and (3) to 

find the equation determining s. If we impose the symmetry assumption ssi =  and use (1) to 

express the social and psychological cost function in terms of s in equilibrium, we arrive at 

the following expression:  

( ) ( ) ( ) ( )( )
( )( )θλφ

θσθλσ
sr

scszws
++

++−
=

,' .       (8) 

We are now in a position to substantiate our previous claim that social interactions are likely 

to reinforce the effects on unemployment of exogenous chocks, such as a productivity chock 

(see Figure 1). The vertical line denoted JC follows from (7), and shows that tightness is 

unaffected by search intensity. The steep positively sloped line denoted si follows from (8).8 

The same is true for the less steeply sloped line denoted ~si, but ~si describes the situation 

when social interactions are absent.9 An exogenous chock, such as an increase in productivity 

y, will shift the vertical line to the right, i.e., it will lead to an increase in tightness as firms 

                                                 
7 We assume that the cost of holding a vacancy is indexed to the wage. This is, however, not important 
for anything we show in this paper. 
8 Figure 1 illustrates how a productivity increase raises search intensity by relatively more in the 
presence of social interactions when the initial equilibrium is stable. In the case of an exogenous chock 
in an unstable equilibrium, the economy will converge to a stable equilibrium. Using equation (8) to 
derive the slope of si in θ−s  space, we can show that it has a positive slope, whenever there is a 
stable equilibrium. Whether we have multiple equilibria or not is unimportant for the reinforcing 
mechanism focused upon here. In the next section we will deal more explicitly with multiple equilibria.  
9 Figure 1 shows how search intensity varies with tightness in the presence and absence of social 
interactions. In order for the lines s and ~s to jointly intersect with the job creation curve at a particular 
search intensity, the value of leisure net of search costs and social and psychological costs of 
unemployment is chosen to be identical at that point.  
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then will find it optimal to open up more vacancies relative to the number of effective job 

searchers. More vacancies will, in turn, increase search. Therefore unemployment will fall 

both because of the increase in vacancies and the increase in search. As can be seen in Figure 

1, these effects will be reinforced by social interactions. When unemployment falls, the social 

and psychological costs of unemployment increase. This gives the unemployed an additional 

incentive to increase their search, and this will increase their chances of leaving 

unemployment.  

s

θ

JC

~si

si

 
Figure 1. Changes in search behavior due to an exogenous tightness-increasing chock.  

 

The mechanism producing these effects is thus one that makes the social and psychological 

costs of being unemployed a negative function of the unemployment level. If this mechanism 

is at work, an important empirical implication seems to follow. When the unemployment level 

falls, it becomes more costly to be unemployed, and this will motivate the unemployed to 

search more intensively for a job. This, in turn, is likely to increase the rate at which 

unemployed individuals leave unemployment. If social interactions are important for labor 

market behavior, we should expect to find that transition rates out of unemployment are 

systematically related to the unemployment levels in the relevant reference groups. 

 

Moreover, if this mechanism is at work, yet another important empirical implication seems to 

follow. If an unemployed individual’s relevant reference group is within a close geographic 

proximity (neighborhood), unemployment would appear to be ‘contagious’. If, just by chance, 

one unemployed individual increases his search effort and this results in him getting a job, 

this would also increase the search effort and hence the transition rates out of unemployment 
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for other unemployed individuals within this area. We should thus expect to find differences 

in the average search effort and transition rates out of unemployment across neighborhoods. 

This, in turn, implies that we should find differences in unemployment levels across 

neighborhoods even if the individuals in the neighborhoods are identical to one another in all 

relevant respects. 

 

4. A general equilibrium search model with social interactions 
In the previous section we showed that social interactions are likely to reinforce the effects 

that exogenous chocks have on search effort. In this section we carry the analysis one step 

further by analyzing the implications of social interactions within a general equilibrium 

framework.  

 

We endogenize wages by assuming match-specific wage bargains between workers and firms. 

With endogenous wages, it follows from (7) that the job creation curve is negatively sloped in 

the wage-tightness space (see Figure 2). This negative relationship can be thought of as a 

demand side relationship. Next we derive the supply side relationship, which we will refer to 

as the wage curve.  

 

4.1 Wage determination 

When the matched firm and worker bargain over the wage, iw , they take economy-wide 

variables as given. The Nash bargaining objective for a firm-worker pair is given by Ωi=[ 

Ei−U]β [ Ji−V]1−β, and the Nash bargaining solution satisfies the following first order 

condition:  

UEJ −=
− β
β

1
,         (9) 

where symmetry across firms and workers have been imposed, i.e., ssww ii == , .  

 

By using (2), (3), (5), and (6) in (9), and by assuming free entry, V = 0, the ‘bargained’ wage 

can be written as:  

( ) ( ) ( ) ( )( )ucszkyw −−−++1 = σβθβ 1 ,      (10) 

which simply says that the wage is set in such a way that the surplus from the match is split 

between the parties according to their relative bargaining strength. The equilibrium 

relationship between search intensity and tightness can be derived from (4), using (9) and the 
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fact that 
( )θq
kyJ =  from (6). More specifically, we then have the following relationship 

between search and tightness in equilibrium:  

( )
β

βθσ
−

=
1

' kys .          (11) 

With no, or a fixed, social and psychological cost of unemployment, we would have a unique 

equilibrium of wage, tightness, unemployment, and search intensity (see Pissarides 2000). 

However, the uniqueness of an equilibrium does not necessarily hold when we take social 

interactions into account and allow for the fact that the social and psychological costs of being 

unemployed depend on the number of unemployed workers.  

 

This can be seen if we differentiate the expression for the bargained wage in (10) with respect 

to the wage, w, and tightness, θ, (recognizing that ( )( )θλφφ su += /  and that s is determined 

by ( ) ( )ββθσ −= 1/' kys ). This yields the following expression for the slope of the wage 

curve: 

( ) ( ) ( ) ( )
θ

β
θ

σββ
θ d

duc
d
dsyk

d
dw .'1.'1 −−−−= .       (12) 

The first term in (12) is positive because the tighter the market, the more vacancy costs will 

be saved per unemployed worker when a job is created, and workers reap a fraction of these 

saved vacancy costs.10 The second term is negative because an increase in tightness also leads 

to an increase in search effort. This has a direct negative effect on the value of being 

unemployed and will induce wage moderation. The third term is also negative because 

increased tightness leads to lower unemployment, and thereby to an increase in the social and 

psychological costs of being unemployed. These increasing costs will induce wage 

moderation as the value of being unemployed falls with higher social and psychological costs 

of being unemployed. 

 

With social interactions, multiple equilibria may emerge. Numerical analyses presented in the 

appendix reveal that even when search intensity is exogenous, multiple equilibria emerge for 

                                                 
10 In the absence of social interactions and endogenous search, the wage curve would appear as a 
positively sloped linear schedule in Figure 2. There would be a unique equilibrium determining 
tightness and wage. Also, in the absence of social interactions but in the presence of endogenous 
search, one unique equilibrium would prevail. See Pissarides 2000.  
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fully realistic parameter values.11 Figure 2 illustrates the situation. The left-hand figure is 

based on a negative convex relationship between the social and psychological costs of being 

unemployed and the unemployment level, whereas the right hand figure represents a more 

realistic case with an inversed S-shaped relationship. In the former case two equilibria exist, 

while in the latter we observe three equilibria.12  

w

θ

JC

WC

w

θ
J C

WC

 
Figure 2. Equilibrium wages and tightness in the presence of social interactions. 

 

The inverse S-shaped relationship implies that when the unemployment level is low a given 

change in unemployment will only have a marginal effect on the social and psychological 

costs of being unemployed. The situation is similar when the unemployment level is very 

high. But in between these two extremes there is a region where the effect is rather 

substantial, i.e., in this region even a small change in the unemployment level can bring about 

a substantial change in the social and psychological costs of being unemployed.13  

                                                 
11 Endogenous search makes multiple equilibria even more likely. This is clear from (12). With 
exogenous search, the second term on the right hand side vanishes. Moreover, we have 

( )
( )

θθ
λ

λθ ∂
∂

∂
∂

+
∂

∂
∂
∂

=
∂
∂ s

s
uuu .

.
, where the second term vanishes when search is exogenous.  

12 Those equilibria in which the wage curve intersects the job creation curve from below when moving 
towards the right are the stable ones. As these equilibria refer to steady states, we need to impose some 
dynamic adjustments in order to say something about stability. By imposing the same adjustment 
mechanism as in Pissarides (2000), we can show that the equilibria in which the wage curve intersect 
the job creation curve from below when moving from left to right corresponds to the unique 
equilibrium in Pissarides, and this can be shown to be stable.  
13 Ideas similar to these were at the heart of Crane’s (1991) analysis of neighborhood tipping, and he 
reported empirical results supporting the hypothesis of non-linear threshold effects. Lindbeck et al. 
(1999) made an analogous assumption about the disutility of participation in welfare programs in order 
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The intuition behind the multiplicity of equilibria is straightforward. Given that we are located 

on the job creation curve, workers are satisfied with a low going wage rate if unemployment 

is low. The social and psychological costs of unemployment then are high, inducing the 

employed and the unemployed to do their utmost to avoid unemployment. Consequently, the 

unemployed will then search more intensively, and the employed will restrain their wage 

demands in order to avoid unemployment. An equilibrium with high wages and high 

unemployment may also emerge. When unemployment is high, the social and psychological 

costs of being unemployed are low, and hence workers will only be content with rather high 

wages. That is to say, when it is socially and psychologically more acceptable to be 

unemployed, wages are not moderated to the same extent as they would have been in a 

situation where it was socially more unacceptable to be unemployed.14  

 

Before proceeding to the empirical analyses, we should take note of the fact that social 

interactions make unemployment self-reinforcing due to adjustments in both wages and 

search effort. An exogenous chock that makes it optimal for firms to post more vacancies will 

reduce unemployment even if social interactions are not operative. But if social interactions 

are at work, we should also observe restrained wage demands as the social and psychological 

costs of being unemployed then increase because of the lower unemployment level. These 

restrained wage demands tend to increases tightness and reduce unemployment even further. 

Moreover, as search effort increases with tightness, social interactions tend to reinforce the 

effect of the initial reduction in unemployment through this mechanism as well.15  

 

5. Social interactions and unemployment in the Stockholm metropolitan 

area 

The focus of the preceding two sections has been on the consequences of a desire-based 

social-interaction effect that makes the social and psychological costs of being unemployed 

inversely related to the unemployment level among other things. As noted above, if this sort 

of mechanism is at work one should expect to find that the transition rate out of 

unemployment is lower if an individual is surrounded by many unemployed individuals than 

if he/she is surrounded by only a few unemployed individuals. Furthermore, these social 

                                                                                                                                            
to generate two stable equilibria. In the appendix an analytical solution corresponding to the left hand 
figure in Figure 2 can be found.   
14 Using data on a random sample of unemployed individuals in Sweden in the early 1990s, Samuelson 
(2002) reported results in support of this prediction. Controlling for a host of potentially confounding 
variables she found that those who lived in areas with high unemployment were less willing than those 
living in low-unemployment areas to accept jobs with lower pay than they previously had. 
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interaction effects can be expected to bring about variations in unemployment levels between 

groups of interacting individuals who are similar to one another with respect to relevant 

observables. These predictions will be the focus of our empirical analyses. 

 

Although our theoretical analysis focused exclusively on desire-based interactions, the 

predictions are likely to have been more or less the same had we used a more complex model 

that also allowed for opportunity-based and belief-based interactions. As noted above, 

opportunity- and belief-based interactions are likely to operate in the same direction as the 

desire-based interactions. That is to say, changes in relevant beliefs and opportunities that 

result from other individuals’ becoming unemployed are likely to amplify rather than to 

counteract the social-interaction effects focused upon in the theoretical analysis. 

 

5.1. Data 

The dataset that we used contains information on all 20- to 24-year-olds who lived in the 

Stockholm metropolitan area during the period from January 1992 to December 1999. We 

here define the Stockholm metropolitan area as consisting of the entire Stockholm County, 

except for the following municipalities, which are situated at the outskirts of the county: 

Norrtälje, Sigtuna, Upplands Bro, Södertälje, Nykvarn, and Nynäshamn. The size of the 

remaining land area is approximately 1010 square miles and the distance between the 

centroids of the two most distant municipalities, Vallentuna and Haninge, is approximately 30 

miles. Given the excellent public transportation system in this area, it seems reasonable to 

treat this area as one within which an unemployed individual could, at least in principle, take 

any job he or she was offered. 

 

The dataset contains information on 180,803 individuals in this age group. We obtained 

information from various administrative registers on their demographic characteristics, 

including age, sex, education, income, and country of birth. For those who were ever 

unemployed we know the dates and exact lengths of all their unemployment spells measured 

in number of days.16 During this time period, 95,775 individuals had at least one spell of 

unemployment between the ages of 20 and 24. 

 

We also know where these individuals lived at the end of each calendar year, and using this 

information we can adopt a reference-group definition that appears appropriate for our 

                                                                                                                                            
15 These reinforcing effects, which are not present if social interactions are absent, hold in stable 
equilibria irrespective of whether we have one unique equilibrium or multiple equilibria.  
16 We focus on ‘open’ unemployment, which means that we do not consider those engaged in labor 
market training programs and the like to be unemployed. 
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purposes. The Stockholm metropolitan area is divided into 699 so-called SAMS areas. These 

geographical areas, which have been constructed so as to contain socially homogeneous 

residential areas, serve as the basis for our definition of the relevant reference group. The 

reference group consists of those 20- to 24-year-olds who reside in the same neighborhood as 

the focal individual. During this period, the median number of 20- to 24-year-olds in such a 

neighborhood-based reference group was 66. 

 

We focus on neighborhood-based  reference groups because individuals’ reference groups to a 

large extent reflect their spatial locations. The closer two individuals are to one another, the 

more likely they are to interact and to influence each other’s behavior (Butt 2002, Wellman 

1996, Latané et al. 1995). Because of this, spatial distance and the probability of being part of 

a focal actor’s relevant reference group are likely to be inversely related to one another.  

 

We restrict the analysis to 20- to 24-year-olds for two major reasons. First, by focusing on this 

narrowly defined age group we are likely to reduce the magnitude of unobserved 

heterogeneity as compared to what would have been the case had we focused on the entire 

labor force.  Second, we focus on this age group because it is likely that their reference groups 

are to a large extent located in close geographic proximity. Social-interaction processes are 

likely to be just as important for other age groups, but then the need for detailed information 

on the networks linking the individuals to one another would have been more acute than it is 

in the case of the 20- to 24-year-olds.  

 

As mentioned above, the main reason for restricting the analysis to a single metropolitan area 

is that we wish to hold constant one of the most important environmental variables: the local 

labor market situation. Given the fairly short commuting distances within the Stockholm 

metropolitan area, it can, for all practical purposes, be viewed as one and the same labor 

market. Thus, by restricting the analysis to a single metropolitan area, we reduce the risk of 

mistaking spatial variations in vacancy rates and other labor market conditions for interaction-

based reference-group effects. 

 

5.2 Variations between neighborhood-based reference groups  
One important implication of the theoretical analysis was that social interactions can bring 

about different levels of unemployment even in groups of interacting individuals that are 

identical to one another in all relevant respects. If social-interaction mechanisms are at work, 

such that the social and psychological costs of being unemployed are lower in settings where 

many others are unemployed, we should expect to observe considerable differences in 

unemployment levels between groups of interacting individuals even when we control for 
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differences in their labor-market relevant characteristics. In order to examine whether or not 

this is the case, we will focus on the neighborhood-based reference groups defined above. To 

simplify the presentation, we will often refer to these neighborhood-based reference groups as 

’neighborhoods’. 

 

To identify neighborhoods that resemble one another in terms of their unemployment-relevant 

demographic characteristics, we estimated 96 logistic regression models, one for each month. 

In the regression models the dependent variable indicated whether an individual was 

unemployed or not at the 15th of the month, and the independent variables measured the 

individual’s age, sex, education, marital status, number of children, country of birth, whether 

or not the individual was a student, and whether or not the individual was a recent 

immigrant.17 Using these parameter estimates we then calculated each individual’s predicted 

probability of being unemployed, and then we summarized these predicted probabilities for 

those belonging to each neighborhood. By doing so we arrived at an estimate of the 

unemployment level one would have expected to observe in each neighborhood-based 

reference group on the basis of the demographic characteristics of its members. Two 

neighborhoods are similar to one another in their unemployment-relevant demographic 

characteristics if these expected unemployment levels are approximately the same. 

 

Figure 3 shows the unemployment levels within four sets of neighborhoods. In the first set the 

unemployment-relevant demographics were such that the logistic regression analyses 

suggested that they all had an unemployment level of 6 percent.18 The second set consists of 

neighborhoods with an expected unemployment level of 9 percent, and in the third and fourth 

sets the expected level is 12 and 15 percent respectively. These four sets represent 29 percent 

of all monthly neighborhood observations, corresponding to 16,217 ‘neighborhood-months’. 

 

 

                                                 
17 We used sets of dummy variables to distinguish between the following educational levels: primary 
school only, vocational training school, high school degree, and college degree; the following ’marital‘ 
statuses: living with parents, single household, and married or cohabiting; the following 
countries/regions of birth: Sweden, Eastern Europe or former Soviet Union, Middle East or Africa, and 
the rest of the world. Being a ’recently’ arrived immigrant was defined as having arrived to Sweden 
during the last three years, and being a ‘student’ was defined on the basis of whether or not the 
individual had received student allowance (studiebidrag) during the year. For the time-varying 
covariates we used the most recent measurement preceding the month being analyzed. To avoid that the 
results were unduly influenced by the small number of cases in some of the neighborhoods, we only 
included a neighborhood when it consisted of at least 10 individuals in this age range. 
18 The expected levels are equal to the predicted levels rounded to the nearest integer value. 
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Figure 3. Variation in unemployment levels between neighborhoods that are similar to one 

another in terms of unemployment-relevant demographic characteristics 

 

Figure 3 clearly shows that unemployment levels vary considerably also between 

neighborhoods that are highly similar to one another in terms of their unemployment-relevant 

demographics. In approximately 50 percent of these cases the actual unemployment level 

deviated by more than 25 percent from the expected level. Similarly, the ranges in actual 

employment levels were substantial. Among neighborhood-based reference groups with an 

expected unemployment level of 6 percent, in some there were no unemployment at all and in 

others 30 percent were unemployed. The corresponding ranges in the other three 

neighborhood sets were 0 to 40, 0 to 43, and 0 to 42 percent. 

 

Figure 4 shows how the unemployment levels varied across neighborhoods as measured with 

the standard deviation. The average standard deviation was equal to .052, which represents a 

rather substantial between-neighborhood variation, considering that the average 

unemployment level was .101. The lower graph shows the corresponding variation in 

expected unemployment levels. Clearly the variation in unemployment levels was much 

greater than the variation one would have expected on the basis of the variation in the 
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unemployment-relevant demographics of these groups. The observed between-neighborhood 

variation was on average 3.2 times greater than the expected variation.19  
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Figure 4. Between-neighborhood variation in unemployment levels, January 1992 to 

December 1999 

 

What these results seem to suggest is that the variation in unemployment levels between 

neighborhood-based reference groups is too large to be explainable in terms of the variation in 

their observable characteristics. Although we cannot know for sure whether this excess 

variation is due to social interactions, and particularly not whether it is due to desire-based 

social interactions, the pattern is the expected one, and therefore gives further weight to the 

social multiplier account of the theoretical analysis.  

 

 

 

                                                 
19 Needless to say, these differences are highly significant as the upper limit of the one-percent 
confidence interval is equal to 1.14. In separate analyses not shown in Figure 4, we also included the 
amount of sick allowance and the amount of social welfare payments received by the individuals 
during the preceding calendar year in order to further control for individual heterogeneity, and we also 
restricted the logistic regression analysis to those who had a high-school diploma in order to be able to 
include high-school grade point average as a predictor. Doing so did not change the observed pattern. 
Even after controlling for age, sex, education, marital status, number of children, country of birth, 
student status, being a recent immigrant, amount of sick allowance received, amount of social welfare 
payments received, and grade point average, the observed variation was 3.32 times higher than the 
expected variation. 
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5.3 Transition rates out of unemployment 

As noted above, another important implication of the theoretical analysis is that the transition 

rates out of unemployment are likely to be inversely related to the unemployment level in the 

relevant reference group. In order to examine whether or not this is the case we will focus on 

unemployed individuals’ transitions out of unemployment, and whether these appear to be 

systematically related to the unemployment level in their neighborhood-based reference 

groups.  

 

The type of model that we will estimate is a Cox proportional hazards model of the following 

type, 

 11
0

−− ++= jtitjtit uXuXehh itit
βαλ         

where hit is the hazard of individual i leaving unemployment at time t, Xit is a set of covariates 

describing individual i at time t, and ujt-1 is the unemployment level in neighborhood j at time 

t-1 

 

Our main interest is in the α- and β-coefficients since they indicate whether the 

unemployment of others systematically influences individuals’ transition rates out of 

unemployment. We will use three different definitions of a neighborhood when measuring ujt, 

and we will refer to them as neighborhoods 1, 2, and 3 respectively (see Figure 5). 

Neighborhood 1 is the neighborhood (i.e., the SAMS area) in which the focal individual 

resides; Neighborhood 2 consists of the neighborhoods that are adjacent to Neighborhood 1; 

and Neighborhood 3 consists of the neighborhoods that are adjacent to Neighborhood 2 

(excluding neighbors of the neighbors that are also neighbors). 

 

 

21 3

 
 

Figure 5. Neighborhood definitions 
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Within each of these neighborhoods (and combinations thereof) we have calculated the 

proportion of unemployed among the 20-24 year olds on the 15th of each month (not 

including the focal individual). The main purpose of the analysis then is to examine whether 

these variables are systematically related to the unemployed individuals’ hazard of leaving 

unemployment during the subsequent month. The parameter estimates are found in Table 1. 

 

The first model in Table 1 relates the hazard of leaving unemployment to the unemployment 

level in neighborhoods 1 and 2. The hazard ratio is less than 1.0, which means that the higher the 

unemployment level in these reference groups, the lower was the focal individual’s hazard of 

leaving unemployment. The value of .034 suggests a substantial social-interaction ‘effect’. Taken 

at face value, it suggests that if everyone else in the reference group were unemployed, the 

individual’s chance of leaving unemployment would only be about 3 percent of what it would 

have been had no one been unemployed. Obviously, much of this ‘effect’ is due to individual 

heterogeneity across neighborhoods, and we will gradually introduce various controls for this. 

 

In the second model, we distinguish between the three types of neighborhoods described in 

Figure 5. As mentioned above, we expect the composition of individuals’ reference groups to 

be spatially bounded: the closer two individuals are to one another, the more likely they are to 

be aware of and influence each other’s behavior. The results in the second model are in line 

with these expectations. A given change in the unemployment level in Neighborhood 3 is 

associated with a much smaller change in the hazard of leaving unemployment than a 

corresponding change in Neighborhood 1. This is also true when comparing neighborhoods 1 

and 2, but the magnitude of the difference is rather small.  



 24

Table 1. Cox regression, hazard ratios (z statistics in parentheses) N  = 95,775 in models 1-6 and 61,845 in model 7.  
 
 
 

 
(1) 

 
(2) 

 
(3) 

 
(4) 

 
(5) 

 
(6) 

 
  (7) 

Proportion unemployed in 
neighborhood 1+2 

0.034 
(-66.42) 

 0.076 
(-43.43) 

0.103 
(-32.14) 

0.003 
(-5.85) 

0.209 
(-15.45) 

0.260 
(-10.27) 

Proportion unemployed in 
neighborhood 1 

 0.220 
(-16.25) 

     

Proportion unemployed in 
neighborhood 2 

 0.226 
(-16.25) 

     

Proportion unemployed in 
neighborhood 3 

 0.624 
(-4.68) 

     

Unemployed per vacant 
job in Stockholm 

 0.999 
(-2.57) 

0.996 
(-9.41) 

1.002 
(1.55) 

1.000 
(1.50) 

1.000 
(0.26) 

0.999 
(-0.44) 

Woman   1.157 1.144 1.116 1.148 1.166 
   (31.56) (29.05) (9.80) (29.49) (26.12) 
Age   0.982 0.981 0.968 0.980 0.982 
   (-8.65) (-9.02) (-6.36) (-9.19) (-6.35) 
Vocational education     0.981 1.008 0.985 1.008 0.929 
   (-3.10) (1.35) (-0.89) (1.23) (-0.68) 
High school education     1.208 1.118 1.046 1.128 1.044 
   (30.78) (17.68) (3.07) (18.78) (0.39) 
College education     1.239 1.187 1.024 1.200 1.095 
   (25.51) (19.75) (1.16) (20.59) (0.83) 
From Eastern Europe or 
former Soviet Union  

  0.910 
(-6.22) 

0.889 
(-7.70) 

0.929 
(-1.99) 

0.892 
(-7.43) 

0.882 
(-5.07) 

From Middle East or 
Africa 

  0.883 
(-13.08) 

0.845 
(-17.36) 

0.864 
(-6.26) 

0.868 
(-14.02) 

0.875 
(-8.28) 

From the rest of the world   1.004 0.994 1.029 1.005 0.999 
   (0.53) (-0.76) (1.43) (0.56) (-0.08) 
Less than 3 years in 
Sweden 

  0.674 
(-26.27) 

0.679 
(-25.30) 

0.554 
(-16.37) 

0.688 
(-24.26) 

1.017 
(0.31) 

3 - 5 years in Sweden   0.929 0.957 0.837 0.956 1.090 
   (-5.88) (-3.54) (-5.66) (-3.54) (2.32) 
Married   0.978 0.967 0.966 0.966 0.927 
   (-1.98) (-2.93) (-3.02) (-3.01) (-3.72) 
No. of children   0.942 0.948 0.949 0.948 0.975 
   (-7.23) (-6.49) (-6.38) (-6.44) (-1.57) 
Amount of social welfare 
/10,000 

   0.982 
(-9.29) 

0.982 
(-9.67) 

0.982 
(-9.09) 

0.970 
(-8.66) 

Amount of sick allowance 
/10,000 

   0.955 
(-17.22) 

0.955 
(-17.26) 

0.954 
(-17.76) 

0.950 
(-13.23) 

Days unemployed before 
current period /30 

   0.993 
(-16.75) 

0.993 
(-16.63) 

0.994 
(-15.44) 

0.992 
(-13.94) 

Grade point average from 
high school 

      1.001 
(13.52) 

Prop. unemployed 1+2 × 
Woman 

    1.281 
(2.55) 

  

Prop. unemployed 1+2 × 
Age 

    1.139 
(2.95) 

  

Prop. unemployed 1+2 × 
Vocational education 

    1.259 
(1.69) 

  

Prop. unemployed 1+2 × 
High school education 

    1.863 
(4.91) 

  

Prop. unemployed 1+2 × 
College education 

    4.177 
(8.02) 

  

Prop. unemployed 1+2 × 
Eastern Europe or Soviet 

    0.659 
(-1.39) 

  

Prop. unemployed 1+2 × 
Middle East or Africa 

    0.818 
(-1.14) 

  

Prop. unemployed 1+2 × 
Rest of the world 

    0.747 
(-1.76) 

  

Prop. unemployed 1+2 ×  
< 3 years in Sweden 

    5.634 
(6.29) 

  

Prop. unemployed 1+2 × 
 3 – 5 years in Sweden 

    3.014 
(4.74) 

  

Dummies for year and 
calendar month 

No No No Yes Yes Yes Yes 

Dummies for neighbor-
hood ( = fixed effects) 

No No No No No Yes Yes 

Log Likelihood -2213820 -2202343 -2202284 -2189504 -2189427 -2188170 -1340550 
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An increase in the unemployment level among others may influence the focal individual’s 

transition rate, not only because of the types of social interactions focused upon here. It could 

also simply reflect the fact that it becomes more difficult to get a vacant job when there are 

many unemployed individuals competing for it. In the second model we therefore include a 

control variable measuring the number of unemployed individuals (of all ages) per job 

vacancy in Stockholm County at the beginning of each month. Not including this variable 

would likely have produced an upward bias in the effects of the variables measuring the 

unemployment levels within the individuals’ age-specific and neighborhood-based reference 

groups. As noted in the previous paragraph, however, the effects of these reference-group 

variables remain highly significant even when controlling for the overall tightness of the labor 

market. 

 

To simplify the presentation, we will drop the distinction between the three types of 

neighborhoods and only focus on the combination of neighborhoods 1 and 2. From now on, 

we will refer to Neighborhood 1 + Neighborhood 2 as the ‘neighborhood’. Analyses not 

reported here showed that this did not have any substantive impact on the results. 

 

In the third model we introduce various controls for potentially important individual 

differences that are likely to influence the transition rates out of unemployment: sex, age, 

education (highest degree), country of birth, number of years residing in Sweden, marital 

status, and number of children (see footnote 17 for a description of these variables). From our 

perspective, the most important result in Model 3 is that the unemployment level in the 

neighborhood-based reference group has a substantial effect on the hazard even after we 

control for these variables. Interpreted literally, the hazard ratio of .076 suggests that if 

everyone in the reference group were unemployed, the focal individual’s hazard of leaving 

unemployment would be only about 7 percent of what it would have been had no one been 

unemployed. 

 

In the fourth model we introduce yet more control variables. In addition to those included in 

Model 3 we include variables measuring the amount of social welfare and sick allowance the 

individuals received during the previous calendar year, and their previous unemployment, 

measured as the total number of unemployment days before the current unemployment period 

started (the length of the current unemployment spell is controlled for in the baseline hazard.). 

In addition, we include eleven monthly and seven annual dummy variables in order to control 
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for seasonal variations and time trends.20 All these variables have been included exclusively 

to control for unobserved and otherwise uncontrolled heterogeneity likely to influence the 

results. Including these variables may lead us to underestimate the effect of the 

unemployment level among those in the individuals’ reference groups. But if we find an 

effect in spite of controlling for these variables, our case has been strengthened. As can be 

seen from Model 4, we find an effect, and the effect is rather substantial. The hazard ratio of 

.103 suggests that if everyone in the reference group were unemployed, the focal individual’s 

hazard of leaving unemployment would be only about 10 percent of what it would have been 

had no one been unemployed. These comparisons are rather extreme, however. The change in 

the hazard brought about by a typical variation in the unemployment level is likely to be more 

informative. As noted above, the standard deviation of the variable measuring the 

unemployment level in different neighborhoods is equal to .05. If we use this as a measure of 

a typical variation, these results suggest that a typical increase in the unemployment level 

among others will tend to reduce the hazard of leaving unemployment by approximately 12 

percent.21  

 

The fifth model includes (statistical) interaction effects between the unemployment level in 

the neighborhood-based reference group and various demographic variables in order to 

examine whether individuals with certain characteristics appear to be more susceptible to 

influence than others. These (statistical) interaction effects suggest that women, the slightly 

older, the more educated, and recently arrived immigrants are less influenced by the 

unemployment level in the neighborhood. These data do not permit us to conclude why we 

observe these differences. However, a plausible hypothesis seems to be that they reflect how 

deeply embedded the individuals are in their neighborhoods. The younger cohorts are likely to 

have lived in their neighborhoods for a longer time than the older cohorts because many of 

them have not yet left their parental homes. Similarly, Swedish women leave their parental 

homes at a younger age than do men, and those who recently arrived to Sweden may not yet 

have built up extensive neighborhood-based networks. The education-based interaction effect 

may indicate that the networks of the highly educated are neighborhood-based to a somewhat 

lesser extent.  

 

                                                 
20 To save space, we have not included these estimates here, but they are available from us upon 
request. These dummy variables absorbed the effect of the variable measuring the overall tightness of 
the labor market thereby making this variable appear unrelated to the hazard in models 4 to 7. 
21 The effects of some of the other covariates are also interesting, but they are not our primary concern 
in this paper. The results for these variables may be summarized briefly as follows. They suggest that 
men; the slightly older; those with less education; immigrants from Eastern Europe, from the former 
Soviet Union, Middle East and Africa; recently arrived immigrants; married persons; and those with 
children have a more difficult time leaving unemployment. 
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The sixth model is a fixed-effect specification including 698 dummy variables, one for each 

neighborhood (except one). The reason for including these dummy variables is to control for 

all time-invariant unobservable characteristics of the neighborhoods. This way of controlling 

for between-neighborhood differences most likely means that we introduce excessive 

controls, and therefore underestimate the true effect of the unemployment level among those 

in the reference groups. But even with these extensive controls, the hazard ratio associated 

with the neighborhood unemployment variable is 0.209, suggesting a most substantial social-

interaction effect. 

 

The seventh model is identical to the sixth model, except for the fact that we only use data on 

individuals with a high school diploma in order to be able to include grade point average as a 

predictor.22 Controlling for grade point average and restricting the analysis to this sub-

population somewhat reduced the effect of the unemployment level among those in the 

neighborhood-based reference groups. In Figure 6 we compare the effect of the 

unemployment level in these groups before and after introducing these various controls (the 

graphs are based on the results in Model 1, Model 4, Model 6, and Model 7).  
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22 During these years, grades in Swedish high schools varied from a low of 1 to a high of 5. The 
variable used here is equal to the average grade times 100.  
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Figure 6. Hazard ratios and neighborhood unemployment before and after controls for 

confounding variables  

 

As can be seen from Figure 6, the reduction in the effect brought about by these various 

controls is rather substantial, but the remaining effect is sizable nonetheless. Introducing 

additional control variables is likely to reduce the reference-group effect even more, but it 

seems highly unlikely that an effect of this magnitude could, either exclusively or even 

largely, be due to omitted variables (at least we cannot imagine what variables that might be). 

Although we cannot exclude the possibility that these results in part are due to local time-

varying ‘unemployment chocks’, given what we know about the Stockholm labor market in 

the 1990s, this does not seem to be of first-order importance. We have also checked the 

robustness of these finding by re-estimating the models using data on smaller geographical 

areas than the Stockholm metropolitan area as a whole.23 Qualitatively, these analyses 

produced very similar results to those reported here. Therefore, we conclude that these results 

suggest that the unemployment level among neighborhood-based reference groups seem to 

influence considerably the rate at which unemployed individuals leave unemployment.  

 

6. Conclusion 
In this paper we have focused on the role of social interactions in explaining unemployment. 

We extended the basic search model of Pissarides (2000) to take into account the social and 

psychological costs of being unemployed, and to show that these costs are likely to be 

inversely related to the unemployment level among others. We started off in a partial 

equilibrium framework with exogenous wages, and showed that adjustment in individual 

search effort reinforced the effect on unemployment following exogenous chocks. The 

mechanisms behind these social multiplier effects were later the focus of our empirical 

analysis. We also showed that this straightforward extension of the matching model could 

have considerable implications for the general equilibrium outcome. In the presence of social 

interactions, multiple unemployment equilibria may emerge, and this could serve to explain 

why otherwise similar labor market regions may exhibit vastly different unemployment 

levels. The reason that a low unemployment equilibrium is sustainable is that the social and 

psychological costs of unemployment are then high, inducing the employed and the 

unemployed to do their utmost to avoid unemployment. Consequently the unemployed will 

then search more intensively, and the employed will restrain their wage demands in order to 

avoid unemployment. For analogous reasons, a high unemployment equilibrium is also 

sustainable.   
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We tested some of the hypotheses using data on unemployment among 20- to 24-year-olds in 

the Stockholm metropolitan area during the 1990s. In this age group, more than half 

experienced at least one period of unemployment during the 1990s. When being unemployed 

becomes such a common phenomenon, it is likely that the social and psychological costs of 

being unemployed is much reduced. The empirical analyses revealed that the variation in 

unemployment levels between different neighborhoods was much higher than one would have 

expected on the basis of the variation in unemployment-relevant observables. We also found 

that the transition rates out of unemployment seemed to be considerably influenced by the 

unemployment levels in the neighborhood-based reference groups; a result to be expected if 

social interactions are at work. The empirical analyses therefore support the predictions of the 

theoretical analysis.  

 

The existence of social interactions has important policy implications, as discussed by Wilson 

(1987), Brooks-Gunn et al. (1997), Moffitt (2001), and others. As policy analysis is outside 

our domain of expertise, we will not attempt to make any contributions in that direction. 

However, our paper also deals with issues of considerable theoretical concern to sociologists 

and economists. The study of social interactions is at the very core of sociology, but, as noted 

by Coleman (1990), sociologists have typically lacked the analytical tools needed for 

assessing the aggregate outcomes of such micro-level processes. Coleman’s major theoretical 

agenda was to bring together the sociological tradition with its focus on social interactions 

and the economic tradition with its rigor and focus on micro-macro links. We would like to 

see this paper as a contribution to this theoretical agenda. Social interactions are not only 

important for many processes of concern to economists and sociologists. Social interactions 

between economists and sociologists are also of considerable importance for the development 

of social-interaction based theories. 

                                                                                                                                            
23 We re-estimated the models for those residing in the municipality of Stockholm, as well as for those 
in the municipalities of Haninge, Botkyrka, and Huddinge. 
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Appendix 

 

Special case with double equilibria 

This section considers the case in which it is possible to write (10) as a second order equation 

in the arrival rate, ( )θλ . Let the matching function be Cobb-Douglas, H=v1−ηuη. Moreover, 

assume that c(u) = ( u/(1−u)) −α, which can be written as: c(u(θ)) = φ −αθ α (1−η) using (1). 

Now, assume that the matching parameter η = 0.5 and α = 2.24 This enables us to write 

equation (10) as a second order equation in ( )θλ , which yields the following two roots for 

the arrival rate:  

( )( )
δ

δβεε
λ

2
142 zy

low
−−−−

= ,       

( )( )
δ

δβεε
λ

2
142 zy

high

−−−+
= ,       

where ε = yk(r+φ) and δ = (1−β)φ−2−βyk. The two roots for the arrival rate, λ( .) , will 

generate two roots for the unemployment rate by use of (1).25 This case corresponds to the left 

hand figure in Figure 1. 

 

Numerical Results 

The aim of the numerical exercise is to examine whether multiple equilibria can emerge for 

plausible parameter values. We calibrate the model to yield plausible outcomes of 

unemployment, and the associated expected duration of unemployment and vacancies. We 

only consider the case with exogenous search effort. As was clear from the analyses in the 

main body of the paper, to allow for endogenous search intensity makes it even more likely 

that multiple equilibria will emerge.  

  

                                                 
24 To impose η = 0.5 does not seem to be a too heroic assumption. To set η = 0.5 is a bit on the high 
side though, according to Blanchard and Diamond (1989), who concluded that η is about 0.4. This is 
something that we will elaborate on in the numerical examples below. The parameter α is a parameter 
that we know far less about than what we know about η. To assume α = 2, is hence an arbitrary 
assumption. This implies that a one percent increase in the stock of unemployed in relation to 
employed, will reduce the social and psychological cost of being unemployed with two percent. In the 
appendix we use numerical examples and discuss the implications of letting α depart from 2. 
25 For two positive solutions for the arrival rate λ, and hence for two solutions with u < 1 to exist, we 
need that ε2−4(1−β) ( y−z) δ > 0, and δ > 0. As we impose η = 0.5 and α = 2, the wage curve becomes 
linear. The condition δ > 0 simply assures that the linear wage curve has a negative slope. Recall that a 
necessary condition for multiple equilibria is that the effect on the social and psychological cost of 
being unemployed dominates the effect on the saved vacancy costs. However, in the appendix we also 
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The matching function is taken to be a Cobb-Douglas function, H=av1−ηuη. The psychological 

cost of unemployment is a decreasing function of unemployment. More specifically we have: 

c(u) = τ ( u/(1−u)) −α or c(u) = τu−α or ( ) ( )( )( )1.0exp1 −+= ubduc . A quarter of a year is 

taken to be the time unit. We assume that the bargaining power between workers and firms 

are equal, i.e., β = 0.5. Productivity is normalized to unity, y=1. The separation rate is set at φ 

= 0.07, which corresponds to an annual separation rate of approximately 30 percent. The 

discount rate is set to r = 0. The parameter η will take on values between 0.4 and 0.5. 

Blanchard and Diamond (1989) concluded that η is approximately 0.4. However, η = 0.5 

fulfills the ‘Hosios condition’, η = β, and is often assumed in numerical simulations, 

presumably for that reason. The remaining parameters, a, z, k, τ, and α, are chosen so as to 

yield two equilibria with the low level of unemployment rate being approximately 6.5 

percent, with an associated expected unemployment duration of about one quarter, and an 

expected duration of vacancies of about one month. The vacancy cost parameter is set at k=5 

in all the numerical examples. With k=5, the expected vacancy costs amount to slightly more 

than twice the quarterly producer wage at the low unemployment equilibrium. 

  

The first numerical exercise corresponds to the analytical case considered above, where it was 

possible to write the equation determining tightness as a second order equation in the arrival 

rate, λ( .). Recall that this case assumed c(u) = τ( [ u/(1−u)]) −α and η = 0.5 and α = 2, which 

corresponded to assumption that the wage curve in Figure 2 is linear, i.e., w=βy+( 1−β) z−( τ( 

1−β) φ−2−βyk)θ. Considering the slope of the wage curve, it does not seem to be too difficult 

to generate a wage curve that has a negative slope, i.e., τ( 1−β) φ−2−βyk > 0. Moreover, as the 

intercept of the wage curve, βy+(1−β) z, never exceeds the intercept of the job creation curve, 

y, and the slope of the wage curve is partly dependent on τ, it follows that we can fairly easily 

derive two equilibria for the unemployment rate as both z and τ can be considered to be free 

parameters. See the first column in Table A1 for an example.  

 

Let us now depart from the case where the wage curve is linear. Reducing η, given α = 2, or 

increasing α, given η = 0.5, will make the wage curve concave. (α(1−η) > 1 is the necessary 

and sufficient condition for the wage curve to be concave in this case.) We can, in this case, 

easily produce similar numbers as in the first column by letting η take the value η = 0.45, and 

use a and z to calibrate the model. Reducing η to 0.45 will induce the wage curve to become 

                                                                                                                                            
allow for a non-linear wage curve, where the wage curve may be positively sloped in some intervals of 
tightness.  
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positively sloped for low values of tightness and to be negatively sloped for high values of 

tightness.  

 

Next, we consider the following cost function: c(u) = τ u−α. That is, the cost of unemployment 

depends negatively on the number of unemployed workers, rather than on the number of 

unemployed workers in relation to the number of employed workers. In this case, the wage 

curve will be slightly convex if η = 0.5 and α = 2. Reducing η will, however, tend to make 

the wage curve concave in this case as well. The second column in Table A1 refers to this 

case. 

 

The third column in Table A1 is derived by using the logistic cost function; 

( ) ( )( )( )1.0exp1 −+= ubduc . Three equilibria then emerge, where two are stable and one is 

unstable. The numbers in the two stable equilibria are shown in the table. This case 

corresponds to the right-hand figure in Figure 2. 

 

Table A1. Multiple equilibria. 

 

 

Variables 

c(u) = τ (u/(1−u)) −α 

Linear Wage Curve 

η=0.5, a=1.68, z=0.92 

c(u) = τ u−α 

Nonlinear Wage Curve 

η= 0.4, a=1.68, z=0.92 

( ) ( )( )1.01 −+= ubeduc * 

Nonlinear Wage Curve 

η= 0.4, a=1.75, z=0.6 

uL ( %) 6.5 6.8 6.3 

θuL 0.36 0.37 0.42 

u durationL 0.99 1.04 0.96 

v durationL 0.36 0.39 0.40 

uH  ( %) 12.9 12.3 16.6 

θuH 0.07 0.13 0.07 

u durationH 2.11 1.99 2.85 

v durationH 0.17 0.25 0.20 

Parameters: .3.2,50,0095.0,2,5,0,07.0,1,5.0 ========= dbkry ταφβ  

* This cost function gives raise to three equilibria (two stable equilibria and one unstable 

equilibrium). The numbers in the column refers to the two stable equilibria.   
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