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A General Framework for Grain Blending
and Segregation

Eswar Sivaraman, Conrad P. Lyford, and B. Wade Brorsen

The Hennessy and Wahl model of optimal grain blending and segregation (GBS)
is extended to the case where it is not possible to separate components within a
load. Analytical solutions are not available when segregation is the optimal strat-
egy, and so solutions are obtained with nonlinear optimization. The model is then
used to determine the optimal sorting of hard red winter wheat by protein content.
Most of the benefits from sorting can be obtained with only two bins.
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Various grain blending and segregation (GBS) strategies are used by the grain
industry to sort or blend wheat of variable quality. The goal of these GBS efforts is
to achieve the grade or quality levels that will result in the highest returns when the
wheat is marketed. Efforts to improve U.S. wheat quality have been a topic of federal
legislation in both 1986 (the Grain Quality and Improvement Act) and 1990 (Title
XX ofthe Food, Agriculture, Conservation, and Trade Act). A number of studies
have focused on methods to improve U.S. grain quality (Hill, 1990; Mercier, 1993;
U.S. Office of Technology Assessment, 1989; Wilson and Dahl, 1999). GBS strat-
egies constitute an important means to meet end-user quality needs, and a better
understanding of these strategies is needed to improve grain quality.

Recently, Hennessy and Wahl (1997) developed a GBS model with specific
reference to linearly separable grain attributes like dockage. Dockage is said to be
linearly separable because 100 bushels of grain with 1% dockage, for example, can
be completely separated into 99 bushels of zero dockage grain and 1 bushel of clean-
ings. On the other hand, pure protein is not achievable, so protein is not a linearly
separable attribute. A key contribution of Hennessy and Wahl’s effort was a better
understanding of the influence of the premium/discount schedule on GBS decisions
for dockage. They showed the convexity or concavity of the objective or price
function determines whether it is optimal to clean or commingle wheat.
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In this study, we extend the work of Hennessy and Wahl to model decisions based
on grain properties like protein content, test weight, etc., which, unlike dockage,
cannot be linearly separated. We present an optimization model that is applicable to
all price function schedules. In the key case of a convex objective function, the
analytical solution of Hennessy and Wahl no longer holds and the solution must be
found by solving a nonlinear optimization problem. Although premiums are really
linear-by-steps functions of quality, as steps become small, these functions can be
approximated by continuous nonlinear functions. Thus, although we consider stepped
as well as concave and convex functions in the theory section, the empirical portion
analyzes a continuous nonlinear function only. The general framework is used to
determine optimal GBS strategies for wheat based on protein content.

A Grain Blending and Segregation Framework

Let I1(p) denote the price of wheat defined as a function of the percent protein, p.
Let D =[p,, p;] represent the range of protein values considered. Assume the range
D contains only one inflection point, p,. In deriving the optimal solution, a key con-
sideration is whether the price schedule, I1( p), is convex or concave over the range
of protein values in D. Note that if a section of the price schedule is linear, then that
section is considered concave.'

The average quality content across a bin of wheat is denoted by P,,. For any range
of protein values D, representing a subset of D, the average quality is computed as:

ot (p)dp
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where f,(p) is the probability density function of protein level, and so P, (i) is the
average protein content evaluated over the range specified by D,. The optimal GBS
problem is how to segregate wheat into N different storage categories such that the
premiums received for the average protein levels in the various categories, namely,
P, (i), maximize profit. This is consistent with the overall situation faced by grain
elevators which are constrained by the total number (/) of receiving points or “dump
pits” at their elevator. However, it is unlikely elevators will know the probability
distribution of protein level with certainty. More realistically, as the crop progresses
through time and elevators receive wheat, they come up with estimates for this distri-
bution after receiving several loads of wheat.

For the general model discussed above, D =[p,, p;]. Letd,=p,, and dy,=p;. We
introduce this notation so that D, = [d,y,, d.], Dy = [dy, ps], and X, D, " D.Thus,
the problem now reduces to finding optimal values of N, d,, d,, ..., dy,,. In this
discussion it is assumed the grain in each bin is “well-blended,” such that a random
sample drawn from storage category i will have a protein level of P, (i).

! The case of discontinuous/step models for the premium function will be discussed later.
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The optimal GBS strategy is the solution to:

N
Q) max 1P, (D)) F, & C(N),
dysdy, .y, N T

where C(N) is the cost associated with operating the N storage categories. The opti-
mization model represented by equation (2) can be solved incrementally by specifying
the value of NV, and then solving for the storage category boundaries. The iterative
process stops when the marginal revenue from one extra storage category is not worth
the cost of maintaining an extra storage category or bin. The process employed next
is to find the revenue-maximizing strategy for each number of bins. The gains in rev-
enue are then compared to the costs of segregating grain, as estimated by Vandeburg,
Fulton, and Dooley (2000).

The shape of the objective function determines the optimal GBS decision, as
mentioned earlier. Following Hennessy and Wahl (1997), these solutions can be cate-
gorized by their overall forms as follows:

® CASE 1: I1(p) is strictly convex over D. The GBS problem can be readily formu-
lated and solved as specified by equation (2).> When the number of segregations
or bins is greater than the number of loads, the revenue-maximizing strategy is to
put each load in a separate bin. This result is in contrast to the findings of Hen-
nessy and Wahl, who conclude that when cleaning is costless and the profit func-
tion is convex, it is optimal to completely clean into pure cleanings and top-quality
grain. Further, with the linearly separable case considered by Hennessy and Wahl,
the revenue-maximizing strategy never uses more than two bins.

= CASE 2: I1(p) is concave over D.* Under concavity, the optimal GBS policy is to
store all the grain in one bin, which is the same solution as found by Hennessy
and Wahl. The proof follows readily from Jensen’s inequality (Varian, 1992,
p. 182), which states that for a (strictly) concave function, f(E[x]) (>) $ E[ f(x)],
where E is the expectation operator and f'is the concave function of interest.
Thus, in the context of our discussion, the best sale premium we can achieve is
for the protein content averaged over the entire load, i.e.,

avg*

® CASE 3: I1(p) is part concave and part convex. For the concave region [p,, p,],
apply results from Case 2 above. For the convex region [ p,, p;], the problem is
solved via the optimization approach as outlined for Case 1 above.

® CASE 4: I1(p) is a discontinuous/stepped premium schedule. In their handling of
stepped price function models, Hennessy and Wahl provide a very simple and
elegant approach whereby the effective premium (discount) schedule is derived
directly from a plot of the price function. However, their technique is applicable

> The implicit constraints that follow from the definition of a probability measureare: ™, F, " 1, ™, P, ()F; " P,,,,
dy " py, and dy " p;.

* Note that a linear function is concave.
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only for linearly separable attributes (e.g., dockage), with linear separability (LS)
being a key component of their proof. For GBS decisions based on attributes like
protein content, LS does not hold, and the solution is found using the formulation
in equation (2). With a stepped premium schedule, the objective function is dis-
continuous.

Data and Empirical Analysis

The optimization model in (1) is used with parameters estimated from two data
sources. First, data on Kansas City spot hard wheat basis (cents per bushel) over
1993-1999 were obtained from data published by the Kansas City Board of Trade
(KCBT). The basis typically increases as protein increases, and thus reflects protein
premiums. The second data set includes over 1,200 values of actual truckload-level
grain quality samples measured at wheat elevators in Oklahoma over 1990-1999
(Kenkel).

These data sets were used to estimate the distribution function of protein. With the
KCBT data, all wheat with less than 11% protein receives the same price. The basis
for wheat with less than 11% protein was obtained by taking the mean of all obser-
vations with less than 11% protein. The observations with greater than or equal to
11% protein were used to estimate a quadratic function of protein. The null hypoth-
esis of a linear equation was tested and rejected. The estimated price schedule based
on the KCBT data is:

p <11%: I1(p) = 22.57 (cents), and
p$ 11%: I1(p) = 206.846 — 41.174 p + 2.236 p* (cents).

As the price distribution indicates, the price function is concave in (0, 11), and
strictly convex in [11, 4). Based on the Oklahoma truckload data, protein is distrib-
uted normally with mean 11.26 and standard deviation 1.42. The null hypothesis that
protein percentages were normally distributed was tested and not rejected using a
Kolmogorov-Smirnov test. Since, in practice, protein only varies to a limited extent,
weuse D=5, 17], within which virtually all of the distribution is captured. Yoon,
Brorsen, and Lyford (2002) develop a nonparametric algorithm for a similar problem,
but their model has many local optimums and is slow to solve, so it is much less
practical to use than employing a normal distribution for the characteristics as is
done here.

Protein is important because of the various end-uses of wheat. For example, the
major end-use of wheat in Asian markets (Ahmadi-Esfahani and Stanmore, 1994)
is based primarily on protein content, e.g., white salted noodles (9%—10% protein),
instant noodles (10.5%-11%), yellow egg noodles (12%), leavened bread (11.5%—
14.5%), etc. As with any hedonic price, a protein premium is determined by supply
and demand for protein. Supply in particular can vary by year, and consequently pro-
tein premiums vary. Indeed, in 1996, Attaway (1998) reports protein in Oklahoma
wheat was so high that no protein premiums were offered. Both the price schedule



Sivaraman, Lyford, and Brorsen Grain Blending and Segregation 159

and the distribution of protein used here represent averages across years. Therefore,
the actual benefits of sorting by protein content would vary across years.

Following the earlier discussion in Case 2, the optimal policy for the concave
section of the price schedule is to completely blend, i.e., [5%, 11%) is one storage
category. For the convex section of the price schedule, the optimal GBS problem with
a fixed value of N is:

N
3) max g 1P, (I))F
do,dl,...,leJ] ( ¢ )

st dyt 1% dy " 17%; d#d ®i<j

and the constraints that define I1("), F,,,(i), and F;. In (2), costs were assumed to
depend only on the number of bins. In (3), the number of bins is fixed and so all costs
are fixed; thus the optimal solution is the revenue-maximizing solution.* The ap-
proach could easily handle additional complexities such as a nonlinear cost function
and constraints on the size of bins/segregations if needed. The problem as stated in
equation (3) was modeled in GAMS, and the solutions are shown in table 1.

Optimal GBS Solution

Table 1 reveals several points of interest. The expected sale premium increases with
the number of storage categories, and mirrors our finding that the revenue-
maximizing policy is to store each wheat load in a separate bin—a solution which
obviously is not feasible. To this end, the model specified in equation (2) can be
modified to include storage/maintenance costs. For most elevators, the number of
bins is fixed and the optimal solution can be taken directly from table 1.

As theory implies, the small gain in going beyond two segregations is a direct
result of the shape of the price schedule. While the portion of the schedule above
11% protein is convex due to the positive coefficient on the quadratic term, the
degree of convexity is small, and so gains from more than two bins are small. This
result is consistent with practice at most elevators where two bins are used to sort
wheat by protein content. All wheat earning a premium is placed in one bin, while
the remaining wheat is placed in the other bin.

Vandeburg, Fulton, and Dooley (2000) estimate the costs of handling value-added
grains, and thus include estimates for the cost of segregation. Their estimate of the
cost of segregation for value-added grain is at least 4¢/bushel (the analysis is done
under different scenarios). The revenue from one segregation as calculated from
table 1 is only 2.7¢/bushel. Attaway (1998), using crude approximations, estimated
similar gains of 3¢/bushel from sorting wheat by protein content. Most local eleva-
tors do not pay protein premiums and do not segregate by protein, which is consistent

* Because we do not have information on the cost of building and maintaining separate storage categories within
an elevator, costs are zero in the analysis.
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Table 1. Expected Sale Premiums Achieved from Optimal Segregation with
One to Six Bins

Expected Sale
Premium per Unit
Load of Wheat
N?* Storage Categories (¢/bushel)
0 [5, 17] 30.288
1[5 1), [11,17] 32.947
2[5, 1D, [11,12.392), [12,392, 17] 33.617
3 [5, 11), [11,12.26), [12.26, 13.52), [13.52,17] 33.750
4 [5,11), [11,12.26), [12.26,13.52), [13.52, 14.78), [14.78, 17] 33.843
5 [5,11), [11,11.587), [11.587,12.187), [12.187, 12.856), 33.874

[12.856, 13.716), [13.716, 17]

*N / the number of categories for the convex region. Including the concave section, there are N + 1 categories.

with the costs estimated by Vandeburg, Fulton, and Dooley. Larger elevators that do
segregate must either have lower costs due to economies of size or higher premiums
due to meeting the needs of a specialty market.

Conclusion

A general mathematical programming model is developed to determine optimal grain
blending and segregation strategies. The model maximizes expected sale premiums
based on grain attributes like protein. Analytical results show the effect of different
price schedules: () concave price schedules encourage complete commingling, and
(b) the optimal segregation with a convex/stepped price schedule can be obtained by
solving a mathematical programming problem.

The model is then used to determine optimal segregation by protein for hard red
winter wheat. Results show most of the benefits of segregation may be achieved with
just two bins. This result is consistent with most elevator operations where only two
segregations are used for protein. Many small elevators do not segregate at all, and
given available estimates of the cost of segregation, their choice seems rational.
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