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Modeling Timber Supply, Fuel-Wood, and Atmospheric Carbon Mitigation 
 

Kenneth S. Lyon 
Economics Department 
Utah State University 
klyon@econ.usu.edu 

 
Abstract 
 
There is general agreement that global warming is occurring and that the main contributor to this 
probably is the buildup of green house gasses, GHG, in the atmosphere. Two main contributors 
are the utilization of fossil fuels and the deforestation of many regions of the world. This paper 
examines a number of current issues related to mitigating the global warming problem through forestry. 
We use discrete time optimal control to model a simplified carbon cycle. The burning of fossil 
fuels increases atmospheric carbon while the burning of fuel-wood along with its forest source 
maintain an atmospheric carbon level. The standing timber in the forests is a carbon sink, as are 
wood buildings and structures, and fossil fuel in the ground. Through time the buildings and 
structures decay and release carbon to the atmosphere. We also present a numerical example to 
help illustrate the characteristics of the model. The conclusions are that the forest sector can have 
a significant impact.  
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INTRODUCTION 
 
 There is general agreement that global warming is occurring and that it probably has been 
occurring for a few centuries. Most but not all would agree that the main contributor to this is the 
buildup of green house gasses ,GHG, in the atmosphere that has resulted from the utilization of 
fossil fuels and the deforestation of many regions of the world. Connected with the discussion of 
this topic is the discussion of the role that forest management can play in mitigating or reversing 
this trend. (See for example Sedjo and Toman, 2001). Much of this discussion has been 
prompted by the Kyoto Protocol and the reports of later sessions of the Conference of the Parties 
of the United Nations Framework Convention on Climate Change. These explicitly recognize 
afforestation, reforestation and deforestation activities as having significant impacts on 
atmospheric carbon. 
 
 Forests can contribute to the mitigation of GHG buildup in several ways. They can act as 
carbon sinks as standing trees, they can supply fuel-wood to reduce fossil fuel consumption, and 
they can provide building materials for long-lived wood buildings and structures that are 
substitutes for building products for such fossil-energy-consumptive materials such as concrete 
and steel. As standing forests the growth rate of trees can be increased by management practices 
such as fertilizer applications, and the volume of standing timber can be increased by 
lengthening the rotation period. The effect of carbon sequestration on the rotation period has 
been studied in the Faustmann framework by Hoen, 1994; Van Kooten et al., 1995; Romero et 
al., 1998. All of these agree that the effect of this additional return is to increase the rotation 
period. These studies, however, do not consider the impact of these changes upon world timber 
markets. Two studies that take some of these market implications into account are Sedjo and 
Sohngen, 2000, and Lee and Lyon, 2004. 
 
 We use discrete time optimal control to model a simplified carbon cycle. The burning of 
fossil fuels increases atmospheric carbon while the burning of fuel-wood along with its forest 
source maintain an atmospheric carbon level. The standing timber in the forests is a carbon sink, 
as are wood buildings and structures, and fossil fuel in the ground. Through time the buildings 
and structures decay and release carbon to the atmosphere. 
 
 The objective function is the present value of net surplus, which is maximized subject to 
several constraints. On the demand side there is a demand for Btu’s and for the services of 
buildings and structures. On the cost side there are costs of harvesting timber, extracting fossil 
fuels, and converting wood to structures and buildings. The negative impact of atmospheric 
carbon is modeled through a social cost function, which is strictly increasing in atmospheric 
carbon, and has increasing marginal costs (increasing and strictly convex). The constraints 
include the laws of motion for solidwood and fuel-wood, buildings and structures, and fossil 
fuels. In addition, there is a provision for shifting forest land between solidwood and fuel-wood 
production. 
 
 A numerical example is presented to illustrate the characteristics of the model. While 
only a few features of the example are calibrated to the real world several key elements of the 
forest sectors potential contributions. We incrementally shift the social cost function for 
atmospheric carbon upward, and observe the changes within the model results. At our lowest 
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lever of social costs there are insignificant effects in the forest sector, and at the highest level 
there are large impacts of and on the forest sector. 
 
 The final section contains the summary. 
 
THE MODEL 
 
The net surplus function is given by: 
 

(1) )(),(),()(   )(  )(
0

ˆ

0

ˆ s
j

bf
j

s
j

H
j

c
j

ca
j

a
Q

b
B

B
j qCqqCyqCzCdDdDs

b
jj

−−−−+= ∫∫ υυυυ   

 
where the sub j’s are for year j, 
 B̂ is Btu’s, 
 )(ˆ ⋅BD  is the demand function for Btu’s in inverse form, 
 )(⋅bD  is the flow demand for the services of buildings and structures, 
 sq is the cubic meters of commercial solidwood harvested and sold, 
 bQ is the stock of buildings and structures, 
 )(⋅aC  is the social cost function for atmospheric carbon, 
 az  is the stock of atmospheric carbon, 
 )(⋅cC  is the cost function for the extraction of coal, 
 cq  is the metric tons of coal (fossil fuel) extracted and consumed, 
  y is the stock of coal (fossil fuel), 
 )(⋅HC  is the harvest cost function, 
 fq is the cubic meters of commercial fuel wood harvested and consumed, and 
 )(⋅bC is the cost function for converting solidwood into buildings and structures. 
Note that the demand for solidwood is a derived demand. It is derived from the demand for the 
services of buildings and structures. 
 
 We define 
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where ca and fa are parameters identifying the relationship between the fuels and their Btu 
content. We posit 
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where z is the stock of carbon on various forms. The superscripts a and c are identified 
above: Fz  is for the forest stock, 

bz is stock in structures (buildings), 
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oz is for the other stocks, and 
Z is a constant. 

 
 From this last equation we get: 
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Equation (3) will play an important role below. 
 
 There are several alternatives for the law of motion for o

jz 1+ . One alternative is to assume 

that the rest of the atmospheric carbon world balances itself, so 00 =∆z .  Another alternative is 
to assume its absorption is proportional to atmospheric carbon, 
 
(4) a
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Of course, the second alternative collapses to the first if 0=oα .  We use this latter alternative 
with 0>oα . 
 
 For carbon tied up in structures (buildings): 
 
(5) b

j
bb

j Qz α=  
 
where bQ is the stock of wood in structures (buildings), bα  is carbon per cubic meter of structure 
wood. We assume the depreciation on the stock of structure wood is proportional to the stock; 
hence, the law of motion for structure wood is: 
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thus, 
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 The stock of coal (fossil fuel) is decreased by the size of the extraction, so its law of 
motion can be given by: 
 
(8) c

jjj qyy −=−+1    with 0
0 yy =   given, 
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 To identify the harvest for each forestland class we define h

iju for h = s, f to be the portion 
of hectares of age group i trees harvested in year j, with the constraint 
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(10) 10 ≤≤ h

iju              for h = s, f and all i, j   
 
We also define:  
 h

ju  to be a column vector with typical element h
iju , 

 )(ig s  and )(ig f to be the yield functions for commercial volume a function of age, 
 hg to be a column vector of length M with typical element )(igg hh

i = , h = s, f, 
 s

jix ,  and f
jix ,  to be the hectares of forest in the respective types with age i in year j, and 

 h
jx  to be a column vector of length M with typical element h

ijx ,  h = s, f. 
The parameter M is equal to or greater than the index number of the oldest age group in the 
problem, and )(ig s  and )(ig f are assumed to be concave and differentiable. With these 
definitions the harvests are given by 
 
(11) hh

j
h
j

h
j gXuq

T

= , 
 
where the super T is for transpose and h

jX  is a diagonal matrix using the elements of h
jx . 

 
 
The laws of motion for the forestland classes are given by 
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A, B, and U are M-square matrices; h
jU  is a diagonal matrix using the elements of h

ju ; and e is a 
M-vector where M is equal to or greater than the index number of the oldest age group in the 
problem. In addition, initial hectares of forest by land class are given, 0

0
hh xx = . The variable h

jv  
is used to move forestland between the two types of trees. We hold the forestland constant but 
allow for transfers between the two types with 0=+ f

j
s
j vv , where 0<h

jv means hectares are 
being transferred out of this land class. To keep the problem manageable we only allow 
harvested hectares to be transferred, so we require 
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where T1

r
is a row vector of ones. 

 
 The stock of carbon in the forest is posited to be proportional to the commercial volume 
of timber on the forestland area; thus the pre-harvest stock is: 
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where all variables were defined above except wα  which is the carbon per cubic meter of 
commercial volume of timber. We can now state the stock of forest carbon as: 
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 We collect the carbon relationships in Equation (3) by substituting into it Equations (4), 
(7), (9), and (15). This yields: 
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 The objective functional is: 
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where re−=ρ with r the real rate of interest. The problem can be stated as finding the sequence 
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Equation can be written: 
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where K is the constraint set. To proceed we use the following Lagrangian function: 
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where the Lagrangian multipliers φ  and ψ  are for Equation (10) and ζ is for Equation (13). We 
substitute Equation (6) for b

jQ 1+ , Equation (8) for 1+jy , Equation (11) for h
jq , Equation (12) for 

h
jx 1+ , and Equation (16) for a

jz 1+  to generate the necessary conditions. In the derivatives that 
follow, the derivative of a function or a scalar with respect to a scalar is indicated as a partial 
derivative, the derivative of a function or a scalar with respect to a vector is a gradient column 
vector indicated with a d, and the derivative of a vector with respect to a vector is a Jacobian 
matrix indicated with a d. In the Jacobian matrix the columns are gradients. For example, the 
first column is the gradient of the first variable. The first order necessary conditions are: 
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By the Envelope Theorem we get: 
 

(21a) s
j

s
js

j

b
j

b
j

s
j

a
j

a
j

s
j

s
j

s
j

s
j

j
s
j

s
j

u
dx

dQ
Q
V

dx
dz

z
V

dx
dV

dx
dx

dx
ds

dx
dL

dx
dV ζρ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
∂

++== +

+

+

++

+ 1

1

1

11

1  

 

(21b) f
j

f
jf

j

a
j

a
j

f
j

f
j

f
j

f
j

j
f
j

f
j

u
dx
dz

z
V

dx
dV

dx
dx

dx
ds

dx
dL

dx
dV ζρ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

++== +

++

+ 1

11

1  

 

(21c) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+
∂
∂

∂
∂

+
∂
∂

−=
∂
∂

=
∂
∂ +

+

+

+ j

a
j

a
jj

j

jj

c

jj y
z

z
V

y
y

y
V

y
C

y
L

y
V 1

1

1

1

ρ  

 

(21d) a
j

a
j

a
j

a
j

a

a
j

a
j z

z
z
V

z
C

z
L

z
V

∂
∂

∂
∂

+
∂
∂

−=
∂
∂

=
∂
∂ +

+

1

1

ρ  

 

(21e) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

+
∂
∂

∂
∂

+=
∂
∂

=
∂
∂ +

+

+

+
b
j

b
j

b
j

b
j

a
j

a
j

bb
b
j

b
j Q

Q
Q
V

Q
z

z
VQD

Q
L

Q
V 1

1

1

1

ρ  

 
 
 Some of the gradients and Jacobians are: 
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 In Equations (21a)-(21e) the left-hand side is the shadow value of a state variable and is 
the same concept as the costate variable in Optimal Control Theory; hence, we define five 
costate variables, s

jλ , f
jλ , c

jλ , a
jλ , and b

jλ  to correspond to the left-hand side of Equations (21a)-
(21e), respectively. In the manipulations below the stumpage prices of the two types of wood 
become relevant. Because the demand for solidwood is a derived demand, the expression for its 
stumpage price is slightly complicated. The market price of solidwood is given by 
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In this b
j 1+λ is the value of a cubic meter of buildings and structures in the next time period, and 

ρ discounts this to the current time period. From this is subtracted the cost of transforming a 
cubic meter of solidwood into a cubic meter of buildings and structures. This gives the net value 
of a unit of solidwood, and will be its market price. Hence, we define the stumpage price of 
solidwood as: 
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H
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(20b’)
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∂
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−+ ++
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j
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q
CaqaqaD αλλρ  

 
(20d’) ( ) 011 =−+− ++
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j
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j

f
j

s
j e ζζλλρ  

 
The laws of motion for the costate variables: 
 
(21a’)
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(21b’) ( ) ( )( ) f

j
f
j

fTf
j
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j

f
j

Tf
j
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j

f
j

f
j ugBUABUAgUP ζαλλρλ ++−++= ++ 11  
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(21c’) ( )ca
j

y
j

j

c
y
j y

C αλλρλ 11 ++ −+
∂
∂

−=  

 

(21d’) oa
ja

j

a
a
j z

C αρλλ 1+−
∂
∂

−=  

 
(21e’) ( ) ( ) ( )[ ]δλδαλρλ −+−−+= ++ 11 11

b
j

ba
j

b
j

bb
j QD  

 Because our primary purpose is to find Faustmann type results we now examine the 
stationary state. The Faustmann framework consists of doing the same thing over and over again, 
which is a stationary state concept. 
 
POLICY IMPLICATIONS 
 
 A market based economy will not automatically produce the above necessary conditions 
since atmospheric carbon is a public ‘bad’ or an externality to the firms; however, as is usual in 
cases such as these taxes and subsidies can be used to achieve them. In this discussion we 
assume perfect certainty so we can concentrate on the issues at hand. Equations (21a’), (21b’), 
(21c’), and (21e’) for the shadow values of solidwood forests, fuel-wood forests, coal (fossil 
fuel) in the ground, and buildings and structures, respectively, reveals that all of them are 
impacted by shadow value of atmospheric carbon; therefore, some tax or subsidy would be 
required. In the absence of externalities the shadow values are identified in the firms as the 
present value of the return stream to the marginal unit of the stock. In Equation (21a’) the 
shadow value of solidwood forests needs to be subsidized for sequestering carbon (the term 
containing aλ ) and for producing wood for buildings and structures (the term containing bλ ). 
Equation (21b’) is similar except the term for buildings and structures is missing. The shadow 
value of coal (fossil fuel) in the ground, Equation (21c’) can be handled in one of two ways. 
Either coal in the ground can be subsidized as indicated by the term containing aλ , or coal 
burning can be taxed by the appropriate amount to achieve the same effect. In addition, since 
buildings and structures are a carbon sink they also require a subsidy as indicated by the term 
containing aλ . 
 
 The necessary conditions also must be taken into account. Equations (20a’), (20b’), and 
(20c’) all are impacted by the above discussion of shadow values. Equation (20a’) the necessary 
condition for solidwood requires a subsidy for aλ .  The bλ  in this equation will be taken care of 
in the market place if buildings and structures are subsidized as discussed above for their role as 
a carbon sink. The production of fuel-wood also requires a subsidy as indicated by the presence 
of aλ in Equation (20b’). The necessary condition for the burning of coal (fossil fuel) indicates 
that there is a cost of releasing carbon into the atmosphere, as indicated by the term 
containing aλ . This can be handled by a tax on the burning of coal (fossil fuel). 
 
STATIONARY STATE 
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 We assume the system evolves to a stationary state (ss) or something that is 
approximately a stationary state. The problem here is that either coal (fossil fuel) extraction must 
go to zero or the stock of coal must be infinite to get a stationary state. By an approximate ss we 
mean a state that will last long enough that the discounted value of the distant future flows that 
are ignored is nil.  
 
 In the stationary state the flows, prices, and the shadow values are constant through time; 
hence, we examine Equations (4), (5), (6), (7), (8), (9), (12), (15), (16), and (20a’)-(21d’) with 
constant flows, prices, and shadow values. Because of these conditions we leave the sub-j off 
from the variables. Starting with Equation (21c’) we have 
 

(21c’ss) 
( )

ρ
αλλ

αλλρλ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∂
∂

−=

−+
∂
∂

−=

1
1ca

c
y

cay
c

y

y
C

y
C

. 

 
Note that the shadow value of coal (fossil fuel) in the ground, yλ , includes its value as a 
repository for carbon, caαλ . For (21d’) we get: 
 

(21d’ss) 

oa

a

oa
a

a
a

z
C

z
C

ρα

αρλλ

+∂
∂

−=

−
∂
∂

−=

1
1

 

 
Equation (21e’) yields: 
 

(21e’ss) 
( ) ( ) ( )[ ]

( ) ( )
( )δρ

δαρλ

δλδαλρλ

−−
−−

=

−+−−+=

11
1

11
babb

bbabbb

QD
QD

. 

 
This value of aλ  is then used in Equations ((20a’), (20b’), (20c’), (21a’), and (21b’). Equation 
(21c’) gives the optimal marginal condition for coal (fossil fuel) utilization, and its stationary 
state version is: 
 

(20c’ss) ( ) ( ) 0ˆ =+−+
∂
∂

−+ cay
c

c
cffccB

q
CaqaqaD αλλρ . 

 
This states that at the margin the value of burning a ton of coal (fossil fuel), ( ) cB aD ⋅ˆ  must be 

equal to the marginal extraction cost of that ton, c

c

q
C
∂
∂ , plus the value of the coal in the ground as 
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a repository for carbon, yρλ , plus the shadow value of marginal degradation of the atmosphere, 
caαλ . 

The next task is to solve for sλ  using Equation (21a’). In the stationary state there will be 
no pressure to switch hectares between land classes; hence, by Equation (20e) we will have 

0=sζ .  Substitute aλ  from this last result into (21a’) and set 0=sζ  yields: 
 

 

( ) ( )( )( )
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⎣
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−
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−+
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⎥
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⎤
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⎡

−

+−+
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−
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αλ

ρλ

αρλ

αρλ

αλαλ

ρλ

αρλ

αρλρλ

ααρλλρ

ααλλρλ

1

1
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This simplifies to: 

(21a’ss) ( )( ) [ ] swassbawassTss ggUIUPBUAI αλαρλαλρλ +−−+−=
−1

 
 
This result for sλ is then substituted into Equation (20a’): 
 

( )( )( )
( )( ) [ ]

( )( )
0

0
1

=+−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+−+

⎥
⎥
⎦

⎤

⎢
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⎡

+
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+
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swa
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sssbTwassTTssss

gIBX

g
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gXP

gIBXBXgXP

ψφ

ααλ

αλ

αρλαλρ
ρ

ψφααλλρ

 

 
Continuing 
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Define s

wa
s

P
αλω −

=:  and s

ba
b

P
αλω −

=: ; therefore 

 

(20a’ss) ( )( ) ( ) 0
1

=+−⎟
⎠
⎞

⎜
⎝
⎛ ++++−+

−
sssbsbssTsTss gIUIUBUAIBIXP ψφρωρωωρρ  

 
To examine Equation (20a’ss) let sk be the optimal rotation age for solidwood, and 

examine the elements in rows 1−sk , and sk . In this we assume there is no pressure to 
redistribute hectares between the land classes, so 0=ζ . The first part of necessary condition 
(20e) for the stationary state is: 
 
 ( ) 01 =+ hhhTh vxU

r
ζ  

which implies for 0=hv  with 0≠hU  that 0=hζ . By Equation (20d’) this means 
 

(20d’ss) 
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( )

0

0
0

11
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=−

=−
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 where the sub-ones are for row one. That is hectares of one-year-old solidwood trees and one-
year-old fuel wood trees have the same value, and this implies that the land rental is the same for 
the two land classes. We have 
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In these the sub- k ’s are for the land classes s and f , respectively. The conventional Faustmann 
shadow values are a special case of these. If 0=aλ  then 0=sω , 0=bω , and 0=fω , and these 
last two equations collapse respectively to: 
 

( )
s
k

s
k

k
s gP

ρ
ρλ
−

=
−

1

1

1 , 

and 
 

( )
f

k
f

k

k
f gP

ρ
ρλ
−

=
−

1

1

1 . 

  
We also assume all of age group sk is harvested, 1=s

ku (row k), and no other age group is 
harvested. From Equation (20e) we have: 
 
 ( ) 01 =−sTs uφ  and  0=ssuψ . 
 Thus, we have 0≥s

kφ , but 0=s
kψ . For 1−sk  the signs are reversed, 01 =−

s
kφ  and 01 ≥−

s
kψ . Row 

1−sk : 
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For row sk we have: 
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Note that if 0=aλ  then 0=sω  and 0=bω , so these two equations collapse respectively to: 
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These two identify the standard discrete time Faustmann rotation relation. See Olli Tahvonen, 
Canadian Economic Journal 2004 for a statement of the Faustmann rotation in a discrete time 
problem. 
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 Because the structure of Equations (20a’) and (20b’) and Equations (21a’) and (21b’) are 
very similar we need not repeat all of the manipulations. Instead we can modify these last few 
results, changing the super s  to f  and drop bα and bω . This yields 
 

(21b’ss) ( )( ) [ ] fwafwaffTff ggIUPBUAI αλαλρλ +−+−=
−1

 
 
and 
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For row 1−fk  we have: 
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For row fk we have: 
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Note that if 0=aλ  then 0=fω , so these two equations collapse respectively to: 
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As in the solidwood case these two identify the standard discrete time Faustmann rotation 
relation. 
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 The effect of sω , bω , and fω on the optimal rotation periods is not easy to see 
qualitatively; however, for the numerical example given below as the omegas increase the 
rotation periods also increase. In addition, the rotation periods are very sensitive to the omegas 
over a very narrow range. Figure 1 depicts these results using the yield functions and parameter 
values of the numerical example. The values used yield bs ωω = , and a Faustmann rotation for 
both types of wood equal to 15. The rotation periods are equal because we use the same yield 
function and parameter values for both types of wood. It does not take a very large increase in 

iω to cause the rotation period to increase to 50 which is the largest value examined. Note that 
the effect of bω on the solidwood rotation is to decrease it, as is evidenced by the solidwood 
rotation line lying under the fuel-wood rotation line in the graph. An examination of the rotation 
equations given above reveals that if fs ωω = and 0=bω then the two rotation periods will be 
equal, since the two yield functions are identical. 

 NUMERICAL EXAMPLE 

 To illustrate the characteristics of the model we present a numerical example. We 
compare stationary state solution levels of the endogenous variables of the model for shifts of the 
social cost function for atmospheric carbon. We anticipate that as this social cost function shifts 
upward the extraction of coal (fossil fuel) will decrease, the utilization of fuel-wood will increase 
as production is shifted away from solidwood, and the rotation period for both types of wood 
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will increase. The results are consistent with these anticipations, but there are some surprises 
with respect to the rotation period. 

  We now identify the equations we use to represent the functions in the model 

  

( )
( )
( ) ( )
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( )
( ) 0,,

0

0

05.

0,

0,ˆˆ

1111
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11

2
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>+=

>=

>=

>+=

>−=
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cfcsqcfqcsqqC

ccqccqC

cbqcbqC

cazcazcazC

baQbaqD

baBbaBD

fsfsH
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ssb

aaaa

bsb

B

. 

These functions and variables were defined above as: 
 )(ˆ ⋅BD  is the demand function for Btu’s in inverse form, 
 )(⋅bD  is the flow demand for the services of buildings and structures, 
 sq is the cubic meters of commercial solidwood harvested and sold, 
 bQ is the stock of buildings and structures, 
 )(⋅aC  is the social cost function for atmospheric carbon, 
 az  is the stock of atmospheric carbon, 
 )(⋅cC  is the cost function for the extraction of coal, 
 cq  is the metric tons of coal (fossil fuel) extracted and consumed, 
  y is the stock of coal (fossil fuel), 
 )(⋅HC  is the harvest cost function, 
 fq is the cubic meters of commercial fuel wood harvested and consumed, and 
 )(⋅bC is the cost function for converting solidwood into buildings and structures. 

The parameter values are: 

 
5.0,5.0,02.0,02.0,0000001.0

20,,100,0001.0,6,00000001.0,9

11112

11100

=====
⋅⋅⋅−=====

cfcscccbca
cababa

 

Other parameters in the model are: 

 95.0== −reρ discount factor, 
 8.30=ca is millions of Btu’s per metric ton of coal (fossil fuel), 
 33.8=fa is millions of Btu’s per cubic meter of fuel-wood, 
 7.0=cα is tons of carbon per ton of coal (fossil fuel), 

27.0=wα is metric tons of carbon per cubic meter of commercial wood in standing 
forests, 

27.0=bα is metric tons of carbon per cubic meter of building and structure wood, 
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1.0=δ is rate the of depreciation of carbon in building and structure wood, 
02.0=oα portion of atmospheric carbon absorbed by the unmodeled sector per unit time 

The yield functions for both solidwood and fuel-wood have the equation: 

( ) ( )( ) 3321321 ,0,,/exp djddddjddjqh >=>−+=  

where j is age. The parameter values are: 

 7,5889.6,52.6 321 === ddd  

The Faustmann rotation for this yield function and parameter values are the same as those in 
Sedjo and Lyon for the Emerging Region. 

 Some of the parameter values are averages of their real world counterparts such as the 
carbon and Btu content of coal (fossil fuel) and wood, but there is no claim that these and the 
other values calibrate the model to the real world. Instead, this section gives an illustrative 
example. In this the social cost function for atmospheric carbon is shifted upward by increasing 

1ca from -100 to 20 in steps of 10 to create 13 scenarios. These changes cause the shadow value 
of atmospheric carbon, aλ , to increase in absolute value approximately 55 fold from -0.36 to -
19.75. At the same time the utilization of coal decreased about 785 fold from 2,869*104 to 3,657 
metric tons per year. Corresponding to this is a decrease in percent of total of Btu’s derived from 
coal (fossil fuels) from 100 percent to 26 percent as total Btu’s decrease 204 fold from 
88,277*104 to 432.32*104 million Btu’s. 

 In the forest sector the percent of total forest hectares in solidwood production decreases 
for 100 percent to 0.3*10-7. Corresponding to this is a decrease in solidwood production from 
407,910 to 0.01 cubic meters per year, and an increase in fuel-wood production from 0 to 
383,790 cubic meters per year. 

 Everything to this point is as expected. As the social cost of a ‘social bad’ is 
incrementally increased it is anticipated that the use of those things that propagate the bad will be 
successively reduced and the use of those things that mitigate the bad will be successively 
increased. Tables 1, 2, and 3 support these statements and give additional information about the 
results. 

 
Table 1 Scenario Results, Coal and th eAtmosphere 

ca1 za λa λy qc PBtu 
Percent 

Coal 
Btu’s 

Millions of 
Btu’s 

20 1.2812e+006 -19.753 276.54 3.6565e+004 8.96 26.1 4.3232e+006
10 8.4840e+007 -18.139 253.95 2.4241e+006 8.23 96.4 7.7480e+007
0  1.6841e+008 -16.527 231.37 4.8138e+006 7.49 98.4 1.5067e+008

-10 2.5198e+008 -14.915 208.81 7.1959e+006 6.76 99.1 2.2362e+008
-20 3.3553e+008 -13.300 186.21 9.5976e+006 6.03 99.5 2.9717e+008
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-30 4.1911e+008 -11.689 163.65 1.1983e+007 5.30 99.7 3.7027e+008
-40 5.0267e+008 -10.076 141.06 1.4376e+007 4.56 99.8 4.4352e+008
-50 5.8622e+008 -8.462 118.46 1.6736e+007 3.84 99.9 5.1578e+008
-60 6.6980e+008 -6.850 95.89 1.9135e+007 3.11 100 5.8937e+008
-70 7.5328e+008 -5.229 73.20 2.1532e+007 2.37 100 6.6319e+008
-80 8.3671e+008 -3.602 50.43 2.3916e+007 1.63 100 7.3735e+008
-90 9.2021e+008 -1.984 27.77 2.6300e+007 0.90 100 8.1003e+008

-100 1.0037e+009 -0.363 5.08 2.8690e+007 0.16 100 8.8277e+008

 

 
Table 2 Scenario Results, Solidwood and Fuel-Wood 

ca1 ks kf ωs ωf Ps Pf 
20 24 24 0.0778 0.0722 68.78 74.11  
10 24 24 0.0776 0.0723 63.34 68.02  
0  24 24 0.0777 0.0723 57.67 61.92  

-10 24 24 0.0778 0.0724 51.97 55.84  
-20 24 24 0.0778 0.0725 46.33 49.72  
-30 24 24 0.0778 0.0726 40.73 43.63  
-40 24 24 0.0781 0.0728 34.98 37.53  
-50 24 24 0.0782 0.0728 29.31 31.51  
-60 24 na 0.0772 na 24.04 25.38  
-70 22 na 0.0685 na 20.68 19.23  
-80 20 na 0.0558 na 17.48 13.11  
-90 18 na 0.0367 na 14.66  6.95  

-100 16 na 0.0078 na 12.62  0.86  

 
Table 3 Scenario Results, Solidwood and Fuel-Wood Continued 

ca1 qs qf Qb λb 
20 0.01 383,790 0.002 72.94 
10 45,684 338,110 4,566 67.22 
0  94,800 288,990 9,484 61.25 

-10 145,440 238,350 14,439 55.26 
-20 195,940 187,850 19,308 49.32 
-30 241,520 142,270 24,120 43.42 
-40 293,740 90,053 29,170 37.36 
-50 344,760 39,033 34,082 31.40 
-60 383,790           0 38,379 25.86 
-70 397,590           0 39,759 22.31 
-80 408,770           0 40,878 18.94 
-90 414,210           0 41,421 15.98 

-100 407,910           0 40,791 13.83 
 



 20

 The surprising result is that the effect of the shifts of the social cost function for 
atmospheric carbon had such a small impact on the optimal rotations. Figure 1 above shows that 
these rotations are very sensitive to the omegas; however, Table 2 reveals that as the shadow 
value of atmospheric carbon, aλ , increases, initially sω increases causing the solidwood rotation 
to increase from 16 to 24. While this is occurring fuel-wood production is zero because the price 
of fuel-wood, fP , is too low to warrant its production. Once fuel-wood production begins 

increases in the absolute value of aλ  and increases in wood prices, sP  and fP , balance the 

effects of each other, keeping sω and fω approximately constant. They are at lease constant 
enough to hold the rotation period constant at 24 for the eight highest atmospheric social cost 
scenarios. 
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