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LABOR MARKET BEHAVIOR IN WASHINGTON: A COINTEGRATION 

APPROACH 

 
Generally, it is well understood that new business investment brings changes in 

population, increase in labor force participation rate, and migration of new residents.  

However, Powers (1996) argued that natural capital in the many places in the West is 

driving population growth and that drives job growth.  Powers believes that the causality 

operates in a reverse way in regions having good environment and amenities, such that 

population is attracted by environmental amenities and the population changes brings 

about changes in employment.  Washington is a good test of the Powers hypothesis, 

because of its beautiful environment and amenities.   

It is important to both local policymakers and social scientists to understand who 

benefits from local job growth.  There is mixed research results regarding the extent that 

new migrants tend to account for new employment.  Bartik (1993) found that about one-

quarter of the new jobs go to local workers because of the increase in the labor force 

participation rates of local residents in the long run.  He considered the long run effects 

by estimating the effects of 1% job growth in a certain period on the labor force 

participation rate seventeen years after that period.  In contrast Blanchard and Katz�s 

(1992) research reached a different conclusion - in five to seven years the employment 

response consists entirely of the migration of new migrants.  Their finding is that long-

run effect of the job growth on the labor force participation rate is negligible.  Yeo and 

Holland (2000) found a composite result.  Their finding is that most of the new jobs are 

captured by in-migrants instead of the county residents in the long run.  Also, the long-
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run effect of the job growth on the labor force participation remains to some degree, 

although its effect is small.   

In many studies, the population, employment, and labor force participation rate 

are considered as important variables to explain the local labor market.  In this study, we 

first examine causality arguments above.  Second, we investigate interactions among 

these variables in Washington using cointegration analysis.  Third, we decompose each of 

these series into a stationary component and a non-stationary component, and identify 

these components.  Forth, by investigating the effects of one standard deviation shock to 

the employment on the population and the labor force participation rate by impulse 

response analysis, we provide the results of this study � the long run effect of 

employment on the local labor force participation rate and the party who benefits from 

local job growth � for comparison with the results of previous studies.     

 
Cointegration Analysis and Error Correction Representation 

Cointegration analysis allows us to examine the long run equilibrium relationship 

among nonstationary variables.  In our case, cointegration analysis allows us to 

investigate the long run effects of the employment and participation rate on the 

population.  The concept of cointegration was developed by Engle and Granger (1987).  

A time series Zt that is stationary after being differenced d times is said to be integrated of 

order d, )(dI .  For an m-dimensional nonstationary process Zt which is )(dI , if there are 

r linearly independent vectors iβ  such that ti Zβ ′  is )(bI , b < d, then Zt is said to be 

cointegrated of order (d, d-b) denoted by ),(~ bddCIZt −  with cointegrating rank r < 
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m.  The r vectors, iβ , are called cointegrating vectors, and the stationary linear 

combination ti Zβ ′  is called the long-rum equilibrium error.  Engle and Granger (1987) 

defined cointegration as �If each element of a vector of time series Zt is stationary only 

after differencing, but a linear combination ti Zβ ′  needs not be differenced, the time series 

Zt have been defined to be co-integrated of order (1, 1) with cointegrating vector iβ �.  

For this study we focus on the case where Zt is )1(I , and thus ti Zβ ′  is )0(I , stationary 

because the variables considered in this study are )1(I . 

We consider an m-dimensional vector autoregressive process of order p, VAR(p), 
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where δ  is an 1×m  vector of constant term, iΦ  is an mm ×  matrix of parameters, and 

tε  is a white noise with positive definite covariance matrix Ω .   

As in Engle and Granger (1987), the model in (1) can be re-expressed in the 

following error correction model (ECM) representation,  
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.  The term 1−tCZ  is 

called the error correction term, and the coefficient matrix C contains information about 

the long-run equilibrium relationship among the components of Zt.   If there is no 
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stationary long-run equilibrium relationship among the variables in Zt, the rank of C is 

zero, and we use the standard VAR model of order p-1 for the first differenced series tW .  

If the vector process tZ  is stationary, then C is a full rank matrix.  The rank of C is 

greater than zero and less than m, i.e., mCrankr <=< )(0 , if tZ  is cointegrated of order 

(1, 1) with cointegrating rank r, which means that there exists a long-run equilibrium 

relationship among the components of Zt.  

To estimate ECM in (2) with the rank restriction, we reparameterize the C matrix 

as βα ′=C , where α  and β  are full rank rm ×  parameter matrices or rank r .  Then we 

can rewrite (2) as 
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It is shown, for example in Ahn and Reinsel (1990), that ti Zβ ′  is a stationary 

cointegrating combination, where iβ  is the thi  column of β .  Johansen and Juselius 

(1990) interpreted the matrix α  as the average speed of adjustment towards the estimated 

equilibrium state such that a low coefficient indicates slow adjustment and a high 

coefficient indicates rapid adjustment.   

 
Decomposition of Time Series 

Cointegrated time series can be decomposed into non-stationary components and 

stationary components.  We decompose Zt as in Kasa (1992) by rewriting  
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where )( rmm −× ⊥β  is such that 0=′⊥ ββ , tZβ ′  is a cointegrating combination, that is, 

a stationary factor and 1)( −′βββ  is the factor loading matrix of the stationary factor, and 

tZ⊥′β  is a common trend, or non-stationary factor and 1)( −
⊥⊥⊥ ′ βββ  is the factor loading 

matrix of the common trend.   

Beveridge and Nelson (1981) showed that an integrated process can be represented in 

terms of non-stationary components and stationary components, in which the non-

stationary component is a random walk with drift and the stationary component is 

covariance stationary.  They interpreted the non-stationary component as the long run 

forecast of the series adjusted for its mean rate of change and the stationary component as 

a business cycle.  Stock and Watson (1988) showed that cointegrated multiple time series 

share at least one common trend.  In summary, the stationary or transitory component can 

be interpreted as temporary business cycle, whereas interpretation on non-stationary or 

permanent component is the long run forecast profile as a random walk with drift.  

 
Impulse Response Analysis 

Impulse response analysis of vector autoregressive systems is a useful tool to 

examine the interrelationships among the variables in dynamic models (Lütkepohl and 

Reimers, 1992).  From this analysis, we investigate the effects of one standard deviation 

shock of one variable to the other variables.  In a vector autoregressive systems, when we 
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find an equilibrium relationship among the variables at some period, t, any exogenous 

shock to a variable leads to a new long-run equilibrium provided no further shocks occur.   

For impulse response analysis, we first consider the m-dimensional vector 

autoregressive model and rewrite it as moving average (MA) representation 

(5) �
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where mI=Ψ0  and �
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1

, j = 1, 2, ∞,�  with iΦ  = 0 for i > p.  The elements 

of the jΨ  represent the impulse response of the system. 

 We examine the orthogonalized impulse responses of the system and the errors 

are orthogonalized by Cholesky decomposition so that the covariance matrix of the 

resulting innovations is diagonal. 
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where Pjj Ψ=Θ , tt Pe ε1−= , mtt IeeE =′ )( , PP ′  = Ω  and P is assumed to be a lower 

triangular matrix with positive diagonal elements (Lütkepohl, 1990).  The elements of the 

jΘ  are impulse responses and Lütkepohl and Reimers (1992) explain that a one time 

impulse may have a permanent effect on the dynamic system, which will lead to a new 

long-run equilibrium.  
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Data 
 

To date there have been few studies dealing with the cointegration analysis 

approach in regional science.  To estimate the effects of job growth on the labor market, 

most studies use cross-sectional data, or lagged dependent variables as variables on the 

right hand side.  The most common model regresses the changes in the population of a 

fixed year on the change in employment, labor force participation rates, or net migration 

rate: See Greenwood and Hunt (1984) and Summers (1986).  Some models with the 

population as the dependent variable use the level of the employment / population ratio or 

employment as an independent variable.  Bartik (1992) argued that models that use the 

levels variables might be biased by unobserved fixed effects of local areas.  However, 

models that use the changes of variables also have a weak point, that is, they cannot 

predict variables in levels.  To overcome these deficiencies, we use the cointegration 

analysis that allows us to estimate the long run equilibrium relationship in levels.  

 In this study we use three variables, population, labor force participation rate for 

population aged 18 and 64 and employment to examine the long run equilibrium 

relationship among these variables.  The long run equilibrium relationship equation gives 

a unit change interpretation as in a general linear regression model.  Our data are from the 

Office Forecast Council (OFC) in the state of Washington.  We calculated the labor force 

participation rate by dividing civilian labor force by population aged 18 to 64.  The scale 

of population and employment is 1000 people and that of labor force participation rate is 

percentage.  The data series are observed at two different frequencies.  The labor force 

participation rate and the employment are quarterly data for the period between 1969 and 



 

 

8

1993.  However, only annual data are available for the population variable because 

population is surveyed only on the second quarter of every year.  Because the methods 

for cointegration analysis are applicable only to data with the same frequency (as far as 

we are aware of), we have two options to make the data frequencies the same.  One is to 

use the second quarter data of the participation rate and employment in order to match the 

sampling frequency of the population data and these annual data are exhibited in Figure 

1.  The other is to estimate the quarterly values of population series using a similar 

interpolation method to Chow and Lin (1971).  

We first focus on the annual data series, although the sample size is small.  One 

may argue that the data over 25 years may not be long enough for a study of long-run 

equilibrium.  However we could at least estimate the model with a long-run equilibrium 

restriction through model (3) and gain insight into the long-run behavior.  Next we 

analyze the quarterly data using estimated quarterly population data and compare the two 

results.   

 
Application of Cointegration Analysis to Annual Data 

Let the vector Zt consist of three variables, such that Zt = (pt, rt, et)', where pt is the 

number of population, rt is the labor force participation rate, and et is the employment at 

period t.  As the data series in Figure 1 exhibit non-stationary behavior attributable to a 

unit root, we perform Dickey-Fuller (1979, 1981) test for unit root using the test statistics 

ττ� .  The results summarized in Table 1 show that each of the three series is I(1).  That is, 

all three original series have a unit root and their first differenced series do not have a 

unit root.     
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The Choice of AR Order and Cointegrating Rank of Zt 

We now investigate if there is long-run equilibrium information among the 

components of tZ , that is, if tZ  is cointegrated.  To this end we consider a VAR model 

for tZ  as in (1).  We examine an appropriate AR order based on the partial canonical 

correlation between tW  and ktW −  adjusted for 111 ,,, +−−− kttt WWZ �  (Ahn and Reinsel, 

1990) and the Akaike Information Criterion (AIC).  For a VAR (p) the partial canonical 

correlations between tW  and ktW −  are all zero, and thus 0* =Φk  for pk ≥ .  The results 

from partial canonical correlation analysis (PCCA) are summarized in Table 2 and Table 

3.  Table 2 indicates that the coefficient matrix *
iΦ  is significant until *

4Φ .  This means 

that the vector Zt at a certain period is affected by the past five years history of the tZ .  

Considering 25 observations of data, the VAR (5) model seems to be overfitted.  

Furthermore, the p-values (i.e. observed significance levels) are based on the large 

sample distribution.  In contrast, as is Table 4, the minimum AIC is attained at lag 1, 

which in turn favors a VAR (1) of Zt.  For this reason, we consider tentatively an 

appropriate AR order to be between one and four in our model fitting. 

We also need to determine cointegrating rank r through the rank of C matrix.  

Two test statistics, the trace statistic and the maximal eigenvalue statistic are used to 

determine the rank of C matrix.  The Likelihood Ratio (LR) test statistic, 

�
+=

−−=Λ
m

rj
jn

1

2 )�1ln( ρ  is our trace statistic where jρ�  is the i-th largest partial canonical 

correlation between tW  and 1−tZ  adjusted for 11 ,, +−− ptt WW � .  The null hypothesis of this 
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trace statistic is that the cointegrating rank is at most r against the alternative hypothesis 

is that the cointegrating rank is m.  The Likelihood Ratio (LR) test statistic, 

)�1( 2
1max +−−=Λ rn ρ  is our maximal eigenvalue test statistic.  The maximal eigenvalue 

test statistic evaluates the null hypothesis that the cointegrating rank is at most r against 

the alternative hypothesis is that the cointegrating rank is r+1.  As there are no critical 

values available of these test statistics for small samples (as far as we are aware of), we 

generate percentiles of them through a Monte Carlo Simulation based on 50,000 

replications for sample sizes N=25, 50, 75 and 100.  The empirical percentiles along with 

the details of the simulation are in the appendix.  Because the null hypothesis is rejected 

for larger values of the test statistics, upper percentiles are uses as critical values.   

The trace statistic and the maximal eigenvalue statistic are shown in Table 5 for 

different AR orders and cointegrating ranks.  For AR order 2, since we cannot reject rank 

0 in both trace and maximal eigenvalue statistics, there does not exist a stationary long-

run equilibrium relationship among the variables.  Both statistics support rank 2 in AR 1 

and AR 4 while they support rank 1 in AR order 3.  For large sample, it is well known 

that the choice of the cointegrating rank is robust to the choice of the AR order.  

However, for small samples like ours, the cointegrating rank is sensitive to the choice of 

the AR order.  Therefore, in order to find an appropriate AR order and a cointegrating 

rank, we fit models using these different choices of the AR order and the cointegrating 

rank, and check significance of each coefficient in *
iΦ .  Since the coefficients beyond 

*
2Φ  are insignificant, we determined the AR order p of tZ  in equation (1) as three. That 

is, the VAR (3) and cointegrating rank 1 model is chosen for further analysis.   
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We fit the following ECM with AR order 3 and cointegrating rank 1 using Ahn 

and Reinsel (1990).   

 
(7) ttttt WWZW εβαδ +Φ+Φ+′+= −−− 2

*
21

*
11 ,  

   
and obtain estimates of the vector of constant term, δ� = [210.390, 234.152, 4066.116]′, 

the vector of speed of adjustment coefficient, α� = [-0.032, -0.038, -0.657]′, and the 

cointegrating vector β�  = [1, 75.815, -2.201]′.  With a normalized population coefficient 

the long run equilibrium relationship is represented by 

 
(8) pt = 6004.909 � 75.815 rt + 2.201 et  
  
 
This cointegrating combination adjusted for  the mean is displayed in Figure 2.  From the 

equation in (8), we can see that the long run relationship of a unit increase in the labor 

force participation rate (1%) is a decrease of 75,815 in population and the long run 

relationship of a unit change in employment (1000) is an increase of 2,201 in population. 

 
Decomposition into Stationary and Non-Stationary Components  

Using the decomposition method described in a previous section, we decompose 

our time series into stationary components and non-stationary components.  Before 

interpreting stationary components and non-stationary components, we first overview the 

history of economic conditions in Washington from the beginning of 1970s to the 

beginning of 1990s.    
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The Washington State economy slumped in 1970-1973 and 1981-1983, whereas it 

expanded rapidly during the late 1970s and the late 1980s.  Large population increases 

due to net migration occurred as a result of rapid economic expansions in Washington 

during the late 1970s and late 1980s.  Net migration dropped when the state economy 

slumped in 1981-1983.  In the beginning of the 1990s, California experienced net out-

migration of over 400,000 persons per year.  Washington received a significant amount 

of these Californian out-migrants.  This factor contributed to relatively high levels of net 

migration for Washington during the early 1990s, even at a time when the state�s 

economy slowed down significantly.   

Figure 3 contains the plots of the stationary components for the population and 

labor force participation rate and Figure 4 depicts the stationary component of the 

employment.  Surprisingly, the pattern of the stationary component of population is quite 

similar to that of labor force participation rate.  Based on the above information about 

economic behavior in Washington, we find that the cyclical fluctuation of employment 

responds immediately to changing economic conditions in Washington.  The response of 

population to changing economic conditions is about three or four years later than that of 

employment.  This is supported by the Granger (1969) causality test results summarized 

in Table 6 and the impulse response analysis in the following section.  Accordingly, the 

plot of three years delayed stationary components of population is similar to the 

stationary component of employment as in Figure 5.   

It is interesting that the pattern of stationary component of employment and net 

migration which is defined as the difference between in-migration and out-migration is 
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quite similar as shown in Figure 6.  This indicates that the short run effect of employment 

corresponds with migration behavior, mainly in-migration for Washington.  Figure 7 

shows that the plot of three years delayed stationary components of population is similar 

to the plot of net migration.  Like employment, the response of population to changing 

economic conditions is about three years later than that of net migration.  

Consequently, in short run, with employment and net migration having same 

immediate pattern, they respond to changing economic conditions.  We interpret the 

stationary component of employment as a reflection of the historical and cyclical 

economic conditions in Washington.  The stationary components of population and labor 

force participation can be interpreted in relation to the historical employment and net 

migration patterns in Washington. 

Figures 8 through 10 depict the original data series and their non-stationary 

component respectively.  The pattern of the non-stationary components is very similar to 

that of all original series.  These trends reflect long waves of socioeconomic change 

including the baby bust of the 1970s, the baby boom echo of the 1980s, considerable 

increase in the female labor force participation rate and gradual decline in male labor 

force participation rate.  The slope of the non-stationary component of population around 

1980 is steeper than that in 1970s, whereas the non-stationary component of labor force 

participation rate was relatively high in 1970s and began to decline in 1980, which is 

mainly caused by natural population increase (the excess of births over deaths) from 

1980.  From 1970 to 1995, the state�s aggregate labor force participation rate increased 

from 61.5% to 70.1%. During this period, the male labor force participation rate 
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gradually declined, while the female labor force participation rate rose significantly.  This 

information allows us to interpret the non-stationary component of labor force 

participation rate as reflecting the increasing trend of labor force participation rate in 

Washington mainly due to a considerable increase in the female labor force participation.  

The fluctuations in the non-stationary component of labor force participation rate show 

that female labor force participation is also significantly affected by economic conditions.                  

 
Impulse Response Analysis 

Figure 11 and 12 depict the impulse responses of the population, employment and 

labor force participation rate to a one standard deviation shock in employment.  For all 

three variables, the impulse leads to a permanent increase provided no further shock 

occurs.  In other words, they settle at different equilibrium value after a long period of 

time.  Figure 11 shows a slower response of the population to changing economic 

conditions.  In short run, the response of the population to a one standard deviation shock 

in employment lags several years that of employment.  Figure 12 supports Bartik�s and 

Yeo and Holland�s findings.  Note that Bartik found that 25% of the job growth from a 

shock to local job growth is reflected in increased local labor force participation rate in 

the long-run.  Yeo and Holland found that the long-run effect of the job growth on labor 

force participation remains, although its effect is small.  However, the analysis result does 

not support the Blanchard-Katz�s finding - the long-run effect of the job growth on the 

labor force participation rate is negligible.   

For the party who benefits from job growth, we suspect that most of new jobs are 

captured by in-migrants because the pattern of the stationary component of employment 
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and net migration is quite similar and the impulse response of population is significantly 

higher than that of employment.  Based on the report of Office of Financial Management 

in the state of Washington (1999), net migration accounts for about 60 percent of the state 

population growth in the past 25 years and most of the migrants are young workers with a 

long-term attachment to the labor force.  Thus we suspect that a high proportion of 

increase in labor force participation rate is due to migration.       

 
Estimation of Quarterly Population Data 

Until now we analyze the three annual time series which have 25 observations 

respectively.  Because the population, labor participation rate, and employment are 

related, we interpolate the annual population data using the quarterly labor participation 

rate and employment data applying a similar method in Chow and Lin (1971).  Then we 

reanalyze the series using the quarterly observations and check whether both results are 

similar or not.  Through the analysis of quarterly data, we gain insight into the dynamics 

of the quarterly population even though the total population is observed yearly.  Chow 

and Lin (1971) introduced best linear unbiased interpolation and extrapolation of time 

series by related series.  If we assume that the quarterly observations of the series to be 

estimated satisfy a multiple regression relationship, uXp += γ  where population, p is 

1100 × , X is 3100 ×  matrix and u is a random error with mean 0 and covariance matrix V.  

The first column of X is one vector, second one is labor force participation rate, r and 

third one is employment, e.  The vector of 25 annual observations of the dependent 

variable, subscripted by a dot which signifies being annual, satisfies the regression model 
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(9) ... uXCuCXCpp +=+== γγ       

 
with CCVVuuE ′==′ ...  and C being the 10025× matrix that converts the 25 annual 

observations collected during the second quarter into 100 quarterly observations. 
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According to Chow and Lin (1971) the best linear unbiased estimator of quarterly 

population, qp , that is from (9) is given by 

 
(11) .

1
.. �)(�� uVVXp qqq
−+= γ        

 
where qp�  is quarterly estimates of population and .

1
..

1
.

1
.. )(� pVXXVX −−− ′′=γ  is the 

Generalized Least Squares (GLS) estimate of the regression coefficients using the 25 

annual observations in the sample, γ�])([� ...
1

..
1

.
1

.... XppVXXVXXIu −=′′−= −−−  is the 

125×  vector of residuals in the regression using annual data.  However, instead of the 

generalized least squares estimate of γ , we use the estimate from the previous 

cointegration analysis of the annual data as the estimate of γ .  When the cointegrating 

rank is more than one, the parameters of regression model for the GLS are not 

identifiable.  Note that our cointegrating vector is β�  = [1, 75.815, -2.201]′, and the 
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constant term in the model of .�p  is 6004.119.  As a result, γ�  = [6004.119, 75.815, -

2.201]′. 

The next step is to estimate the covariance matrix of residuals.  The residuals of 

the cointegrating combination based on annual data follow a first-order autoregressive 

process ttt uau ν+= −1  and the estimate of a , a~  is 0.3549.  Similar to Chow and Lin, a 

consistent estimate of a in V�  below is 4 ~� aa =  = 0.5957 for our interpolation problem 

because a~  is estimated by annual data.  Therefore, the estimates of the covariance matrix 

of tu  for quarterly data is   
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For the purposes of interpolation, we need  

 
(13) 11

.. )( −− ′′= CCVCVVVq         

 
Using V�  as an estimator of V , we can estimate qp�  in (11). 

 
Application of Cointegration Analysis to Quarterly Data  

Figure 13 plots the quarterly population and employment series and Figure 14 

represents the quarterly labor force participation rate series.  As previously described, the 

values of quarterly population series are estimated as described in the previous section.  
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As with the annual data analysis, we first performed the augmented Dickey-Fuller (1979, 

1981) test to determine the order of integration of each time series data.  Table 7 shows 

the results of the augmented Dickey-Fuller (ADF) test for the null hypothesis of a unit 

root for both original series and first differenced series.  We can see that all three original 

series are nonstationary and their first differenced series are stationary.   

Based on partial canonical correlation and the minimum AIC we choose an 

appropriate AR order and the results are summarized in Tables 8, 9 and 10.  For the 

quarterly data case, partial canonical correlation supports AR(7) while the minimum AIC 

supports AR(2).  The trace statistics and maximum eigenvalue statistics shown in Table 

11 for different AR orders.  Both statistics support rank 2 from AR(2) through AR(5) 

while they support rank 1 in AR order 1 and 7.  For AR order 6 and 8, since we cannot 

reject rank 0 in both trace and maximal eigenvalue statistics, there does not exist a 

stationary long-run equilibrium relationship among the variables.  Therefore, in order to 

find an appropriate AR order and a cointegrating rank, we fit models using these different 

choices of the AR order and the cointegrating rank, and we check significance of each 

coefficient in *
iΦ .  Since the coefficients are significant until *6Φ , we determined the AR 

order p of tZ  as seven.  That is, the VAR(7) and cointegrating rank 1 model is chosen for 

further analysis.  The AR order 7 in quarterly data analysis is to be comparable to AR(2) 

in annual data case which may be considered close enough to our choice of AR(3) in the 

section of annual data analysis.  The rank 1 is same as the choice in annual data analysis.   

We now fit an ECM with AR order 7 and 1 cointegrating vector as follows:   
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and obtain estimates of the vector of constant term, δ = [631.2077, 14.0121, 179.2476]′, 

the vector of speed of adjustment coefficient, α = [-0.1019, -0.0023, -0.0282]′ and the 

cointegrating vector β = [1, 77.5172, -2.2160]′.  Finally, we can derive the long run 

equilibrium relation given by 

 
(15) pt = 5668.78 � 77.52 rt + 2.22 et    

 
The estimated coefficients of the long run equilibrium relationship are close to those of 

the annual data case.  The interpretation is same as in the annual data analysis.  

Figure 15 shows the plots of stationary components for the population and labor force 

participation rate and Figure 16 depicts the stationary component of employment.  

Although the stationary components plots of quarterly data are more cyclical than those 

of annual data, the cyclical fluctuations of quarterly data are almost identical with those 

of annual data for all three series. Therefore, we can put the same interpretations on 

stationary components as annual data.  The plots of non-stationary components and their 

original series are shown in Tables 17 through 19.  Each of them not only exactly follows 

the path of their original time series but also represent the same long waves and trends as 

annual data analysis.  Interpretations on them are also same as those of the annual data 

analysis.   
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Since the sample size of annual series is small, we analyzed the series using a larger 

number of observations and checked for similarity of results.  In both data series, analysis 

results were consistent and the estimated values of the parameters were close.    

 
Conclusions 

We proved that employment growth from new business investment causes 

increase in population in the state of Washington in spite of its beautiful environment and 

amenities.  The causality does not operate in reverse way.  This study found a long run 

equilibrium relationship among population, labor force participation rate and 

employment, in which population is positively related to employment and negatively 

related to labor force participation rate.  The long run effect of a unit change of labor 

force participation rate (1%) is a decrease of 73,880 in population and the long run effect 

of a unit change in employment (1000) is an increase of 2,190 in population. 

We decomposed the time series into stationary components and non-stationary 

components.  The pattern of the stationary component of population is quite similar to 

that of labor force participation rate while that of employment shows a different 

fluctuation.  From the decomposition, it was obvious that the pattern of stationary 

component of employment and net migration is quite similar, which means net migration 

is the short run, temporary response to employment change.  The patterns of three years 

delayed stationary components of population are similar to that of employment and net 

migration, and the plots correspond to changing economic conditions.  According to the 

change in economic conditions population responds three years later than employment 

and net migration.  We interpreted the non-stationary component of labor force 
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participation rate as reflecting the increasing trend of labor force participation rate in 

Washington mainly due to a considerable increase in the female labor force participation. 

The impulse responses of population, employment and labor force participation 

rate to a one standard deviation shock in employment show permanent increase effects.  

They settle at different equilibrium value after long term periods.  The response of the 

labor force participation rate to an impulse in employment supports Bartik�s (1993) and 

Yeo and Holland�s (2000) findings.  Obviously the result is the opposite of Blanchard 

and Katz�s (1992) finding that the long-run effect of job growth on the labor force 

participation rate is negligible.  With regard to the party who benefits from job growth, 

we suspect that most of new jobs are captured by in-migrants because the pattern of the 

stationary component of employment and net migration is quite similar and the impulse 

response of population is significantly higher than that of employment.       
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Appendix: Simulated Critical Values of Trace and Maximal Eigenvalue Statistics 
 

The limiting distributions of the trace statistic and the maximal eigenvalue 

statistic are the distributions of the trace and the maximal eigenvalue of 

��� ′′′′ − 1

0

1

0

11

0
))()(())()(())()(( udBuFduuFuFudFuB dddddd  where )(uBd  is a d - 

dimensional standard Brownian motion and �−=
1

0
)()()( duuBuBuF dd  except that the 

first component of )(uF  is replaced by 2/1−u .  Johansen and Juselius (1990) obtain 

percentiles of these limiting distribution for large samples.  As we have small samples, 

we obtain percentile of the test statistics for small samples by the Monte Carlo 

simulation.  We generate d � dimensional random walk processes 

TtaZZ ttt ,,2,1,1 �=++= −δ  with 00 =Z  and )0,,0,1( ′= �δ , for T = 25, 50, 75, 

100 by generating pseudo normal random vectors using the RNMVM subroutine of 

IMSL.  Then the trace and the maximal eigenvalue of 



 

 

24

���
=

−
=

−
−−

=
− ′′′

T

t
tt

T

t
tt

T

t
tt ZaZZZa

1
1

1

1
11

1
1 )()()(  are obtained.  Based on 50,000 replications, 

empirical percentiles are found for both of them, and summarized in Appendix Table 1 

through Appendix Table 4.   

Appendix Table 1. Approximate Percentile for the Likelihood Ratio Test Statistics 
(N=25) 
Percentile Dimension (d) 

 1 2 3 4 5 

Maximal Eigenvlaue 

0.5% 0.00004 1.42981 3.93426 6.78453 9.66753
1.0% 0.00015 1.64167 4.37563 7.32553 10.32730
2.5% 0.00101 2.03539 5.01974 8.14859 11.36024
5.0% 0.00424 2.44003 5.62131 8.96674 12.31856

10.0% 0.01647 3.00563 6.48126 9.98689 13.51820
25.0% 0.10502 4.18508 8.13431 11.99077 15.71175
50.0% 0.46383 5.91077 10.38015 14.56163 18.58978
75.0% 1.35892 8.18468 13.14124 17.63905 21.95750
90.0% 2.78245 10.74697 16.10984 20.92439 25.47419
95.0% 3.91309 12.53843 18.12781 23.09275 27.85367
97.5% 5.11654 14.17930 20.01540 25.09178 29.94946
99.0% 6.70548 16.27223 22.35285 27.82176 32.59093
99.5% 7.90031 17.82954 24.05824 29.49785 34.41322

Trace 

0.5% 0.00004 1.62647 6.52724 14.09257 23.97993
1.0% 0.00015 1.89255 7.08891 15.13858 25.51736
2.5% 0.00101 2.31970 8.09212 16.70702 27.62989
5.0% 0.00424 2.78528 9.04793 18.13896 29.48413

10.0% 0.01647 3.40366 10.27750 19.85534 31.78334
25.0% 0.10502 4.74187 12.59891 23.13847 35.92636
50.0% 0.46383 6.65841 15.69164 27.24903 41.05999
75.0% 1.35892 9.13119 19.27318 31.85716 46.72605
90.0% 2.78245 11.88870 22.96488 36.50669 52.38039
95.0% 3.91309 13.74282 25.49179 39.56074 55.80202
97.5% 5.11654 15.47996 27.75425 42.30320 59.14228
99.0% 6.70548 17.60849 30.57262 45.53668 63.09720
99.5% 7.90031 19.40523 32.54868 47.89322 65.89034
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Appendix Table 2. Approximate Percentile for the Likelihood Ratio Test Statistics 
(N=50) 
 
Percentile Dimension (d) 

 1 2 3 4 5 

Maximal Eigenvalue 

0.5% 0.00003 1.60173 4.50424 7.76128 11.24278

1.0% 0.00014 1.82863 4.97812 8.41453 11.92691

2.5% 0.00096 2.24829 5.66422 9.25936 12.98668

5.0% 0.00380 2.69933 6.35332 10.14989 13.96017

10.0% 0.01544 3.29527 7.23627 11.25670 15.25155

25.0% 0.10389 4.53566 8.97271 13.31228 17.56072

50.0% 0.46311 6.38063 11.30755 16.03700 20.60944

75.0% 1.33167 8.78246 14.20011 19.30281 24.15729

90.0% 2.73195 11.45368 17.31815 22.67434 27.77574

95.0% 3.88797 13.31947 19.30800 24.92246 30.34614

97.5% 5.10702 15.07210 21.30513 27.07455 32.63307

99.0% 6.76562 17.29564 23.83428 29.77200 35.51581

99.5% 8.04663 18.94029 25.64621 31.92806 37.36833

Trace 

0.5% 0.00003 1.81377 7.42487 16.51869 28.46244

1.0% 0.00014 2.07676 8.10612 17.51137 29.97954

2.5% 0.00096 2.57172 9.18935 19.16154 32.13519

5.0% 0.00380 3.07097 10.19017 20.70302 34.15465

10.0% 0.01544 3.72021 11.49826 22.56016 36.59861

25.0% 0.10389 5.09344 13.94564 25.98156 41.05484

50.0% 0.46311 7.13814 17.14346 30.27136 46.37817

75.0% 1.33167 9.73327 20.89473 35.14136 52.34282

90.0% 2.73195 12.56556 24.76696 40.05743 58.32362

95.0% 3.88797 14.52383 27.31449 43.24551 62.02025

97.5% 5.10702 16.47635 29.69501 46.05951 65.39952

99.0% 6.76562 18.72430 32.79377 49.75564 69.58170

99.5% 8.04663 20.46693 34.89926 52.00483 72.14625
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Appendix Table 3. Approximate Percentile for the Likelihood Ratio Test Statistics 
(N=75) 
 
Percentile Dimension (d) 

 1 2 3 4 5 

Maximal Eigenvalue 

0.5% 0.00003 1.63901 4.67199 8.17382 11.81339

1.0% 0.00014 1.86057 5.13029 8.76932 12.52080

2.5% 0.00089 2.32952 5.85775 9.68410 13.67224

5.0% 0.00377 2.78503 6.55061 10.55737 14.66208

10.0% 0.01539 3.38550 7.47707 11.67953 15.93704

25.0% 0.10124 4.66352 9.25674 13.79160 18.34714

50.0% 0.45375 6.53659 11.68857 16.59844 21.42519

75.0% 1.29805 8.96161 14.62513 19.92667 25.03569

90.0% 2.70085 11.71267 17.79558 23.41607 28.78642

95.0% 3.88506 13.58790 19.98903 25.77393 31.27003

97.5% 5.02929 15.35159 22.00989 27.96831 33.59522

99.0% 6.64227 17.56786 24.37812 30.59566 36.44074

99.5% 7.85819 19.19528 26.17358 32.67455 38.71803

Trace 

0.5% 0.00003 1.84403 7.75475 17.29445 30.31911

1.0% 0.00014 2.13503 8.47254 18.42401 31.72412

2.5% 0.00089 2.64100 9.54190 20.05646 34.00915

5.0% 0.00377 3.14814 10.56431 21.59355 36.08253

10.0% 0.01539 3.82784 11.92262 23.50947 38.49759

25.0% 0.10124 5.23631 14.41665 27.03851 42.98341

50.0% 0.45375 7.29913 17.69560 31.45857 48.46593

75.0% 1.29805 9.90742 21.54545 36.41562 54.48727

90.0% 2.70085 12.83130 25.52504 41.36847 60.43302

95.0% 3.88506 14.78765 28.20539 44.58499 64.28394

97.5% 5.02929 16.66736 30.51981 47.51479 67.77034

99.0% 6.64227 19.04277 33.58242 51.19997 71.98624

99.5% 7.85819 20.74977 35.59242 53.38948 75.02776
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Appendix Table 4. Approximate Percentile for the Likelihood Ratio Test Statistics 
(N=100) 
 
Percentile Dimension (d) 

 1 2 3 4 5 

Maximal Eigenvalue 

0.5% 0.00004 1.67272 4.86716 8.42402 12.12611

1.0% 0.00016 1.92763 5.30395 9.01527 12.88516

2.5% 0.00102 2.36671 6.01055 9.94244 13.98926

5.0% 0.00409 2.81071 6.71689 10.82655 15.04403

10.0% 0.01642 3.42829 7.63680 11.95442 16.34207

25.0% 0.10442 4.74110 9.41590 14.09169 18.78874

50.0% 0.46182 6.64446 11.90220 16.95947 21.91651

75.0% 1.34371 9.11060 14.88195 20.34630 25.51195

90.0% 2.72685 11.89154 18.05243 23.80437 29.35646

95.0% 3.86727 13.80669 20.22749 26.17239 31.95017

97.5% 5.06370 15.61507 22.28753 28.39861 34.24622

99.0% 6.67854 18.05861 24.83264 31.25117 37.41772

99.5% 7.98117 19.72457 26.51534 33.21503 39.73579

Trace 

0.5% 0.00004 1.93994 7.98728 17.87842 30.91952

1.0% 0.00016 2.19770 8.68079 18.86298 32.58025

2.5% 0.00102 2.68338 9.79212 20.60548 34.82240

5.0% 0.00409 3.18215 10.81532 22.17563 36.92950

10.0% 0.01642 3.88215 12.11687 24.05310 39.48685

25.0% 0.10442 5.34922 14.66622 27.61961 44.03326

50.0% 0.46182 7.41130 18.02354 32.14189 49.71305

75.0% 1.34371 10.08132 21.92179 37.19312 55.73866

90.0% 2.72685 13.04835 25.97027 42.14549 61.81979

95.0% 3.86727 15.10072 28.57504 45.45506 65.75732

97.5% 5.06370 17.07017 31.02484 48.35427 69.29696

99.0% 6.67854 19.42227 34.09746 52.05660 73.78222

99.5% 7.98117 21.19068 36.45694 54.72538 76.74147
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Table 1.  ADF Unit Root Test Results for Level Series and First  
Differenced Series (N = 25) 

Description Level Series First Differenced Series 

Variable pt at et pt at et 

ττ�  -2.380 -2.587 -2.817 -3.246 -5.533 -3.516 

P-Value 0.378 0.289 0.206 0.030 0.000 0.017 

 
 
Table 2.  LR test statistics of Test of H0: The Canonical  
Correlations in the Current Row and All That Follow are Zero (N = 25) 

Number AR(2) AR(3) AR(4) AR(5)  

1 
0.233 

(0.008) 
0.233 

(0.056) 
0.173 

(0.169) 
0.094 

(0.000) 

2 
0.738 

(0.318) 
0.569 

(0.167) 
0.607 

(0.444) 
0.521 

(0.013) 

3 
0.946 

(0.352) 
0.973 

(0.573) 
0.931 

(0.464) 
0.977 

(0.502) 
 
Numbers in parenthesis are P-values. 
 
 
Table 3.  Squared Partial Canonical Correlations (N = 25) 

Number AR(1) AR(2) AR(3) AR(4) 

1 0.820 0.685 0.591 0.715 

2 0.467 0.220 0.415 0.348 

3 0.029 0.054 0.027 0.069 

 
 
Table 4.  Akaike Information Criterion for Autoregressive Models (N=25) 

Lag=0 Lag=1 Lag=2 Lag=3 Lag=4 Lag=5 Lag=6 Lag=7 

502.70 465.20 472.10 479.71 492.07 504.16 484.24 475.19 
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Table 5.  Trace Statistics and Maximal Eigenvalue Statistics (N = 25) 

 
 
Table 6.  Granger Causality Test Results (N=25) 
Lags: 1 

  Null Hypothesis: Obs F-Statistic Probability 
  POP does not Granger Cause EMP 24  0.05701  0.81359 
  EMP does not Granger Cause POP  40.3320  2.7E-06 
Lags: 2 

  Null Hypothesis: Obs F-Statistic Probability 
  POP does not Granger Cause EMP 23  0.46044  0.63823 
  EMP does not Granger Cause POP  9.13324  0.00183 
 
 
Table 7.  ADF Unit Root Test Results for Level Series and First  
Differenced Series (N = 100) 

Description Level Series First Differenced Series 

Variable pt rt et pt rt et 

τ�  -2.199 -3.009 -3.047 -4.616 -5.968 -4.614 

P-Value 0.485 0.135 0.125 0.002 0.000 0.000 

 
 
 
 
 
 
 
 

H0 (r ) 5% Significance Level

AR 1 AR 2 AR 3 AR 4

Trace Statistic

2 0.55 0.20 1.00 0.10 3.91309
1 15.86 5.81 9.70 14.01 13.74282
0 58.67 18.84 28.63 38.35 25.49179

Maximal Eigenvalue Statistic

2 0.22 0.27 0.92 0.11 3.91309
1 15.31 5.61 8.70 13.91 12.53843
0 42.81 13.03 18.93 24.34 18.12781

Statistic
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Table 8.  LR test statistics of Test of H0: The Canonical Correlations  
in the Current Row and All That Follow are Zero (N = 100) 

Number AR(2) AR(3) AR(4) AR(5) AR(6) AR(7) AR(8) 

1 
0.343 

(0.000) 
0.744 

(0.003) 
0.721 

(0.002) 
0.876 

(0.335) 
0.736 

(0.008) 
0.722 

(0.007) 
0.855 

(0.333) 

2 
0.714 

(0.000) 
0.950 

(0.360) 
0.976 

(0.742) 
0.995 

(0.986) 
0.909 

(0.135) 
0.927 

(0.260) 
0.982 

(0.879) 

3 
0.963 

(0.069) 
0.979 

(0.181) 
0.995 

(0.509) 
0.999 

(0.988) 
0.989 

(0.363) 
0.997 

(0.670) 
0.999 

(0.870) 

 
Numbers in parenthesis are P-values 
 
 
Table 9.  Squared Partial Canonical Correlations (N = 100) 

Number AR(1) AR(2) AR(3) AR(4) AR(5) AR(6) AR(7) AR(8) 

1 0.283 0.226 0.304 0.297 0.207 0.150 0.261 0.148 

2 0.085 0.163 0.179 0.169 0.155 0.101 0.085 0.053 

3 0.000 0.027 0.017 0.008 0.011 0.013 0.004 0.007 

 

 
Table 10.  Akaike Information Criterion for Autoregressive Models (N=100) 

Lag=0 Lag=1 Lag=2 Lag=3 Lag=4 Lag=5 Lag=6 Lag=7 

1966.70 1333.22 1290.57 1296.99 1303.94 1313.57 1321.66 1335.10
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Table 11.  Trace Statistics and Maximal Eigenvalue Statistics (N = 100)  
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Figure 1. Time Series Plot for Annual Data 
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Figure 2. Long Run Equilibrium Relationship of the series 

 

5% Significance
Level

AR 1 AR 2 AR 3 AR 4 AR 5 AR 6 AR 7 AR 8

2 0.011 2.747 1.696 0.853 1.136 1.308 0.424 0.665 3.86727
1 8.852 20.535 21.398 19.359 18.001 12.005 9.306 6.071 15.10072
0 42.106 46.120 57.667 54.563 41.189 28.209 39.589 22.138 28.57504

2 0.011 2.747 1.696 0.853 1.136 1.308 0.424 0.665 3.86727
1 8.841 17.788 19.702 18.506 16.866 10.697 8.883 5.406 13.80669
0 33.254 25.585 36.269 35.204 23.188 16.204 30.282 16.066 20.22749

H0 (r ) Statistic

Trace Statistic

Maximal Eigenvalue Statistic
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Figure 3. Stationary Component of Population and Participation Rate (N=25) 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4. Stationary Component of Employment (N=25) 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Stationary Component for 3 Years Delayed Population and  
Employment (N=25) 
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Figure 6. Stationary Component of Employment and Net Migration (N=25) 
 

 

 

 

 

 

 

 

 

 

Figure 7. Stationary Component of 3 Years Delayed Population and  
Net Migration   (N=25) 
 

 

 

 

 

 

 

 

 

 

Figure 8. Non-stationary Component of Population (N=25) 
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Figure 9. Non-stationary Component of Labor Force Participation Rate  
(N=25) 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Non-stationary Component of Employment (N=25) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Impulse Response of Population and Employment to Employment 
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Figure 12. Impulse Response of Labor Force Participation Rate to Employment 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Population and Employment Series Plot for Quarterly Data 
 
 

 

 

 

 

 
 
 
 
Figure 14. Labor Force Participation Rate Series Plot for Quarterly Data 
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Figure 15. Stationary Component of Population and Participation Rate  
(N=100) 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Stationary Component of Employment (N=100) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. Non-stationary Component of Population (N=100) 
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Figure 18. Non-stationary Component of Labor Force Participation Rate  
(N=100) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19. Non-stationary Component of Employment (N=100) 
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