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ACCOUNTING FOR SAMPLING DESIGN IN THE SHIW 

by Ivan Faiella* 
 

Abstract 

This paper analyses how sampling design affects variance estimates and inference 
using the data collected by the Survey on Household Income and Wealth (SHIW). The 
SHIW combines three basic features: stratification, clustering, and weighting to correct for 
unequal probabilities of selection among sampling units. A model to assess variance is 
presented and a Jackknife Repeated Replication method is employed to estimate variance. 
Empirical evidence shows that: 1) simple random sampling formula for variance 
underestimates by a factor of between 3 and 2 the estimates that take into account all the 
design features; 2) the bias of unweighted estimates may be fairly substantial; 3) all these 
factors can seriously mislead inference based on SHIW data.  
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Acronyms
BR Bias ratio.

BRR Balanced repeated replications.

BRS Rescaling bootstrap.

Deff Design effect.

Deft Square root of the Deff.

Epsem Equal probability selection method.

fpc Finite population correction.

GVF Generalized variance function.

HT Horvitz-Thompson estimator.

JRR Jackknife repeated replications.

Meff Misspecification effect.

Meft Square root of the Meff.

MSE Mean square error.

NSRU Non-self-representing Unit.

PPS Probability proportional to size selection method.

PSU Primary sampling unit. Cluster of population elements.

RHO Rate of homogeneity. A measure of intra-cluster correlation.

RMSE Square root of the mean square error.

SECU Standard error computation unit.

SHIW Survey on Household Income and Wealth.

SRS Simple random sampling without replacement.

SRU Self-representing unit.

URS Uniform random sampling. Simple random sampling with
replacement.
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1 Introduction

Standard statistical analysis generally does not take sampling design into
account, thus neglecting important features of survey data. Many statisti-
cal methods are developed assuming that sample information comes from a
population model where the sampling scheme plays no role (Chambers and
Skinner 2003).

In particular, sampling variability cannot be properly assessed under
the hypothesis that survey variables are independently and identically dis-
tributed across all possible samples (i.e. they follow an iid process). This
implies that survey data come from a sample obtained through Simple Ran-
dom Sampling (SRS) with replacement (also known as Uniform Random
Sampling - URS). Sample design typically involves specific techniques such
as clustering and stratification which, if ignored, generally lead to inaccurate
estimation of the variance.

Furthermore, when the process of sample selection and the response
mechanism is not ignorable,1 univariate and multivariate analyses disregard-
ing survey weights can be biased.

The impact exerted by these three factors (clustering, stratification and
weighting) on the variance estimates differs according to the estimator, but
has some common features (Purdon and Pickering 2001):

• the effect of stratification is a reduction in sampling variance;

• the effect of clustering is an increase in sampling variance;

• the effect of weighting is generally a reduction in bias and an increase
in sampling variance.

These features of sampling design must be taken into account in evalu-
ating the variance of the estimator of interest. Straightforward formulas are
available in sampling textbooks only for simple estimators, such as totals,
and simple designs. As two seminal papers of Frankel (1971) and Kish and
Frankel (1974) show, more difficult problems arise when the objective of the
research is to assess the variance of non-linear estimators such as ratios, linear
regression coefficients and order statistics in presence of complex designs.

1If the selection of the theoretical sample and the response mechanism that leads
to the actual sample depend only on the observed data, the design is ignorable. More
formally, given the definition of a ξ model to estimate a parameter θ, the concept of design
ignorability implies that, under ξ model validity, the data collection process and response
mechanism do not provide any additional information to estimate θ (for an analytical
description see Chapter 7 of Gelman et al. 2003) .
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Many of these problems, however, have lately found solutions shared
by the statistical community (see Binder 1983; Rust, 1985; Wolter, 1985).
Moreover, the increasing computational power of modern PCs and the avail-
ability of several survey software packages (e.g. R, Stata and SAS) greatly
help the analyst to properly compute the variance of the estimators.

The objective of the present study is to assess how ignoring sampling
design can affect the results of statistical inference regarding univariate and
multivariate statistics, using data collected from the Survey on Household
Income and Wealth (SHIW).

For this purpose, a flexible strategy to estimate sampling variance is re-
quired in order to assess properly the statistical reliability of a wide class
of estimators. A model to assess variance is presented and the Jackknife
Repeated Replication is suggested as a strategy for variance estimation. Em-
pirical evidence shows that:

• SRS formula for variance underestimates by a factor of between 3 and
2 the estimates that take into account all the design features.

• In the majority of cases, the increase in bias associated with unweighted
estimates is not compensated for by the decrease in the standard errors

• When one takes into account all the design features, the effective cover-
age probabilities of the estimators are lower than the nominal thresh-
old.2

• For regression models, the increase in the standard errors that include
information on sampling design can reverse the significance level of
some coefficients.

The study is structured as follows. Section 2 describes the main features
of complex surveys and their impact on inference. Section 3 introduces a
strategy for variance estimation for SHIW data and evaluates the effect of
disregarding sampling information in computing the confidence intervals of
the estimators. Finally, the main conclusions are drawn.

2 Features of complex surveys

The purpose of sample surveys is to obtain an estimate of a population
parameter from the sample. If the sample is a probability sample – i.e. if

2This implies that, from a statistical point of view, confidence intervals built using SRS
formula for variance are not valid (Särndal, Swensson, and Wretman 1992).
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all the population units have a non-zero probability to be included – and if
it is measurable, it is possible to determine the sampling distribution of the
estimator.3 When households are the target population, for example because
we want to study their average income, expenditure or wealth, information
is typically collected through complex surveys.

In fact, the use of SRS is often unpractical and uneconomical: frequently
there are no lists that exactly enumerate all the units of the population.
Apart from the several problems afflicting such a list, if it exists at all,
(blanks, duplications, etc., see Groves et al. 2004), it may not be economi-
cally sustainable to sample statistical units directly. Large-scale surveys are
then generally based on cluster sampling. Under this design, a cluster of
element is selected (primary sampling unit - PSU), and from the selected
clusters a sub-sample of elements or of other clusters (in case of multi-stage
design) is drawn. The PSUs are usually divided into mutually exclusive
strata before the selection in order to reduce sampling variability and to
control for certain domains of analysis.4

Schematically, complex surveys have some common features (Lohr 1999):

1. Mainly for cost-effectiveness they sample clusters of elements. For
example, they sample municipalities or counties and then households
or individuals pertaining to the cluster (multi-stage sampling).

2. They employ stratification of the clusters to mimic certain population
sub-groups within the population.

3. Clustering, stratification and the response process implies that in the
end statistical units are selected into the sample with unequal proba-
bilities. Furthermore, unequal probabilities of selection can also reflect
the response process or are implied by the design when clusters are
not proportionally allocated to the strata, due to the oversampling of
some sub-classes, or are sampled with probability proportional to clus-
ter size (PPS sampling) in order to reduce sampling error. With these
procedures the use of weight is required to obtain unbiased estimators.

3A sample is measurable if an unbiased estimate of the sampling variance can be derived
from the variability observed between units within the sample. See Särndal et al (1992),
Chapter 14.3.

4Intuitively, stratification reduces the possibility to draw samples that are “very dif-
ferent” from the survey population. The choice of how allocate the sample units to the
strata is essential to maximize the gain of efficiency of this sampling strategy.
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2.1 Variance estimation for complex sample survey data

The analysis of survey data involves the estimation of one or more population
parameters (e.g. totals, means, regression coefficients, etc.). An estimator
of the variance is required in order to assess the statistical reliability of the
point estimates through the construction of confidence intervals.5 6

Most of the statistical methods implies that survey data come from a
sample obtained through URS.

Under URS design the variance of the sampling mean ȳ can be estimated
through:

var(ȳ) =
1
n

s2. (1)

According to (1) the sampling variance of an estimator depends upon
two factors:

1. The sample size n;

2. The sampling element variance s2.

As previously mentioned, however, samples are selected from finite pop-
ulations and SRS is almost never used.

Neglecting the finite population correction7 has often a small impact on
the estimates because in large sample surveys - such as household surveys -
the sample is a negligible fraction of the population.

The impact of implementing a complex survey design is potentially greater.
In particular, the consequence of sampling clusters instead of elements is an
increase in the variance of the estimators for two main reasons:

1. the number of independent choices is reduced because the randomiza-
tion process is based on clusters and not on elements (with a loss of
degrees of freedom);

5The importance of the subject for official statistics is confirmed by a Eurostat publi-
cation focusing on variance estimation strategies (Eurostat 2002).

6In the presence of item non-response, a further variance component to be assessed,
not considered in the present study, is the one induced by the process of imputation. See
for example Särndal and Lundström (2005), Chapter 13.

7The finite population correction is the reduction of sampling variance due to the fact
that sampling is without replacement. (1) is then multiplied by

(
1− n

N

)
. Not considering

this factor greatly simplifies variance formula and produces more conservative variance
estimates (i.e. positively biased).
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2. the distribution of the elements in each cluster is not at random be-
cause, within a cluster, environmental and socio-economic factors in-
duce an aggregation of elements with similar characteristics. This pos-
itive intra-cluster correlation (also popularized as rate of homogeneity
– rho – by Kish, 1965) reduces the effective size of the sample because
acquiring data on more elements of the same cluster does not increase
proportionally the amount of information on the object of study.

Note that in a multi-stage sampling framework the sampling error com-
puting units (SECUs) are the PSUs only. These are known as ultimate
clusters and, in the presence of small sampling fractions in the subsequent
stages, they provide all the necessary information about the variance of the
sampling process.8

To begin with, computing the variance requires a variance model. This
means that we have to include all the features of the selection process in the
relevant formula (i.e. stratum and PSU IDs). Then a method, possibly with
optimality properties, can be applied as a feasible way to obtain variance
estimates.

2.1.1 Strategies to estimate sampling variance

To obtain estimates for the variance of estimators in a complex survey frame-
work, two broad strategies are suggested: the linearization method and the
replication-based method.

According to the former, non-linear estimators are expressed as a function
of linear estimators (such as totals) and the delta method is then applied to
obtain a biased but consistent estimate of the variance.9 This method has the
advantage of providing an analytical formula for the variance, but it requires
computation of numerical derivatives (for the first order Taylor expansion)
and rests on the hypothesis that higher order terms are negligible.10

8“ [. . . ] from the values of the primary variates yα alone we can compute the entire
variance, including both the between-cluster and within-cluster components of variation.”
(Kish, 1965, p.158).

9Both the bias and the variance are characteristics of an estimator and not of one of
its possible realizations (i.e. the estimate). In what follows I adhere to the interpretation
of Särndal et al (1992), p. 41, indicating for biased estimate “an estimate calculated from
an estimator that is biased”.

10As pointed out by Wolter, a statement about the order of the “remainders” is possible
only in the context of infinite populations. For finite populations an evaluation of the
order of higher Taylor terms is possible only under the hypothesis of a superpopulation
model (Wolter 1985).
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Replication methods rest on the idea of selecting k samples from the
population (replicates) by sub-sampling the original sample and computing
the estimates of interest for each sub-sample. The variance can then be com-
puted as a measure of the deviance of the k-th estimate from the estimate
for the original sample (an average of the estimates across the k replicates or
the value of the estimate for the whole sample). Among the random group
methods, two are usually adopted to estimate variance within complex sur-
veys: the Jackknife Repeated Replications (JRR) and the Balanced Repeated
Replications (BRR)(Rust 1985).

Table 1. Replication methods for complex surveys

JRR BRR

Step1 Delete a PSU from the first
stratum: this is equivalent to
zero-weighting it

Delete a PSU from strata ac-
cording to a Hadamard ma-
trix: this is equivalent to zero-
weighting the deleted PSU

Step2 Increase the weight of the
other PSUs in the stratum by
(PSU in the stratum)/(PSU in
the stratum - 1)

Increase the weight of the
other PSUs in the stratum by
2

Step3 Compute the statistic of interest with the set of replicated weights
Step4 Compute the deviance (sum of squared distances) from each

replicate statistic (step 3) from the total sample statistic
Step5 Multiply the deviance

by the factor (replicates-
1)/(replicates)

Divide the deviance by the num-
ber of replicates

The difference between the two techniques lies in how sub-samples are
drawn. The BRR implies that, for variance computation, there are two PSUs
per stratum; in each replication a cluster is selected from a given stratum
according to a pattern that ensures “balanced replicates” using a Hadamard
matrix (for details see Wolter, 1985, Chapter 3).11 The JRR uses a drop-
out procedure: in each replication it drops a cluster from a given stratum,
appropriately re-weighting the remaining clusters in the same stratum, a
method also known as JKn jackknife.

Another replication method widely used in practice is the Bootstrap. This
method needs to be properly modified to deal with survey data (Rescaling

11A Hadamard matrix has columns pairwise orthogonally and gives a pattern such
that the variance estimated with the BRR has equal asymptotic properties to the same
estimator evaluated over all the possible 2#ofstrata samples.
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Bootstrap - BRS) (Rao and Wu 1984). The method is not treated here
because it does not possess good empirical properties. In a simulation study
comparing linearization and the replication methods (JRR, BRR and two
modified Bootstrap methods), Shao and Tu (1995) conclude that

Overall, the linearization and the jackknife variance estima-
tors have the best performance; the BRR variance estimator is
the second best; and the BRS variance estimators are the worst
[p.252] [...] Furthermore, the bootstrap variance estimator usu-
ally requires more computations than the jackknife or the BRR
[p.281].

The linearization and replication methods present similar features: they
provide biased estimates of the variance, the order of the bias being usually
negligible for large samples (the bias of replication methods depends on the
number of replications), but the Taylor expansion method generally shows a
lower mean square error (MSE); on the other hand, replication methods have
a better performance in terms of confidence intervals and coverage probabil-
ities (Wolter 1985, Chapter 8). Since both methods produce basically the
same results, they can be used interchangeably according to the nature of
the estimator12 and the software procedures available.13

An indirect way to assess the variance of an estimator using complex
survey data is the Generalized Variance Function approach (GVF). It con-
sists in estimating the variance through an analytical relation that links the
expected value of the estimator with its variance. This relation can be esti-
mated using data on previous surveys or it can be computed for a few key
variables of the actual survey and then applied to other statistics presenting
“similar characteristics” (i.e. statistics that follow a common model).

Although the GVF does not possess well-behaved asymptotic properties
(as pointed out by Wolter, 1985, it can involve non-normal confidence in-
tervals), a class of these models can be extremely useful to provide a rough
idea of how the inference based on standard variance formulas (i.e. assuming
URS sampling) changes considering the complexity of sampling design. This
is known as the design effect (Deff ) model (Kish, 1965, Chapter 5). Given
the estimator θ̂ of the population parameter θ the design effect is the ratio

12An important difference concerns the estimate of the variance of a domain estimator.
In each domain the sampling design must be preserved for this estimate to be valid. This
is most easily accomplished by replication methods (the JRR in particular).

13A comprehensive review of the available software can be find in Chantala (2003).
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between its variance computed according to the complex survey design and
that computed under the hypothesis of SRS.

Deff(θ̂) =
var(θ̂)compl

var(θ̂)srs

. (2)

These relations can be used to adjust the SRS variance estimates and the
critical level of the confidence intervals and to compute the effective sample
size (i.e. the sample size needed to achieve the same level of precision as
using SRS). 14 This formula is useful because it is “portable”. For example,
it can be used to approximate correct standard errors in domains of study.
When the analysis focuses on sub-classes (such as gender, geographical area,
etc.) the total sample Deff for the mean of the g − th domain ȳg can be
adjusted for the relative cluster size with the following formula:

Deff(yg) = 1 +
ng

a
∗ rho, (3)

where ng is the domain size, the intracluster correlation rho is estimated
using the Deff(y) for the total sample as (deff − 1)/[(n/a) − 1], n is the
total sample size and a is the number of clusters. Skinner et al. (1989) show
that (3) can easily be approximated as:

Deff(yg) = 1 +
ng

n
∗ [Deff(y)− 1] , (4)

where the only information necessary to compute Deff(yg) is Deff(y)
and the proportion of the sample in the g domain

(ng

n

)
.

The design effect appraises the impact of sampling design on the variance
of the true estimator θ̂. Skinner et al. (1989, pp. 24-31) focus instead on
the effect of the design on the estimator of variance. According to these
authors it is appropriate to compare the complex variance not with SRS
variance (the unbiased variance under SRS) but with a biased estimator of
variance obtained ignoring all the design features, i.e. weights, clustering
and stratification. This measure is usually known as the misspecification
effect (Meff ):

Meff(θ̂) =
var(θ̂)compl

var(θ̂)unw

, (5)

14For example, given a measure of the intracluster correlation,rho, it is possible to derive
a series of relations linking Deff and the average cluster size (Kish, 1965). In particular, for
the sampling mean Deff = 1+(b−1)∗rho, where b=average cluster size, rho=intracluster
correlation.
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where the numerator is the same as in Deff, while the denominator is the
unweighted variance of θ̂ under the hypothesis of SRS (Eltinge and Sribney
1996).

Finally, to estimate the variance of population quantiles where the JRR
performs poorly (see Kovar, Rao, and Wu 1988; Wolter, 1985), it is possible
to employ an indirect method (Woodruff 1952). This procedure requires the
following steps:

1. estimate y50, the median value of y;
2. define an indicator variable Pyi equal to 1 when yi < y50 and 0

otherwise and compute the statistics Py50 =
∑n

i=1 wiPyi∑n
i=1 wi

;
3. estimate the standard error of Py50 and derive the associated bound-

aries for a given confidence interval;
4. compute the empirical value of the cumulative distribution and take

the inverse corresponding to the boundaries of Py50 calculated in step 3.
These are the boundaries of y50;

5. given a confidence level and the associated z-score the standard error
of the median will be equal to the width of the confidence interval (the
difference between the boundaries computed in step 4) divided by twice the
z-score.15

2.1.2 Inference with complex survey data

The concepts of the previous section can be used to evaluate the impact of
disregarding the sample design on the inference from sample data, computing
the effective coverage probabilities of the (1-α)% probability statements. To
correct for the bias of the unweighted estimates it can be useful to refer to
the concept of bias ratio, i.e. the bias of the estimator normalized with its
standard error.

BR(θ̂) =
E(θ̂)− θ√

V (θ̂)
(6)

In fact, given the standard normal z-score Z, it can be shown that the
effective probabilities are given by

P
{
−z1−α/2 −BR(θ̂) < Z < z1−α/2 −BR(θ̂)

}
. (7)

15Francisco and Fuller somehow refined this method using the inversion of a robust score
test (Francisco and Fuller 1991).
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The coverage probabilities are therefore computed by taking the differ-
ence of two cumulative standard normal curves evaluated at the critical value(
z1−α/2

)
“netted” by the bias ratio (Särndal, Swensson, and Wretman 1992).

If no information on the design is considered, the modified z-score is divided
by the square root of Meff (also called Meft). When survey weights are
used and variance is estimated using the SRS, the normal score can be cor-
rected dividing it by the Deff square root (a measure called Deft), so that
z′ = z/

√
Deff = z/Deft (see Skinner et al., 1989, p. 30).

Note that, to compute confidence intervals, a standard normal distribu-
tion is only an approximation of the effective distribution of the estimators.
In the case of an estimator with unknown variance, a t statistic should be
used. Making use of the t distribution can be a conservative approach, par-
ticularly when there are few degrees of freedom for variance computation.
Furthermore, in computing degrees of freedom the appropriate level of ran-
domization should be taken into consideration: for example, in presence of
a stratified cluster sample, the degrees of freedom equal to the number of
clusters - number of strata.16 If a replication technique is adopted, the de-
grees of freedom are related to the number of replications (see Skinner et al.,
1989, pp. 56-57).

2.2 The role of survey weights

If, according to the selection process, all the elements of the population
have an equal chance to be included in the sample, the design is known
as epsem (equal probability selection method). If the design is epsem and
the sample size is fixed, given the sampling scheme, then the unweighted
estimator of a mean (or a total) is unbiased (i.e. its expected value is equal
to the true population value). In practice, units included in the sample
have unequal probabilities of selection. To correct for this possible source of
bias, each observation is weighted using the inverse of the sampling fraction
(sampling weight) adjusted for the non-response mechanism (non-response
weight) and often incorporates auxiliary information about the population
(post-stratification).

The survey weight wi is used to obtain unbiased estimates from the
sample through the Horvitz-Thompson (HT) estimator, also known as the
π-estimator (Särndal, Swensson, and Wretman 1992). The rationale of this
class of estimators is to inflate each sample observation yi dividing it by its

16The degrees of freedom are determined by the randomization process that involves
the random selection of clusters within each H strata.
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inclusion probability πi. For example, the survey-weighted sample mean is
an approximately unbiased estimator of the population mean given a fixed
sample size.

y =
∑n

i=1 wiyi∑n
i=1 wi

, wi ∝
1
πi

(8)

The estimator (8) is technically biased (because it is a ratio of two random
variables) but its relative bias is bounded by the coefficient of variation of
the denominator (the sample total of survey weights), usually very small for
large samples (Kish,1965, Chapter 2).

Note that using survey weights implies that the weighted mean is not a
linear estimator and the sampling variance of (8) under SRS is not correctly
estimated by (1) but we must resort to a formula for the variance of two
random variables.17 If we indicate with W and Y the estimators of the
sample totals of the numerator and the denominator of (8), its variance can
be estimated by:

var (y) =
1

W 2

[
var(Y ) + y2var(W )− 2ycov(Y, W )

]
. (9)

The unbiasedness of the π-estimator is not without costs: usually, there
is a loss of efficiency, Lw, due to the use of weights. In the case of the
estimate of the variance of the mean and complete incorrelation between yi

and wi, this loss is proportional to the squared coefficient of variation of the
weights (Kish 1992).

Lw =
(
1 + CV 2

w

)
, where CVw =

sw

w̄
(10)

In fact, the unweighted estimators can be viewed as weighted estimators
whose attached weights are all constant, thereby unaffecting the variance
(note that in this case (9) reduces to (1)). On the contrary, the π-estimator
of a mean is a cross-product of the study variable and the relative weight.
If this cross-product does not vary much across observations, this can limit
the loss of efficiency due to weighting.18

A possibility to reduce the impact of weights on the variance of the esti-
mator is to make use of the Generalized Regression Estimator (GREG). The
idea behind the GREG is to supplement the HT estimator with a set of aux-
iliary information (in a multivariate context) correlated to the study variable

17Some authors refer to (8) as a ratio mean. See (Kish 1965).
18This reason is the rationale of PPS sampling as a tool to limit the variance of the

estimators. See Särndal et al. (1992), Chapter 3.6.
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(Särndal and Lundström 2005). The HT estimator is corrected using the gap
between the sample estimate and information on the value of the auxiliary
vector in the population (available from larger surveys or census data). In
general, the aim of calibration is to increase precision as it serves both to
reduce differences between the sample and the population distribution with
respect to some auxiliary variables and to reduce the variability of weights
(in the case of post-stratification this happens only if the post-strata have a
smaller within-stratum variance with respect to the overall variance).

Purdon and Pickering (2001), analysing the Workplace Employee Rela-
tions Survey, assess whether the increase in bias associated with unweighted
estimates is compensated for by the decrease in the standard error, estimat-
ing the mean square error (i.e. the square of the bias plus the design-based
variance). With the exception of a variable, all the figures are smaller for
the weighted estimate than for the unweighted estimate. This suggests that
weighted estimates, even with their increased standard errors, are almost
always preferable to the unweighted estimates. A replication of this analysis
on SHIW data confirms these results (Faiella and Gambacorta 2007).

When evaluating confidence intervals using weighted estimates it is al-
ways safer to check the degrees of freedom. In fact, following a standard
practice, survey weights are considered an expansion factor summing up to
the total survey population. Therefore, it is very important to compute ap-
propriately the denominator of the variance estimates, otherwise the number
of degrees of freedom has the same order of magnitude as the population,
pushing the probability to reject the null hypothesis towards one. A solu-
tion is to properly specify degrees of freedom for variance computation or to
normalize survey weights by re-scaling the original weights to their mean so
they have mean equal to 1 and sum up to the sample size.19

In conclusion, it is established practice in the statistical community to
use weights in the analysis of survey data. If some portions of the popula-
tion are oversampled and these factors are somehow related to the analysis
variables, then point estimates taken from unweighted analyses could be
seriously biased.

2.2.1 A short digression on the use of weights in regression analysis

Often survey data users are interested in using multivariate analysis, such as
regression techniques, to assess the association between the study variables

19Even if the majority of the statistical packages (Stata, SAS, R,..) handle the problem
correctly, it is always better to check for the sum of weights when performing inference
using survey weights.
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and sets of sample information used as controls. In a design-based framework
this involves the use of weights to obtain design-unbiased estimates20 and
a measure of the variance of those estimates that correctly includes design
features. Kott shows that weighted estimates are more robust to omitted
variable problems and to the heteroskedasticity that normally characterizes
sample survey data (Kott 1991).

In a model-based framework, under the hypothesis that the model is
correctly specified, using survey weights in regression analysis involve a loss
of efficiency. In the case of regression analysis, the effect of the design is
expected to be limited because of the controls used (especially if design
variables are included among the covariates). Nathan and Smith (1989) show
that unless the selection of the sampling units is ignorable (see footnote 1),
conditional on the covariates of the model, OLS estimates are biased and
inconsistent. Note that this selection pattern depends both on the actual
sampling scheme (i.e. how the population elements are included the sample)
and on the response process. When this information is not relevant for the
model a condition of design ignorability is met.

Särndal et al. (1992), criticize a purely model-based approach, where
design unbiasedness is neglected, underlining that the parameters estimated
using sampling weights are more robust because they are model-unbiased if
the model is true, and design-consistent if it is not (on this point see also
Little 1981).

Entering the debate between model-based and design-based approach to
regression analysis is outside the scope of this paper. Still, it is possible to
refer to the conclusions of Hansen, Meadow and Tepping (1983) and Lohr
(1999) suggesting use all the design features in regression models when
sample size is large and the sample size helps to mitigate the possible loss of
efficiency due to survey weights. When the sample size is small, the design
feature can be neglected, but it is anyway advisable to check the consistency
of these results with those including sampling information and to make use
of a robust measure of variance.

20Non-linear estimators such as the regression or the ratio estimator are only approx-
imately unbiased, presenting a bias of order n − 1, negligible in large samples (Wolter
1985).
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3 The Survey on Household Income and Wealth
(SHIW)

The SHIW21 has been conducted by the Bank of Italy since 1965 to collect
information on the economic behaviour of Italian households and specifically
to measure the income and wealth components. The main objective is to
estimate how these are distributed across Italian households.

The basic statistical unit is the household, defined as a group of individ-
uals linked by ties of blood, marriage or affection, sharing the same dwelling
and pooling all or part of their incomes. Institutionalized population is not
included. The sample comprises about 8,000 households. In this paper we
used data from the 2002 wave of the SHIW (8,011 households and 21,148
individuals).

The sample for the survey is drawn in two stages (municipalities and
households), with the stratification of the primary sampling units (munici-
palities) by region and demographic size.

Until 1987 the survey was conducted with time-independent samples
(cross sections) of households. Since 1989 part of the sample has comprised
households interviewed in previous surveys (panel households) in order to
facilitate the analysis of changes in the phenomena being investigated. This
design is known as a split panel survey (Kish 1987) and has the advantage
that it is flexible in providing both cross-sectional and longitudinal measures
(Duncan and Kalton 1987).

Data are collected by means of personal interviews conducted by profes-
sionally trained interviewers and using computer-assisted devices (computer
assisted personal interviewing). Data collection is entrusted to a special-
ized company and the interview stage is preceded by a series of meetings at
which officials from the Bank of Italy and representatives of the company
give instructions directly to the interviewers. The households contacted for
interviews, who are guaranteed complete anonymity, receive a booklet de-
scribing the purpose of the survey and giving a number of examples of the
ways in which the data are used. The participating households may request
a copy of the results of a previous survey.

The core sections of the questionnaire remain basically unchanged. In
order to reduce the response burden, two monographic sections, administered
to a random subset of the sample, are added in each wave.

Microdata, documentation and publications (in Italian and English) can
21Further details on the SHIW are given in Faiella et al. (2006).
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be downloaded free of charge from the Bank of Italy’s website.22

3.1 Variance estimation in the SHIW

As mentioned, the SHIW design uses a two-stage stratified sample with the
stratification of the primary sampling units (municipalities) by region and
demographic size. Within each stratum, the municipalities are selected by in-
cluding all municipalities with a population of more than 40,000 inhabitants
(SRUs) and by random selection of smaller towns (NSRUs) with probability
proportional to the resident population. The individual households to be
interviewed are then randomly selected.

In 2002, the original design involved 50 primary stage strata with 344
PSUs (175 SRUs and 169 NSRUs). The panel municipalities that are home
to households that have taken part in at least two surveys are placed in a
separate stratum because they make no contribution to random variability
in the first stage. Thus, including these municipalities we end with 307
SRUs. Because these municipalities enter the sample with certainty, they
are assigned a self-representing stratum in the primary stage of selection
(Särndal et al. 1992, pp. 137-138).23 Within each SRU the elements are
then randomized to form two SECUs (also called “pseudo” PSUs - PPSUs).
The remaining 37 NSRUs, after collapsing the adjacent strata with just one
PSU, are combined in their stratum to form a pair of SECUs per stratum
for a total of 26 NSRUs. This set-up is also known as paired selections of
clusters (Kish, 1965), a design used to gain the most from stratification and
to simplify variance formulas.

As shown in Table 2, the chosen variance model departs from the original
design by somehow “averaging” the different intra-cluster coefficients in each
PSU, but in doing so it increases the average cluster size providing more
stable variance estimates.24

In variance computations finite population correction is not considered,
thus producing slightly conservative estimates, and the JRR is used to pro-
duce standard errors for the SHIW.25 The reasons for preferring replication
techniques to linearization methods are twofold.

22www.bancaditalia.it/statistiche/indcamp/bilfait.
23In this way they will not contribute to between-cluster variance.
24This choice aims to limit the “variance” of the variance estimator (the second order

variance).
25This method is also known as a particular form of delete-a-group jackknife with two

PSU per stratum (JK2).
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Table 2. A model for variance estimation in the SHIW (2002)
Strata (h) PSU (ah) Sample size (nah

) Average PSU size
SRUs 307 614 7,194 12
NSRUs 13 26 817 31
Total 320 640 8,011 13

Linearization methods entail a high degree of complexity in defining the
variance estimators of complex statistics and present a limited possibility
of accounting for weighting adjustment (such as post-stratification). Fur-
thermore, to allow survey data users to apply this method it is necessary
to provide them with the design variables (i.e. stratum and cluster IDs).
These are often related to geographical information (e.g. the IDs of the
municipalities) that is usually not disseminated in the public datasets due
to confidentiality. Large-scale surveys then disseminate replication weights,
thus avoiding the inclusion of design variables in the public datasets to bal-
ance confidentiality protection and the users’ possibility to properly compute
variance.26

In order to generate replication weights the sample is broken up into sub-
samples, called replicates. The estimate of interest is calculated from both
the full sample and from each replicate and the deviance of each replicate-
based estimate from the full-sample estimate (or from the average of the
replicates) is used to derive the variance of the estimator. These weights are
produced according to the complex survey plan and to the chosen variance
estimation techniques (such as the BRR, JRR or Bootstrap).

The user provided with such a set of replication weights can easily com-
pute the variance of very complex non-linear estimators and can often rely
on statistical packages where it is possible to load the replication weights
that are then automatically used in computing the variance of a variety of
estimators.27 In the case of the SHIW, following the variance computa-
tion model design devised and applying the JRR method,28 the replication

26This is the strategy adopted by many large scale US surveys such as the National Co-
morbidity Survey (www.hcp.med.harvard.edu/ncs), the Survey of Income and Program
Participation (www.sipp.census.gov/sipp/index.html) and the Survey of Consumer Fi-
nances (www.federalreserve.gov/pubs/oss/oss2/scfindex.html).

27This possibility is straightforward with packages such STATA and also with software
available on the public domain (R www.r-project.org, WESVAR www.westat.com, VPLX
www.census.gov/sdms/www/vwelcome.html).

28The JRR was preferred over BRR and Bootstrap because it does not need the cum-
bersome computation of an Hadamard matrix - like the BRR - and it possesses good

20



weights are computed as follows. For each of the 320 “pseudo” strata (h)
with two “pseudo” PSU (j) the replicated weight is:

wr
hji =


0, if the i− th unit belongs to PSU 1

wh2i

∑2
j=1

∑nj
i=1 whji∑2

j=1

∑nj
i=1 whji−

∑n1
i=1 wh1i

, if the i− th unit belongs to PSU 2

whji, for all the other units.

The JRR variance is finally calculated using the following steps:
1. the number R of replications is equal to the number of “pseudo”

strata,29 R =
∑
h

(ah − 1) = 320;

2. in each replicate the weight of the first “pseudo” primary sampling
unit is set equal to zero and the sampling weight of the other is raised by
a factor equal to the weight of the cancelled unit on the total weight in the
stratum (see above);

3. this weight is used to calculate, for each replicate, the relevant esti-
mators θ̂(r);

4. since the design for variance estimation contains two units per stratum,
the estimate of the standard error is calculated as the square root of the sum
of the square deviations of the estimate of the replications from the estimate
on the total sample θ̂ (see Kish and Frankel 1974). 30

stderrJRR =

√√√√ R∑
r=1

(θ̂(r) − θ̂)2 (11)

3.2 SHIW weights

Faiella and Gambacorta (2007) provide a detailed description of the SHIW
weighting process and its impact on the estimates. Their main findings
are that the increasing variability induced by using weighted estimators is

empirical properties - unlike the Bootstrap.
29These are called “pseudo” strata because the original strata, determined by the

sampling design, are modified according to the model used to compute sampling vari-
ance.

30Note that this variance estimator (υ4 in the Wolter classification) is also robust to
the possible bias of the replicates, and is also known as an MSE formula for variance
estimation(Wolter 1985).
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compensated for by the bias reduction even when performing analysis on
sample domains.31

3.3 Design and misspecification effects for some influential
statistics in the SHIW

In this section the concepts analysed previously are applied to assess the
effect of not considering sampling design on inference. A number of univari-
ate and multivariate statistics computed on SHIW 2002 data are considered.

The design and misspecification effects are evaluated under three different
scenarios:

1. that the variables were collected with an equal probability SRS, i.e.
estimators and their variance do not include survey weights and SRS formula
for variance is applied (UNW);

2. that the variables were collected with an unequal probability SRS, i.e.
estimators and their variance use survey weights coupled with SRS formula
(SRS);

3. that the variables were collected according to the actual sampling plan,
i.e. the estimates include both survey weights and use the correct estimation
formula for variance (COMPL).

To clarify the hypotheses under these different scenarios in Table 3 we
report the formulas used to estimate the sample mean and its variance.

Table 3. Sampling mean and its variance under three different scenarios
Scenarios Sampling mean - ȳ Variance of the sampling mean - var (ȳ)

UNW ȳunw =
∑n

i=1 yi

n var(ȳunw) =
∑n

i=1(yi−ȳunw)2

n

SRS ȳsrs =
∑n

i=1 wiyi∑n
i=1 wi

var(ȳsrs) =
∑n

i=1 wi(yi−ȳsrs)
2∑n

i=1 wi

COMPL(1) ȳcompl =
∑n

i=1 wiyi∑n
i=1 wi

var(ȳcompl) =
R∑

r=1
(ȳ(r) − ȳcompl)2

(1)ȳ(r) is computed for each r, using the set of replicated weights computed
as described in Section 3.1.

31The study also proposes for the first time a set of longitudinal weights for the SHIW,
i.e. weights that, giving their enhanced description of the “panel population”, are better
suited to perform longitudinal analysis.
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3.3.1 Univariate analysis

Producing their survey reports, sample survey statisticians mainly focus on
univariate statistics (means, ratios, proportions or quantiles). In Table A1
means and proportions for a subset of SHIW variables are reported. These
15 variables are household income, expenditure and wealth (A-C), age of
the head of household and of household members (D and H), household
size (F) and the proportion of people having certain characteristics (accord-
ing to gender, working status and education) (G-Q). The table reports the
mean, the standard error of the mean and the 95% confidence limit for each
of these variables under the three hypotheses previously illustrated (UNW,
SRS, COMPL).

Table A2 contains information on Deffs, Meffs and other measures of
the statistical reliability of the estimates. In the first column the bias of
the unweighted estimates (approximated by the difference between weighted
and unweighted estimates) is reported and in the second column the bias
is normalized with the standard error of the estimates (the Bias Ratio). A
measure of the empirical counterpart of bias is computed, following Kish
(1992, p.191), as the difference between the unweighted and the weighted
estimate.32 The bias can be fairly large ranging in absolute value from 1 to
14 times the standard error, according to the measured variable.

In columns 3 and 4, the reported Meff and the Deff present an average
value of 3.2, thus indicating that not taking into account sampling weights
and other design features leads to downward biased variance estimates. In
the next three columns for each design the Root Mean Square Error (RMSE)
is computed (the square root of the variance for SRS and COMPL and of
the sum of the squared bias and the variance for UNW). As previously men-
tioned, these results confirm those of Purdon and Pickering (2001) and show
that, in general, the increase in bias associated with unweighted estimates is
not compensated for by their lower standard errors.

Finally, in the last three columns the 95% probability statements are con-
fronted with the effective coverage probabilities when one takes into account
the inflation factor due to the design variance and to the bias of the un-
weighted estimates. The probabilities under UNW design are adjusted using
the BR

(
θ̂
)

and the Meft (
√

Meff ) while those under SRS are adjusted
dividing the z-score by the Deft (

√
Deff ).

For example, rather than being included in the standard error range for
32A refinement of this approach, based on Little et al. (1997), is to correct for the

possible “overestimation” of the empirical measure of the squared bias. This approach is
used extensively in Faiella and Gambacorta (2007).
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95% of the possible samples, the mean of income is included in the z*standard
error range in 64% under UNW design and in 92% under SRS design. The
same percentages are respectively 73% and 93% for wealth and household
expenditure.

The median is a robust estimator in the presence of skewed distributions.
This statistic is widely used (with other quantiles) to analyse income and
wealth distribution (see for example Faiella and Neri 2004, and Brandolini et
al. 2004). In order to have an alternative to the JRR, which performs poorly
with order statistics, an estimate of the variance of the median is obtained
by the procedure due to Woodruff described earlier (Woodruff 1952). The
results of this procedure are reported in Table A3. The standard errors of
the median are, as expected, lower than those of the mean for very skewed
variables such as household wealth. Moreover, for this statistic the effect of
the design heavily influences variance estimates. The Deff ranges from 1 for
expenditure and income to 1.28 for wealth. The Meff goes from 1.69 in the
case of income to 2.39 for wealth.33

Another measure often used in income and wealth distribution analysis
is the Gini index. The standard error of this index can be approximated
using an asymptotic formula (Cowell 1989). In the hypothesis that the Deff
formula for the mean is also valid for this measure of concentration, its
variance can be adjusted to account for complex design using the simple
GVF34

Std.err(Gini)compl = Std.err(Gini)asymptotic ∗Deft(Mean). (12)

Suppose we want to adjust the asymptotic standard error of the Gini of
household income to account for complex design. Considering the square root
of the Deff for the mean income in Table A2 and using it as an adjustment
factor, the asymptotic standard error is increased by 38% (

√
1.893).

This procedure is straightforward to apply but must be carefully eval-
uated. For example, in the case of the Gini index, the estimate is 0.357,
the JRR standard error is 0.0042 (with a coefficient of variation - CV - of

33A study by Hansen and Tepping (1985) points out that when the sample size is large
and the sample is a multistage cluster design, then the JRR method produces satisfactory
estimates of variances for medians. With SHIW data, the use of the JRR to estimate
median standard errors (row COMPL2 in Table A3) seems to confirm the instability of
this method in appraising the standard error of order statistics.

34The same procedure can be applied for other variables (such as wealth, financial
assets, expenditure) and other highly non-linear statistics to improve the reliability of
survey-based inference.

24



1.2%), the asymptotic standard error is 0.0058 (with a CV of 1.6%) and
after the correction through the Deft it is 0.008 (with a CV of 2.2%). These
differences probably originate from asymptotic standard error formula that
are too conservative or from the fact that the Deff formula, derived for the
sample mean, is not really portable for very different statistics (such as the
Gini index). This example is useful as a reminder that the GVF is only an
imperfect tool to give a rough idea of the variance of an estimator, but it
cannot replace a proper variance model.

3.3.2 Multivariate analysis

In a preceding section we briefly mentioned that in a multivariate context
there is no agreement on the need to incorporate survey information in the
analysis. This section measures the consequences of disregarding this infor-
mation in regression analysis using very simple examples. As the purpose of
the comparison is only to illustrate the effect of the complex design on vari-
ance estimates, the models presented are simple and goodness-of-fit measures
are not reported.

In Tables A4-A7 the outcomes of a linear and a logistic regression are
presented.

Table A4 shows the results of a linear regression for estimating an earn-
ing function model. The log of the labour income is regressed on a set of
covariates, including age, experience, education, marital status, gender and
household size. Table A5 reports, as in the previous section, the bias (abso-
lute and relative), the Meffs and the Deffs and the coverage probabilities.

The effect of bias seems to be smaller than in the univariate analysis,
ranging from 2 to 0.06. Both the Meffs and the Deffs appear to be pretty
high, with values of around 3. This increase in the standard error of estimates
can reverse the significance level of some coefficients: the “age” coefficient,
significant at the 5% level under the UNW design, is not different from zero
in the other two set-ups; the t statistic of “experience” is almost halved once
one accounts for design features. Coverage probabilities of the nominal 95%
confidence level can be as low as 50% for the UNW and average around 89%
for SRS.

Table A6 reports the estimates of a logistic model used to predict the
probability of participating in the labour force for individuals aged between
14 and 65. A labour force indicator is the response variable and the set of
predictors is age, education, marital status, gender, number of income earn-
ers and of dependants (children less than 18 years old). Table A7 contains
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the same information as Table A5 (bias, Meffs, Deffs, coverage probabilities).
For the logistic model the relative bias of the unweighted estimates ranges

from 3.6 to 0.005. Both the Meffs and Deffs are between 2 and 3. The effect
of the number of dependents is significant at the 3% level under the UNW
design, while it is significant at the 6% level using complex design adjustment.
The z statistic of most of the regressors is halved once one accounts for design
features. Coverage probabilities of the nominal 95% confidence level average
60% for the UNW and around 86% for SRS.

4 Conclusions

The study analysed the rationale of incorporating the sampling features when
making inference using survey data.

A correct estimate of sampling variance is required in order to properly
assess the statistical reliability of the point estimates through the construc-
tion of confidence intervals. The analysis points out the following.

• The standard estimators for sampling variance assume URS, i.e. that
sampling units are independently and identically distributed. On the
contrary, sample data are collected from finite populations and seldom
using simple random sampling, but using some kind of stratification
and clustering. Neglecting the finite population hypothesis has a small
impact on the estimates when the sample is a negligible fraction of
the population, but the consequence of sampling clusters instead of
elements is to increase the variance of the estimates, because the ran-
domization process is based on clusters of elements and the distribution
of the elements in each cluster is not random but rather influenced by
positive intra-cluster correlation. This higher variance can be partially
mitigated by stratifying the PSUs and using controlled selection meth-
ods such as probability proportional to size (PPS).

• These features of sampling design must be taken into account in evalu-
ating the variance of the estimator of interest. Because straightforward
variance formula are often not available in a complex survey framework,
the research must resort to linearization- or replication-based methods.
Both methods provide biased estimates of the variance, the order of
the bias being usually negligible for large samples. Given that they
basically produce the same results, they can be used interchangeably
according to the nature of the estimator and the software procedures
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available. Always check that the number of degrees of freedom for vari-
ance estimates is coherent with the method used to estimate sampling
variance.

• The GVF can also be useful to get an idea of how the inference drawn
with standard estimation formula for variance is affected by the com-
plex design. In survey practice, a popular GVF is the Kish design
effect, i.e. the ratio of the variance computed according to the com-
plex survey design to the variance computed under the hypothesis of
SRS.

Regarding the use of sampling weights the following conclusions are
drawn.

• It is suggested to use survey weights for descriptive statistics. If some
portion of the population is over-sampled or the list presents problems
of imperfect coverage, or unit non-response is significant, and these
factors are somehow related to the analysis variables, then point es-
timates from unweighted analyses could be seriously biased. This is
going to affect the coverage of the confidence level statements through
the bias ratio.

• The use of survey weights generally increases the variance of the esti-
mates, approximately in proportion to the squared coefficient of vari-
ation of the weights. But, at least for descriptive inference in the
SHIW, the net effect on the MSE shows that the increased variance
of the weighted estimator is more than compensated for by the bias
reduction (Faiella and Gambacorta 2007).

• Using survey weights in regression analysis gives design unbiased pa-
rameters that are robust to model misspecification.

• To avoid misleading inference on the parameters, the survey weights
should be normalized dividing them by their mean, so that they sum
up to the sample size.

A model to estimate the variance in the SHIW is proposed, using JRR.
This method makes it possible to estimate straightforwardly the variance of
even highly non-linear statistics and to account for weighting adjustment,
and it can be applied without providing the design variables in the public
datasets (thus protecting confidentiality).
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The study then briefly reviews the impact of these factors using variance
estimates in the SHIW both in an univariate and multivariate context. The
main findings are as follows.

• The bias of unweighted univariate estimates can be rather consider-
able, ranging from 1 to 14 times the standard error, depending on the
variable measured.

• The computed RMSE confirms that, in the majority of cases, the in-
crease in bias associated with unweighted estimates is not compensated
for by the decrease in the standard error.

• The Meffs and Deffs present an average value of 3.2 for univariate
estimates. The 95% probability statements are confronted with the ef-
fective coverage probabilities when one takes into account both the in-
flation factor due to the design variance and the bias of the unweighted
estimates. The mean of the income is included in the z*standard error
range in only 64% of the samples, if weights and design features are
ignored (92% using weights under the SRS assumption).

• For regression models, coverage probabilities can be as low as 50% if
we include both the weights and the variance correction, while they are
around 86-89% if we use weights and an SRS variance estimate. The
increase in the standard error of estimates can reverse the significance
level of some coefficients: some coefficients significant at 5% level under
the UNW design are not different from zero in the other two set-ups
and the t statistic computed on other covariates is almost halved once
one accounts for design features. This result must be treated cautiously
given the simple structure of the models presented. Further research is
needed to evaluate the impact of survey design on regression analysis.
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Table A.1. Means, standard errors and 95 per cent confidence intervals*
Variables Estimate Standard errors Lower bound Upper bound

UNW SRS COMPL UNW SRS COMPL UNW SRS COMPL UNW SRS COMPL
A. Income 27,962 27,608 27,608 243 235 323 27,485 27,148 26,972 28,438 28,069 28,244
B. Expenditure 20,419 20,243 20,243 152 150 189 20,120 19,948 19,870 20,717 20,537 20,616
C. Wealth 179,998 176,412 176,412 3,272 3,304 4,331 173,584 169,936 167,892 186,413 182,888 184,932
D. Age of head of HH 55.23 53.41 53.41 0.1845 0.1873 0.3441 54.87 53.04 52.73 55.60 53.77 54.08
E. Head of HH male 69.90 70.63 70.63 0.5125 0.5089 0.8278 68.90 69.64 69.00 70.91 71.63 72.26
F. Household size 2.64 2.69 2.69 0.0143 0.0146 0.0319 2.61 2.66 2.63 2.67 2.72 2.75
G. Male 48.25 48.50 48.50 0.34 0.34 0.39 47.58 47.83 47.73 48.92 49.18 49.28
H. Age of individuals 43.36 41.28 41.28 0.00 0.15 0.34 43.06 40.98 40.61 43.67 41.58 41.95
I. Employee 27.51 28.55 28.55 0.31 0.31 0.62 26.90 27.94 27.33 28.11 29.16 29.77
L. Self-Employed 7.76 8.18 8.18 0.18 0.19 0.32 7.40 7.81 7.55 8.13 8.55 8.81
M. Retired 25.79 22.74 22.74 0.30 0.29 0.57 25.20 22.17 21.62 26.38 23.30 23.85
N. Unemployed 13.56 13.29 13.29 0.24 0.23 0.44 13.10 12.83 12.42 14.02 13.74 14.15
O. Housewife 12.85 12.56 12.56 0.23 0.23 0.43 12.40 12.11 11.70 13.30 13.00 13.41
P. Low level of education 65.62 66.12 66.12 0.33 0.33 0.69 64.98 65.48 64.76 66.26 66.76 67.49
Q. High level of education 6.03 5.72 5.72 0.16 0.16 0.28 5.71 5.41 5.17 6.35 6.03 6.27
* SHIW 2002. Euros, units, age, percentages.
UNW=unweighted estimates; SRS=weighted estimates; variance estimated with SRS formulas;
COMPL=weighted estimates; variance estimated using JRR replicated weights;
JRR replicated weights loaded in STATA 9.1 with the command: svyset n [pw=pesofl],vce(jack) jkrweight(pwt*,multiplier(1));
JRR replicated weights loaded in R 2.5 with the command: svrepdesign(data=dataset,type=c("JKn"),repweights=pesirep,scale=1,rscales=1).

Table A.2. Deffs, Meffs and other effects of the sampling design*
Variables Bias Bias Ratio Meff Deff RMSE Effective coverage probabilities

UNW SRS COMPL Nominal UNW SRS
A. Income -354 -1.456 1.769 1.893 429 235 323 0.9500 0.6426 0.9229
B. Expenditure -176 -1.154 1.545 1.589 233 150 189 0.9500 0.7356 0.9400
C. Wealth -3,586 -1.096 1.751 1.718 4,855 3,304 4,331 0.9500 0.7326 0.9326
D. Age of head of HH -1.83 -9.9 3.478 3.374 1.84 0.19 0.34 0.9500 0.0000 0.8570
E. Head of HH male 0.0073 1.423 2.609 2.646 0.0089 0.0051 0.0083 0.9500 0.612 0.8859
F. Household size 0.0493 3.442 4.934 4.79 0.0514 0.0146 0.0319 0.9500 0.2449 0.8147
G. Male 0.2531 0.737 1.315 1.315 0.4268 0.3437 0.3941 0.9500 0.8476 0.9563
H. Age of individuals -2.0871 -13.606 4.943 4.97 2.0927 0.153 0.341 0.9500 0.0000 0.8103
I. Employee 1.0455 3.405 4.088 3.996 1.0897 0.3106 0.6208 0.9500 0.2334 0.8366
L. Self-Employed 0.4149 2.255 2.994 2.855 0.4539 0.1885 0.3184 0.9500 0.4249 0.8770
M. Retired -3.053 -10.148 3.529 3.844 3.0678 0.2882 0.5651 0.9500 0.0000 0.8413
N. Unemployed -0.2701 -1.147 3.497 3.557 0.3583 0.2334 0.4402 0.9500 0.6197 0.8506
O. Housewife -0.2916 -1.267 3.569 3.639 0.3714 0.2279 0.4347 0.9500 0.5993 0.8479
P. Low level of education 0.5042 1.544 4.497 4.529 0.6007 0.3255 0.6927 0.9500 0.5286 0.8215
Q. High level of education -0.3154 -1.926 2.903 3.053 0.3554 0.1597 0.279 0.9500 0.4966 0.8690
* SHIW 2002. Euros, units, age, percentages.
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Table A.3. Medians, standard errors and 95 per cent confidence intervals*
Variables Income Expenditure Wealth
Design UNW SRS COMPL1 COMPL2 UNW SRS COMPL1 COMPL2 UNW SRS COMPL1 COMPL2
Estimate 23,088 22,892 22,892 22,892 17,000 16,800 16,800 16,800 108,000 102,200 102,200 102,200
Standard error 218.78 281.68 284.67 378.54 88.81 133.21 133.21 468.8 1,221.14 1,665.19 1,887.21 3,061.49
Lower Bound 22,415 22,215 22,206 22,150 16,800 16,800 16,800 15,881 100,000 99,000 98,500 96,199
Upper Bound 23,400 23,484 23,488 23,634 17,200 17,400 17,400 17,719 105,500 106,500 107,000 108,201
DEFF 1 1.0214 1.8059 1 1 12.3844 1 1.2844 3.3802
MEFF 1 1.693 2.9936 1 2.25 27.8649 1 2.3884 6.2855
* SHIW 2002. Euros, percentages.
UNW=unweighted estimates; SRS=weighted estimates; variance estimated with SRS formulas;
COMPL1=weighted estimates; variance estimated using the Woodruff procedure;
COMPL2=weighted estimates; variance estimated using JRR replicated weights.

Table A.4. Linear Regression*
UNW SRS COMPL

Dep. variable is ln(Labour Income) Estimate StdErr t P-value Estimate StdErr t P-value Estimate StdErr t P-value
Intercept 9.2122 0.1196 77.01 <.0001 9.3545 0.1215 77.02 <.0001 9.3545 0.2301 40.65 <.0001
Age 0.0132 0.0067 1.96 0.0496 0.0068 0.0069 0.98 0.3263 0.0068 0.0123 0.55 0.5820
Age squared -0.0001 0.0001 -0.89 0.3743 0.0000 0.0001 0.39 0.6970 0.0000 0.0001 0.22 0.8260
Experience (years) 0.0395 0.0033 12.04 <.0001 0.0429 0.0034 12.76 <.0001 0.0429 0.0054 7.99 <.0001
Experience squared -0.0008 0.0001 -11.25 <.0001 -0.0009 0.0001 -12.30 <.0001 -0.0009 0.0001 -7.94 <.0001
Male 0.2974 0.0141 -21.12 <.0001 0.3121 0.0143 -21.81 <.0001 0.3121 0.0179 -17.46 <.0001
Lower education -0.3045 0.0155 -19.59 <.0001 -0.3251 0.0158 -20.60 <.0001 -0.3251 0.0232 -14.01 <.0001
Higher education 0.2662 0.0238 11.19 <.0001 0.2646 0.0244 10.86 <.0001 0.2646 0.0340 7.77 <.0001
Married 0.0208 0.0179 1.16 0.2451 0.0316 0.0179 1.76 0.0780 0.0316 0.0276 1.14 0.2530
Household size -0.0261 0.0061 -4.27 <.0001 -0.0386 0.0061 -6.31 <.0001 -0.0386 0.0086 -4.50 <.0001
* SHIW 2002. Earning function.
UNW=unweighted estimates; SRS=weighted estimates; variance estimated with SRS formulas;
COMPL=weighted estimates; variance estimated using JRR replicated weights;
JRR replicated weights loaded in STATA 9.1 with the command: svyset n [pw=pesofl],vce(jack) jkrweight(pwt*,multiplier(1));
JRR replicated weights loaded in R 2.5 with the command: svrepdesign(data=dataset,type=c("JKn"),repweights=pesirep,scale=1,rscales=1).

Table A.5. Deffs, Meffs and other effects of the sampling design
Variables Bias Bias ratio Meff Deff Effective coverage probabilities

Nominal UNW SRS
Intercept 0.1422 1.1892 3.7004 3.5898 0.9500 0.6049 0.8495
Age -0.0065 -0.9599 3.3116 3.1690 0.9500 0.6544 0.8646
Age squared 0.0001 1.2949 3.4086 3.1289 0.9500 0.6017 0.8661
Experience (years) 0.0034 1.0244 2.6788 2.5528 0.9500 0.6821 0.8900
Experience squared -0.0001 -1.8634 2.7230 2.3951 0.9500 0.5131 0.8973
Male 0.0148 1.0504 1.6123 1.5609 0.9500 0.7542 0.9417
Lower education -0.0206 -1.3256 2.2307 2.1634 0.9500 0.6506 0.9087
Higher education -0.0016 -0.0685 2.0485 1.9521 0.9500 0.8286 0.9197
Married 0.0108 0.6051 2.3845 2.3712 0.9500 0.7615 0.8985
Household size -0.0125 -2.0426 1.9745 1.9680 0.9500 0.4743 0.9188
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Table A.6. Logistic Regression*
UNW SRS COMPL

Dep. variable is labour force=1 Estimate StdErr z P value Estimate StdErr z P value Estimate StdErr z P value
Intercept -7.6527 0.2115 -36.17 <.0001 -7.6538 0.2141 -35.74 <.0001 -7.6538 0.4108 -18.63 <.0001
Age 0.5924 0.0114 51.89 <.0001 0.6033 0.0116 52.15 <.0001 0.6033 0.0229 26.39 <.0001
Age squared -0.0075 0.0001 -55.15 <.0001 -0.0076 0.0001 -55.11 <.0001 -0.0076 0.0003 -27.28 <.0001
Male 1.6937 0.0463 -36.61 <.0001 1.8624 0.0473 -39.40 <.0001 1.8624 0.0888 -20.97 <.0001
Lower education -0.4828 0.0456 -10.58 <.0001 -0.5741 0.0455 -12.62 <.0001 -0.5741 0.0649 -8.85 <.0001
Higher education 1.0962 0.1024 10.71 <.0001 1.0777 0.1054 10.23 <.0001 1.0777 0.1236 8.72 <.0001
Married -0.5596 0.0642 -8.71 <.0001 -0.5817 0.0636 -9.14 <.0001 -0.5817 0.0951 -6.12 <.0001
Number of earners 0.5349 0.0257 20.85 <.0001 0.6008 0.0265 22.64 <.0001 0.6008 0.0448 13.41 <.0001
Number of dependants -0.0608 0.0278 -2.20 0.0280 -0.0697 0.0269 -2.60 0.0090 -0.0697 0.0338 -2.07 0.0400
* SHIW 2002. Labour Force Participation.
UNW=unweighted estimates; SRS=weighted estimates; variance estimated with SRS formulas;
COMPL=weighted estimates; variance estimated using JRR replicated weights;
JRR replicated weights loaded in STATA 9.1 with the command: svyset n [pw=pesofl],vce(jack) jkrweight(pwt*,multiplier(1));
JRR replicated weights loaded in R 2.5 with the command: svrepdesign(data=dataset,type=c("JKn"),repweights=pesirep,scale=1,rscales=1).

Table A.7. Deffs, Meffs and other effects of the sampling design
Variables Bias Bias ratio Meff Deff Effective coverage probabilties

Nominal UNW SRS
Intercept -0.0011 -0.0052 3.7705 3.6797 0.9500 0.6872 0.8074
Age 0.0109 0.9547 4.0100 3.9052 0.9500 0.6194 0.7971
Age squared -0.0001 -0.8130 4.2096 4.0819 0.9500 0.6237 0.7893
Male 0.1687 3.6464 3.6848 3.5308 0.9500 0.1881 0.8145
Lower education -0.0913 -2.0014 2.0209 2.0314 0.9500 0.4857 0.9016
Higher education -0.0185 -0.1807 1.4579 1.3766 0.9500 0.8916 0.9478
Married -0.0221 -0.3441 2.1903 2.2310 0.9500 0.8028 0.8883
Number of earners 0.0659 2.5690 3.0509 2.8519 0.9500 0.3589 0.8503
Number of dependants -0.0089 -0.3200 1.4794 1.5825 0.9500 0.8808 0.9323
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