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THE WEIGHTING PROCESS IN THE SHIW 

by Ivan Faiella* and Romina Gambacorta* 

 

Abstract 

The design of a probability sample jointly determines the method used to select sampling units 
from the population and the estimator of the population parameter. If the sampling fraction is 
constant for all the units in the sample, then the unweighted sampling mean is an unbiased estimator. 
In the Survey of Household Income and Wealth (SHIW), units included in the sample have unequal 
probabilities of selection and each observation is weighted using the inverse of the proper sampling 
fraction (design weight) adjusted for the response mechanism (non-response weight) and for other 
factors such as imperfect coverage. In this paper we present the weighting scheme of the SHIW and 
assess its impact on bias and variance of selected estimators. Empirical evidence shows that the 
increasing variability caused by the use of weighted estimators is compensated by the bias reduction 
even when performing analysis on sample domains. A set of longitudinal weights is also proposed to 
account for the selection process and the attrition of the SHIW panel component. These weights, 
given their enhanced description of the “panel population”, should be better suited to perform 
longitudinal analysis; nevertheless, their greater variance implies that they are not always preferable 
in terms of mean square error. 
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1. Introduction1 

The design of a probability sample jointly determines the method used to select the sampling 

units from the population and the estimator employed (sampling strategy). If, according to the selection 

process, all the elements of the population have an equal chance to be included in the sample we have 

an epsem (equal probability selection method) design. 

If the design is epsem and the sample size is fixed, given the sampling scheme, then the 

unweighted sampling mean is an unbiased estimator of the population mean. In practice, the sample 

units are often selected with unequal probabilities. This can be the consequence of a disproportional 

allocation of the sample to the strata, of the oversampling of some sub-classes, or it can reflect the 

result of response process or practical constraints (Verma, 2000). In a design-based perspective,2 in 

order to obtain an unbiased estimator each observation should be weighted using the inverse of the 

proper sampling fraction (design weight) adjusted for the response mechanism (non-response weight) 

and for other factors (such as imperfect coverage, alignment to some features of the population, etc.). 

The final weight is approximately proportional to the inverse of the selection probability of each 

sample unit. This weight is the key ingredient of an unbiased estimator of the total in the population, 

the Horvitz-Thompson estimator (Kish, 1965) also known as the π estimator (Särndal et al., 1992). The 

unbiasedness of the π estimator is not for free: there is an increase in variance due to the use of weights 

that is related to the squared coefficient of variation of the weights (Kish, 1992). 

In the present study we describe the weighting process of the Survey of Household Income and 

Wealth (SHIW) and to assess its effects on the estimates of some key variables and their variability. 

The study is structured as follows Section 2 is devoted to describing the rationale of weighting; 

in Section 3 the weighting process in the SHIW is illustrated and its effects on the estimates and their 

variability are appraised. Section 3 refers to the cross-sectional weights, currently disseminated with 

the micro-data, while Section 4 proposes a method to obtain a new set of weights (longitudinal 

weights) explicitly designed to conduct analyses on the panel households. Finally, in Section 5 the 

main conclusions are drawn. 

 

                                                 
1 We wish to thank Giovanni D’Alessio, Leandro D’Aurizio, Stefano Iezzi, Federico Signorini, Raffaele Tartaglia 

and two anonymous referees for their suggestions and comments. The views expressed are those of the authors and do not 

necessarily reflect those of the Bank of Italy. E-mail: ivan.faiella@bancaditalia.it, romina.gambacorta@bancaditalia.it. 
2 In this framework a randomised selection mechanism (the sampling scheme) is assumed and the sample is a 

realisation of this procedure (Särndal et al., 1992). 
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2. The rationale of weighting sample survey units 

2.1 The role of sampling weights3 

Kish (1992) identifies several reasons to use weights in analysing sample survey data. Some are 

a consequence of the selection procedure such as the sampling design, for example when stratification 

with disproportional allocation is used, the non-response process and the correction of frame 

imperfections. Others depend on the estimators used in the analysis, as in the case of post-stratification, 

generalised regression estimators or other methods included in the more general class of calibrated 

estimators. 

On the other hand, using weights introduces a further complication in the analysis and can 

increases the variance of the estimators in proportion to the variability of the weights. 

The analyst is then faced with a trade-off: neglecting weights can have a considerable effect on 

the statistical analysis because the unweighted estimators are biased under the sampling design. On the 

other hand, using weights will increase the sampling variance. A priori, the effect on the mean square 

error is unclear. 

Various studies, using simulated as well as real data, point out that when using weights with 

large samples the bias reduction usually outweighs the increase in variance (Hansen et al., 1983). For 

instance, Purdon and Pickering (2001), analysing the Workplace Employee Relations Survey, assess 

whether the increase in bias associated with unweighted estimates is compensated for by the decrease 

in the standard error, by estimating the mean square error (i.e. the square of the bias plus the design 

based variance). With the exception of one variable, all the figures are smaller for the weighted 

estimates than for the unweighted ones. 

To implement unbiased (i.e. weighted) estimators limiting the impact of weighting on variance 

it is possible to limit the influence of extreme weights or to exploit the properties of calibrated 

estimators (Särndal and Lundström, 2005). 

In the following section we explore the several stages that constitute the weighting process, 

within the design based approach to sampling theory. 

 

                                                 
3 An important topic, not discussed in the present study, concerns the long-standing debate on the use of weights in 

regression analysis (see for example Lohr, 1999 and Deaton, 1997). According to a model-based approach, if the model is 

correctly specified we can avoid using weights. Särndal et al. (1992) criticize a purely model-based approach, where design 

unbiasedness is neglected, underlining that the parameters estimated using sampling weights are more robust because they 

are model unbiased if the model is true and design consistent if it is not (on this point see also Little, 1989). 
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2.2 The different weighting stages 

As pointed out by Groves et al. (2004) the final weight is the product of different stages. In 

what follows we focus on three stages of the weighting process. The first one reflects the selection 

process implied by the sampling scheme (design weight – w(0)); the second integrates the correction for 

participation in the survey (non-response adjusted weight - w(1)); the third exploits the available 

auxiliary information vector (at population or sample level) and incorporates it in the final weight 

(calibrated weight - w(2)) 

The design weights 

In presence of a finite population of N elements U={1,2 ,…,N} suppose that a list covering the 

whole population U is available.4 From this list a probability sample, s={1,2,…,k,…,n}⊆ U, of n 

elements is drawn with a probability p(s) according to a given sampling plan. Once this sampling 

design is determined, the inclusion probability of the element k is the sum of the sample probabilities 

over all possible samples that include k, i.e. ( )k k s
p sπ

∈
=∑ . 

For the k-th element we define the inverse of this probability as the design weight: 
k

kw
π
1)0( = . 

For each element in the sample a given character yk is measured. The total of y in the population is 

1

U

k
k

Y y
=

= ∑  and an unbiased estimator of this total is given by ∑
=

=
n

k
kk ywY

1

)0(ˆ , also known as the Horwitz-

Thompson estimator (HT) of the population total. The idea behind the HT estimator is that each k-th 

unit in the sample “expands” the information collected to )0(
kw  units in the population. 

The non-response adjusted weights 

Once the sample is drawn, during field operations the sample elements are contacted for the 

interview. Some of them will participate in the survey while others will not. Some of the non-

responding units are not found at home (non-contact) while others explicitly decline to participate 

(refusals).5 

                                                 
4 In presence of coverage imperfections (i.e. the list used to draw the sample is not covering correctly the target 

population) the design weight can be corrected appropriately (for example inflating it in presence of under-coverage and 

deflating vice versa). 
5 A share of the sample elements is not eligible, i.e. it cannot be contacted (e.g. a bankrupted firm or a household 

that has moved abroad). 
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This response process can be viewed as a further stage of selection.6 If the group of non-

respondents is a fixed group of the population that does not participate in sample surveys, assessing the 

impact of non-response on the estimates is a daunting task as non-respondents can never be observed, 

so that this further stage of sampling is not measurable (these “hardcore non-respondents” have zero 

probability of being observed in sample surveys). Alternatively, it can be supposed that each element of 

the population U has a given (non-zero) propensity to participate in sample surveys. In this 

circumstance, the actual (unknown) response process can be evaluated through the estimated 

probability of responding of each household k̂θ  that can be used to extend the rationale of the HT 

estimator, ∑
=

=
n

k
kkNR ywY

1

)1(ˆ  where 1)0()1( ˆ−= kkk ww θ . In this framework, the information collected for each 

sampling unit is additionally expanded according to its (estimated) response propensity. The estimated 

response probabilities are influenced by the selected sample s (the “first stage”) and by the hypothetical 

response process r (i.e. ( ),k̂ s rEθ θ= ). 

In practice, the response probabilities can be estimated by grouping the units into strata (response 

homogeneity groups – RHGs) or by applying models in order to derive a probability controlling for 

household characteristics. With both methods, the non-response-adjusted HT estimator is unbiased only 

if the grouping (or the model) appropriately accounts for non-response behaviour. Furthermore, the 

variance of this estimator will be higher the lower is the propensity to participate7 and the more detailed 

is the method of modelling this propensity. 

                                                 
6 Oh and Scheuren (1983) termed this approach a “quasi-randomisation” framework, given that the true response 

function is not known. 
7 In particular, cells or individuals with very low probability to participate will have a large non-response weight, 

with the risk of an unduly strong effect on the variability of the response-adjusted estimator 
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The calibrated weights 

After the survey has been conducted it is possible to exploit additional information about the 

population - possibly not available at the design stage - coming from larger surveys, census data or 

other sources believed to be more reliable than survey estimates. This information covers some 

population characteristics and is employed in order to improve the precision of survey estimates in 

terms of both reducing bias and increasing efficiency. In all major sample surveys, a final weighting 

step involves some form of post-stratification (Groves et al., 2004).8 In this case the HT estimator can 

be further improved to incorporate external information: ∑
=

=
n

k
kkPS ywY

1

)2(ˆ  where )1()2(
kkk ww δ=  and kδ  is 

constructed in order to satisfy the following constraint: (1)
k k k j

k j
w x Xδ

∈

=∑  for each of the j=1…J post-

strata defined from the crossing of all the auxiliary variables (known as calibration equations).9 In other 

words, the weighted estimated total of some population characteristics should be equal to the one 

coming from the external source (Xj).10 

In a more general attempt to include auxiliary information, all classical sampling textbooks 

suggest the use of the regression estimator as a tool to increase the precision of sample estimates (Kish, 

1965, Chapter 12.3; Cochran, 1977, Chapter 7). More recent textbooks (in particular Särndal et al., 

1992 and Särndal and Lundström, 2005) extend this concept, focussing explicitly on model-assisted 

estimation, i.e. using auxiliary information to adjust the sampling weights to obtain more efficient 

estimators. An important family of calibration estimators is represented by the Generalised Regression 

Estimator (GREG).11 (0),
1 1

ˆ ˆ *
N n

GREG HT k k s w
k k

Y Y x x B
= =

′⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
∑ ∑ . The idea behind the GREG is to 

supplement the HT estimator using a set of auxiliary information (in a multivariate context) correlated 

to the study variable. Practically, this implies estimating on sample data a vector of regression 

coefficients Bs,w
(0) (i.e. conditioned on the sample s and estimated using for each observation the design 

                                                 
8 For an extensive review of the different uses of post-stratification weights in survey estimates see Smith (1991). 
9 Post-stratification is often employed to correct for marginal count in the sample with respect to the count in the 

population. In this case, the relevant estimator is known as the raking-ratio estimator (Kalton and Flores Cervantes, 2003). 
10 Another use of external survey data is to form weighting classes for non-response which allow for a greater 

homogeneity with respect to response probability than the ones it is possible to build using only survey data (Bethlehem, 

2002). This aim can also be achieved through the use of post-stratification models (Gelman and Carlin, 2002). 
11 Deville and Särndal (1992) and Särndal and Lundström (2005) show that the calibration estimators are a version 

of the GREG estimator imposing some constraints on how the original design weights are modified. From this perspective, 

the calibrated weights are preferable to GREG weights (also known as g-weights) because the former can be better 

controlled in order to limit their deviation from the original weight. 
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sampling weights w(0)) that links the matrix of the auxiliary variables X to the study variable Y. The HT 

estimator is then corrected using the “gap” between sample estimate and information on the value of 

the auxiliary vector in the population (available from larger surveys or census data). 

In general, the aim of calibration is to increase precision as it reduces differences between the 

sample and population distributions with respect to some auxiliary variables. 

3. The weighting process in the Survey of Household Income and Wealth (SHIW) 

3.1 A brief description of the SHIW12 

The SHIW has been conducted by the Bank of Italy since 1965 to collect information on Italian 

households’ economic behaviour, with a focus on the measurement of income and wealth components. 

The main objective of the SHIW is to obtain estimates of how income and wealth are distributed across 

Italian households. 

The basic statistical unit is the household, defined as a group of individuals linked by ties of 

blood, marriage or affection, sharing the same dwelling and pooling all or part of their incomes. 

Institutional population is not included. The overall size of the sample is about 8,000 households. Data 

are collected by means of personal interviews conducted by professionally-trained interviewers and 

using computer assisted devices (Computer Assisted Personal Interviewing). 

Data collection is entrusted to a specialised company and the interview stage is preceded by a 

series of meetings at which officials from the Bank of Italy and representatives of the company give 

instructions directly to the interviewers. The households contacted for interviews, who are guaranteed 

complete anonymity, receive a booklet describing the purpose of the survey and giving a number of 

examples of the ways in which the data are used. The participating households may request a copy of 

the results of a previous survey. 

The core sections of the questionnaire remain basically unchanged. Two monographic topics 

are added in each wave. In order to reduce the response burden, these sections are only administered to 

a random subset of the sample. 

The sample is drawn in two stages (municipalities and households), with the stratification of the 

primary sampling units (municipalities) by region and demographic size. Within each stratum, 

municipalities are chosen by including all municipalities with a population of more than 40,000 (self 

representing units - SRUs) and randomly selecting smaller towns with probability proportional to the 

                                                 
12 Further details regarding the SHIW are given in Bank of Italy (2006). 
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resident population (non-self-representing units - NSRUs). Within each selected municipality, the 

individual households are then selected randomly. 

Until 1987 the survey was conducted with time-independent samples (cross-sections) of 

households. In order to facilitate the analysis of changes in the phenomena being investigated, since 

1989 part of the sample has comprised households interviewed in previous surveys (panel households). 

This design is known as a split panel survey (Kish, 1987) and has the advantage of being flexible in 

providing both cross-sectional and longitudinal measures (Duncan and Kalton, 1987). 

Microdata, documentation and publications (in Italian and English) are freely available at 

www.bancaditalia.it/statistiche/ibf. 

3.2 SHIW weights 

SHIW weights are constructed in three different steps. For each stratum h13 the design weight is 

equal to the inverse of the selection probability of a unit in that stratum (i.e. the ratio between the 

number of households to be selected in the stratum and its total population).14 This weight is further 

adjusted to account for imperfect coverage:15 

(1) 
'

(0)
'' '

h h h
h

h h h

N N Nw
n N n

= =    design weights (corrected for imperfect coverage), 

where hN  and 'hN  are respectively the total resident population and the population included in the 

sampled municipalities in the hth stratum and 'hn  is the number of households to be selected in the hth 

stratum. 

These weights are then corrected for non-response, as some of the selected families cannot be 

found at home or refuse to be interviewed:16 

                                                 
13 Strata are cross-determined by the geographical region and by a 3-class variable linked to the demographic size 

of the municipality. Strata with limited sample size are collapsed. 
14 Given the cluster design, in each stratum the probability of selecting a household is the product of the probability 

of selecting the municipality and the probability of selecting the resident household. All the municipalities with more than 

40,000 inhabitants are included in the sample so that the first term is 1 (Self Representing Units - SRU). The remaining 

municipalities are selected according to a PPS scheme. In order to have a clearer description of the different weighting 

stages, in the text we neglect the difference between the SRU and the PPS selected municipalities. The detailed formula can 

be found in Bank of Italy (2006). 
15 E.g. under-coverage generated because not all municipalities in the stratum are included in the sampling frame, 

which can be also seen as a non-response at PSU level. 
16 This weight is based on the assumption that each stratum constitutes a RHG. This assumption is principally due 

to the lack of further information about the households not interviewed. 
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(2)  (1) (0) '
' '

h h h
h h

h h h

n n Nw w
n m m

= =   non-response weights (corrected for eligibility17), 

where nh and mh are respectively the number of eligible and respondent households in the hth stratum 

( 'h h hn n m≥ ≥ ).18 

Finally, weights are calibrated to account for additional information coming from the panel 

units and from external surveys. 

Panel households are firstly post-stratified in order to adjust for the attrition in the panel.19 

According to 12 frequency cells, determined by the cross-classification of 4 income classes and 3 work 

status of the head of household, weights of panel families are aligned to the distribution of the whole 

sample measured in the previous wave: 

(3)  ( 2 ') (1)
cc cww α=     attrition-adjusted weights (only panel units), 

where cα is the post-stratification factor for each of the c panel post-stratification classes. 

Secondly, the weights are corrected in order to gain from the positive correlation between the 

data gathered from the same households in successive surveys. The panel segment is then re-weighted 

so that its share of the total sample allows the gain in precision to be maximised: the optimum share of 

the panel depends on an estimate of the auto-correlation between the main survey variables (income 

and wealth): 

(4a)  ( 2 '') ( 2 ')
p p pw w β=    autocorrelation corrected weights (p=panel 

indicator), 

where βp is the autocorrelation correction coefficient for panel and non-panel units. 

                                                 
17 Cases not eligible for in-person household surveys include: out-of-sample housing units; not-a-housing unit; 

vacant housing units; housing units with no eligible respondent. See the standard definitions on the website of the American 

Association for Public Opinion Research (AAPOR), www.aapor.org. 
18 Table A1 in the Appendix contains the main factors for the construction of design and non-response weights for 

each stratum. 
19 For attrition here we refer to the sample-reducing process caused by both non-response and ineligibility (death, 

moving, etc). See Fitzgerald et al. (1998). 
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In detail, if there is a positive correlation between the variables observed on the panel in two consecutive 

surveys, this can be used to obtain more efficient estimators. When the values of variable y gathered in 

consecutive surveys are correlated, an optimal estimator of the mean is given by:20 

(4b)  
2

*
1 12 2 2 2

(1 ) ( )
1 1

q p p
t t t t t

Q Q Py y y y y
Q Q

ρ ρ
ρ ρ − −

− ⎡ ⎤= + + −⎣ ⎦− −
; 

2
(2'')

2 2
 (1 )setting         
1p

Q Q
Q

w ρ
ρ
−

=
−

 we have 

(4c)  ( ) ( )* (2'') (2 '') (2 '')
1 1(  1  1  )q p p

t p t p t p t ty y y y yw w w ρ − −= + − + − − , 

where ty  and 1−ty  are respectively the means of variable y at time t and time t-1, p
ty  and q

ty  are 

the means of variable y at time t for the panel and non-panel parts of the sample respectively, and ρ is 

the correlation coefficient between ty  and 1−ty , and Q is the share of non-panel households. The 

estimator (4c) can be regarded as a composite estimator equal to the weighted average of two adjusted 

estimators: the first uses the information on  yt available for the sample of non-panel households; the 

second is based both on the data on yt for the panel households and on the changes between the two 

surveys, adjusted using a regression estimator to take account of the difference between the total 

sample and the panel part of the sample. The two estimators are weighted in inverse proportion to their 

contribution to the overall variance of the combined estimator.21 

Lastly, the final weights are modified to reproduce the same characteristics as the population 

with regard to sex, age group, geographical area and size of municipality of residence: 

(5)  ( 2 ''') ( 2 '')
j j jw w γ=    post-stratification weights, 

where jγ is the post-stratification factor for each of the jth post-stratification classes.22 

                                                 
20 The part of estimator (3) in square brackets is the estimator of the mean of the panel sample only, adjusted using 

a regression estimator that expands the relation between p
ty and p

ty 1−  to the whole of the sample. The correlation coefficient 

ρ is used in place of the bivariate regression coefficient on the assumption that the variations in y are constant over two 

consecutive surveys. See L. Kish (1965), Chapter 12. 

21 Composite estimators are used in the literature on small-area estimation to combine direct and indirect estimates, 

thus minimising the mean square error. For an application of these estimators with repeated measurements over a period of 

time, see Chapter 9 of Särndal et al. (1992). The rationale of the procedure is reported in Kish (1965) Chapter 12.4. 

22 Post-stratification uses a raking-ratio procedure to align weights to the population marginal distributions with 

respect to sex, age (4 classes), geographical area (3 classes) and municipality size (4 classes). 
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Fig.1 

Distributions of the weights at various stages of the weighting process 
(box-plots of normalised weights) 

  
 Design weight Non-response weight 

(RHGs) 
Non-response weight 

(logit model) 
  Attrition-adjusted 

weight 
Autocorrelation-
adjusted weight 

Post-stratified weight  

Coeff. of 
Variation 93.2 87.4 96.2 

 Coeff. of 
Variation 88.7 90.6 96.2 

 

 

The impact of the different stages of the weighting process on the variability of weights is 

shown in Figure 1 (where weights are re-scaled to their mean to sum-up to sample size). 

Looking at the first pane of Figure 1, it is apparent that using the RHG method to adjust for 

non-response decreases the variability of the weights. By contrast, the weights corrected modelling a 

non-response function (in particular, we applied to 2004 data the method presented in D’Alessio and 

Faiella, 2002 and extensively used in Brandolini et al., 2004) show a higher degree of variability, with 

weights that can be 6 to 10 times the average. Therefore, we subsequently use a response adjustment 

based on the RHGs technique. 

The second pane of Figure 1, illustrates the effect of the different calibration phases (applied 

sequentially) on the distribution of SHIW weights. In the end, the final weights are more dispersed. An 

option to limit the variance of the weight is to trim extreme weights in some way.23 This procedure, as 

pointed out in Potter (1990), has the advantage of reducing variance considerably, but it always 

involves the risk of introducing bias in the weighted estimator.24 

 

                                                 
23 As illustrated by Kalton and Flores Cervantes (2003), this is actually equivalent to collapsing cells in the case of 

cell adjustment. 
24 Chantala (2001) presents a procedure to find a set of adjusted weights that minimizes both the variance and the 

bias in estimates based on ranking the set of trimmed weights according to their impact on bias and variance. 
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3.3 Impact of weighting on SHIW estimates 

The bias reduction property of weighting produces an efficiency loss (Lw), defined as the 

percentage increase in the variance due to weighting; in the hypothesis of independent sampling and 

constant variance (Kish 1965, 1992): 

(6)  ( )2* 1
ww unwV V cv= + , then 2

w

w unw
w

unw

V VL cv
V
−

= =  

where Vunw and Vw are, respectively, the variances of the unweighted and of the weighted estimators 

and cvw are the coefficient of variation of the survey weights. With a two-stage stratified cluster sample 

as in the SHIW, this relationship is only an approximation, but can nevertheless be used as an empirical 

method to assess the contribution of the weights to the variance of the estimators employed. Using the 

data in the bottom part of Figure 1, according to this formula weighting will increase the variance of 

unweighted SHIW estimates by between 76 and 93 per cent. But this refers to the variability of the 

weights and not to the variance of the weighted estimator. In fact, if the outcome of interest is related to 

the weighting cells, the overall variability is reduced (Little and Vartivarian, 2005). 

A more complete approach to assessing the effect of weighting is based on the 

contemporaneous analysis of both the gain in terms of bias reduction and the loss due to the increased 

variance of the weighted estimator. In order to do this, we evaluate the overall effect of weights on an 

estimator by considering its mean square error (MSE).25 Given that the weighted estimator is unbiased, 

we assume that its MSE is equal to its variance. The estimated MSE of the unweighted estimator is the 

sum of an unbiased estimate of the variance and an unbiased estimate of the squared bias. Following 

Little et al. (1997), we obtain an empirical counterpart of the MSE, necessary to evaluate different 

weighting options and their impact on variance and bias of the estimates,26 using the following formula: 

(7)  2
ˆ ˆ

ˆ ˆ ˆ ˆmax{ ,0}
unw w

unw unwMSE V B V
θ θ−

= + − , 

thus correcting the measure of the squared bias with the variance of the difference between the 

unweighted and the weighted estimator27 and avoiding negative values. 

                                                 
25 The MSE of an estimator – the sum of the variance and the square of the bias – reflects both the variation about 

the average and the bias of an estimator. 
26 Both the bias and the variance are characteristics of an estimator and not of one of its possible realisations (i.e. 

the estimate). In what follows we adhere to the interpretation of Särndal et al. (1992), p.41, indicating for biased estimate 

“an estimate calculated from an estimator that is biased”. 
27 As emphasised by Little et al. (1997) this measure of the MSE corrects for the possible “overestimation” of the 

empirical measure of the squared bias. In fact, ( )2
2

ˆ ˆ
ˆ ˆ ˆ ˆ

unw w
unw wE B V

θ θ
θ θ

−
− = + , where the last term is the variance of the 
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To obtain a measure of the variance of the weighted estimator of a collection of variables 

available in the SHIW and of equation 7, we use a set of 325 jackknife replicates determined according 

to the sampling design and applied to the 6 possible weighting schemes (no weights, design weights, 

non-response weights and the set of three calibrated weights).28 

The results in Table A2 show that for all the variables considered the MSE of the weighted 

estimates are by and large a fraction of the MSE of the unweighted estimator. The gain of weighting is 

lower for variables with limited range of variability, but is evident for the key variables of the survey 

(income, expenditure and wealth). 

This result holds even when we consider domain estimates. In fact, in the presence of a large 

sample sizes, the MSE may be dominated by the bias term, while when sample sizes are small, the 

variance may be a greater cause for concern. To assess this potential drawback of weighting in the 

SHIW we compare the empirical MSE computed using both the non-response adjusted weight and the 

final SHIW weight with that of the unweighted estimator for a set of 7 domains of study routinely used 

for data analysis. Results in Table A3 show that the MSE of the weighted estimator is seldom above the 

MSE of the unweighted. 

We can then finish this section relying on empirical evidence that the increasing variability 

induced by using weighted estimators is compensated by the bias reduction even when performing 

analysis on a sample subset (domain).29 Nevertheless we suggest that domain analysis include all the 

auxiliary information regarding domain characteristics (e.g. using post-stratification) in order to 

maximise the bias reduction function of weighting. 

4. A set of longitudinal weights for the SHIW 

In the previous paragraphs we dealt with cross-sectional weights. But, as we have seen, almost half 

of the SHIW sample is composed of panel households that can be used for longitudinal analysis. In this 

                                                                                                                                                                       

difference between the unweighted and the weighted estimator. In our computations ŵθ  is the estimate using the final 

calibrated weight (w(2’’’)) 
28 The choice of jackknife repeated replications (JRR) as a tool to obtain variance estimates for the SHIW is 

explored in detail in Faiella (2007) and documented in Bank of Italy (2006), appendix A. 
29 As a rule of thumb, the standard errors for the estimates of the domains can be approximated by 

*g gStderr Stderr n n= , where Stderr is the standard error of the estimate of the whole sample n and Stderrg is the 

standard error of the estimate of the gth subset of ng units (Kish, 1965). 
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case, cross-sectional weights present some limits.30 Firstly, when using only panel data we are referring 

only to a subset of the sample, possibly not representative of the entire population;31 secondly, selection 

process and response patterns are different for panel units with respect to households interviewed just 

on one occasion.32 Furthermore, when dealing with longitudinal analysis we have to account for the 

variation of the target population that arises between one survey and another. For example, when 

considering the transition of households’ income between two surveys, in the construction of the 

weights it is not correct to refer either to the population at the starting period or to the one at the end. It 

is instead necessary to account for the fact that during the period studied some households exit while 

others enter the population. In order to account for all these factors we propose the construction of a set 

of longitudinal weights. 

4.1 A proposal to build a set of longitudinal weights in the SHIW 

In this paragraph we build a new set of weights in order to obtain survey estimates for the panel 

population.33 In fact, when dealing with panel data, the population we refer to is represented by a 

dynamic concept as we have to consider both “deaths” and “births” of families. In practice, 

longitudinal weights have been built as follows.  At time ti1, which is the first time household i has been 

interviewed, its longitudinal weight is equal to the cross-sectional weight (which is the final weight that 

accounts for inclusion probabilities, non-response and post-stratification). For each of the following 

waves t (t>ti1), household longitudinal weight ( )(
,
L
tiw ) is the product of its longitudinal weight at the 

previous wave34 and an adjusting factor a, which summarises all the reasons behind the changes in the 

panel-sample between the two periods (Verma, 1995):35 

                                                 
30 We showed that cross-sectional weights are somehow adjusted to account for panel attrition (equation 3). But 

since the adjustment in each wave uses information on the previous one only, we consider this correction mainly finalised to 

the autocorrelation adjusted estimator, more than a means of properly introducing longitudinal information in the weights. 
31 This limit can be overcome using some post-stratification techniques to align certain characteristics of the panel 

domain to known population totals. 
32 In the SHIW, for example, the rate of cooperation of panel and non-panel sample households is very different 

(also in terms of patterns): during the last 3 waves (2000-2002-2004) the average response rate of the total sample was 

around 40 per cent, while the cooperation of the panel component was something between 66 and 75 per cent. See Ernst 

(1989) for a review of the issues regarding longitudinal weighting. 
33  For a more detailed definition of the longitudinal population see Folsom et al. (1989). 
34 We take the interval between two waves to be the basic unit of time. For the SHIW, this has been generally equal 

to two years, with the exception of 1998 survey, which was delayed by one year. 
35 As in the case of cross-sectional weights, each member of the household has the same longitudinal weight, that is 

equal to the family one. 
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(8) ( ) ( )
, , 1 , 1*L L

i t i t i t tw w a− − ⇒=  

In particular, a can be decomposed into three factors that can be ascribed to inclusion 

probabilities (a(pr)), non-response (a(nr)) and post-stratification adjustments (a(ps)): 

(9)   ( ) ( ) ( )
, 1 , 1 , 1 , 1* *pr nr ps

i t t i t t i t t i t ta a a a− ⇒ − ⇒ − ⇒ − ⇒=  

In order to compute a(pr) we need to analyse all the information regarding the selection process 

of panel units in the SHIW. At each wave all previous survey panel units are contacted again. 

Nevertheless, some families will leave the panel (attrition) because they refuse to participate, are not 

found at home or are no more in the survey population (non-eligibility, e.g. none of the family members 

are still alive, the family has moved to another country, etc.). In order to compensate for the loss of 

sample units due to the attrition in the panel, a random subset of families interviewed for the first time 

in the last wave is added (sample refreshing). In symbols, the target panel sample at time t ( *
tP ) is thus 

equal to the sum of all panel units interviewed in the previous wave ( 1−tP ) plus a fraction ft of non-

panel units of the same survey ( 1tQ − ):36 

(10)     *
1 1( )t t t tP P f Q− −= ∪  

This means that the probability of selecting a household is inflated by the fraction of new 

families included each year in the target panel through sample refreshing.37 In particular, the 

probability of selecting, in the target panel, a household interviewed in the last wave is equal to: 

1 1 1

( ) * 1 1
, 1 1 1

1

( ) ( ) ( )
t t t

ref t t t
i t t S t S t S t t

t

p f qpr i P pr i P pr i f Q
n

π
− − −

− −
− ⇒ − −

−

+
= ∈ = ∈ + ∈ = , while without refreshing the 

probability is: 
1 1

( ) * 1
, 1 1

1

( ) ( )
t t

noref t
i t t S t S t

t

ppr i P pr i P
n

π
− −

−
− ⇒ −

−

= ∈ = ∈ = , where pt-1 and qt-1 are, respectively, the 

number of panel and non-panel units interviewed in the previous wave and -1 -1 -1t t tn p q= + is the total 

number households interviewed in wave t-1.38 This means that the probability of selection in the case 

of refreshing is inflated by a factor 1p fq
p
+

>  as ( ) ( )
, 1 , 1
ref noref

i t t i t t
p fq

p
π π− ⇒ − ⇒

+
= . In order to correct for this 

selection mechanism, longitudinal weights must be reduced by the inverse of the same factor, therefore: 

                                                 
36 It follows that the total sample in t-1 (St-1) is given from the union of panel and non panel units: 

1 1 1( )t t tS P Q− − −= ∪ . 

37  In fact, because the panel households are representative of the same domain, they can enter the sample both 

through the original and the additional selection (Verma, 1995). 
38 The symbol Apr  specifies that the probability is conditional to the event “inclusion to the set A”. For example  

1

* *
1( ) ( | )

tS t t tpr i P pr i P i S
− −∈ = ∈ ∈ . 
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(11)     ( )
, 1
pr

i t t
pa

p fq⇒ − =
+

. 

After the selection of the target panel, the actual panel at time t (Pt) will be composed of all the 

eligible households successfully contacted and which accepted to participate in the survey. 

( )t t t t tP E C M M= ∩ ∩ =    as *
t t t tM C E P⊆ ⊆ ⊆  

where Et, Ct and Mt are the subsets of eligible, contacted and cooperative households, 

respectively. 

The response probability is thus equal to the probability of household i cooperating in the 

interview, given that it has been contacted and that it is eligible. 

This probability can be estimated using data available from previous interviews. In this case, a 

parsimonious approach must be adopted by choosing the smallest set of variables that are most related 

to the specific probability, without redundant information.39 The literature suggests different sets of 

variables that can be useful in estimating this probability, like household characteristics, socio-

demographic class, economic status and financial situation, geographical location, income and main 

source of income.40 Once we have estimated the overall response propensity as )(
1,ˆ r

tti ⇒−π , the non-

response adjustment factor ( )
, 1
nr

i t ta − ⇒ will be equal to ( )
, 1ˆ1/ r

i t tπ − ⇒ . 

In the case of SHIW data we estimate the response probability using a logistic model based on 

the 2002-04 response patterns. In particular, as suggested by the theory, the variables included in the 

model account for, respectively, non-response due to cooperation habits (waves of past cooperation, 

past survey experience, such as information provided by the interviewer on the climate of the 

interview) and non-contact patterns (old age of all the components of the family and city size, also 

considered in combination with the geographical area).41 The results of the logistic model (Table A4) 

                                                 
39 Several approaches have been proposed to make profitable use of information recalled from previous surveys in 

order to reduce the bias due to non-response in longitudinal data. Lepkowski (1989) provides a review of some approaches 

based on the Missing at Random (MAR) hypothesis, Fay (1989) advocates the use of the casual models to deal with non-

ignorable non-response processes. Finally, Bailey (2005) assesses the bias due to the use of improper methods to correct for 

non-response when the underlying hypothesis is not true. 
40 In particular, for each probability it can be useful to refer to a particular set of information. Lepkowski and 

Couper (2002) provide a recent review and some applications regarding the estimation of non-response probabilities in 

longitudinal surveys. 
41 It is worth noting that this set of variables is different from the one usually used to estimate non-response 

probability in a cross-sectional context as this model refers only to panel families that have already been interviewed. In this 

case, the subject of the model is thus the probability of response given past cooperation, which is often uncorrelated with 

other variables, such wealth and income, which are instead crucial in explaining response for families that collaborate for 

the first time. For further details see Giraldo et al. (2001) and Cannari and D’Alessio (1992). 
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show that the presence of old age for all the household’s components increases the non-response 

probability, possibly due to non-eligibility patterns. The response rate due to cooperation is lower for 

households living in big cities. As expected, the non-response probability is negatively associated with 

past participation in more surveys and with the “climate”42 of the interview. 

By using these model estimates we can derive, for each household interviewed at time t, a 

response propensity. For each year, estimated response probabilities to participate in the survey are 

calibrated to the yearly average response rates. Thus, for each wave subsequent to the first one we are 

able to estimate a factor ( )
1ˆ nr

t ta − ⇒  equal to the inverse of this probability in order to compensate for the 

households that did not participate in the survey. 

Finally, the adjusting factor a(ps) has to compensate for the transition in population 

characteristics from one wave to another and to rebalance weights after the adjustments for selection 

probability and for attrition in order to improve the representativeness of the panel over time. As for 

cross-sectional weight, this aims to ensure that the weighted marginal distribution of the sample, with 

respect to some relevant characteristics, matches that of the population. The final weight ( )
,
L

i tw  is 

therefore calibrated to the same population total used in the third stage of calibration of the cross-

sectional weight (equation 5). 

Figure 2 depicts the distribution of longitudinal weights in different stages (weights are re-

scaled to their mean to sum-up to sample size). 

The first pane of Figure 2 shows how correcting for the differential effect of panel refreshing 

greatly increases the variability of the weights. As expected, the non-response corrected weights and 

the post-stratification, as pane 2 illustrates, also further increase the dispersion of the weights. 

It is worth noting that this set of longitudinal weights has a large impact on the variance of the 

estimators. Using the Kish rule of thumb, the variance of the final longitudinal weight estimator is 

almost three times that of the unweighted estimator (Lw =2.97). Nevertheless, these weights yield a 

more accurate representation of the population dynamics as they exploit all the available information 

regarding the composition and the “age” of the SHIW panel. 

 

 

 

 

 

                                                 
42  The “climate” refers to the collaboration provided by the household and in general to the environment in which 

the interview has conducted. 
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Fig.2 

Distributions of longitudinal weights at various stages of the weighting process 
(box plots of normalised weights) 

 

4.2 The validation of longitudinal weights on SHIW estimates 

Given their enhanced description of the “panel population”, the longitudinal weights obtained 

from the process previously described can be expected to be better suited to perform longitudinal 

analysis. To assess their impact on SHIW estimates we computed different longitudinal statistics of the 

degree of mobility of income and wealth and of the autocorrelation coefficient of income and wealth 

with respect to their components for the 2002-04 panels (first part of Table A5). 

The use of longitudinal weights results in a higher persistency of the analysed phenomena: in 

the transition matrices of both income and wealth the percentage of households on the main diagonal 

increases (the relative Shorrock index43 decreases from 0.574 to 0.534 for income and from 0.587 to 

0.570 for wealth). The autocorrelation between income and its components increases. The same result 

applies on average for wealth (second part of Table A5). 

With respect to the same statistics we computed the relative MSE, using cross-section weights 

as a benchmark, and we calculated the empirical MSE for both the estimators using cross-section 

weights post-stratified according to the same distributions considered for cross-sectional and 

longitudinal weights (tables A6-A7).44 In many cases longitudinal weights perform better, in terms of 

                                                 
43 The relative Shorrock’s index computed on a transition matrix T presenting k classes is equal to k-tr(T)/k-1. It 

ranges between 0 (no transition) and k/(k-1) (perfect mobility). 
44 We use equation 7, considering the estimators using longitudinal weights unbiased. 
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MSE, with respect to cross-section weights with post-stratification, despite their higher degree of 

variability. Longitudinal weights determine a major loss in terms of MSE when estimating the 

autocorrelation of wealth with liabilities and financial assets. This result can be due to the small 

number of families holding these kinds of assets. The high variability of this phenomenon is 

additionally inflated by the use of longitudinal weights overcoming the reduction in bias. 

In general, these preliminary results suggest that, even if longitudinal weights are more 

appropriate in performing longitudinal analyses, they can be less efficient. The efficiency of this set of 

weights decreases when dealing with rather dispersed study variables (such as financial assets). 

 

5. Conclusions 

In this paper we presented the weighting scheme of the SHIW and assessed its impact on the 

bias and variance of some estimators. The empirical analysis shows that even if the effect of the 

weights at various stages is to increase the variance, the final outcome on the estimates is usually a 

reduction of the mean square error that is considerable for the key survey variables (i.e. income, 

expenditure and wealth). This result seems to hold even when we consider only sample subsets 

(domain). 

A new longitudinal weight, to be used when performing longitudinal analysis, is also presented. 

These weights are more appropriate to perform longitudinal analyses but are not always more efficient, 

in particular when dealing with heavily skewed study variables. 

As a practical suggestion, we can therefore conclude that weighted estimators perform 

definitely better than the unweighted ones in terms of MSE in the case of cross-section analysis. Even 

in domain analysis, the increasing variability induced by using weights is more than compensated by 

their bias reduction property. Nevertheless, in this case we suggest including all the auxiliary 

information regarding domain characteristics (e.g. using post-stratification) in order to maximise the 

bias reduction function of weighting. 

For the production of longitudinal statistics, there is no unambiguous evidence that the use of 

longitudinal weights always performs better than cross-sectional weighing in terms of MSE. 
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Table A1.  

DESIGN AND RESPONSE ADJUSTED WEIGHTS 
 

 
HH 

interviewed HH contacted
HH in the 
population Design weight Response rate 

Response-
adj. weight 

Stratum id mh n’h Nh w0 mh/n’h w1 
 (1) (2) (3) (4)=(3)/(2) (5) (6)=(4)/(5) 

11 271 594 960,895 1,650.6 0.46 3,618.0 
12 179 420 234,370 566.4 0.43 1,328.9 
13 319 1,109 642,201 581.0 0.29 2,019.7 
31 218 531 2,222,994 4,191.9 0.41 10,210.6 
32 120 407 424,867 1,056.5 0.29 3,583.3 
33 505 1,710 1,133,845 706.9 0.30 2,393.8 
41 109 264 271,879 1,083.4 0.41 2,624.1 
43 42 94 86,831 924.0 0.45 2,068.1 
51 227 580 1,086,994 1,904.4 0.39 4,865.9 
52 195 472 248,096 531.2 0.41 1,285.8 
53 156 514 418,286 814.0 0.30 2,682.1 
61 144 377 304,917 812.9 0.38 2,128.2 
62 47 75 30,119 401.7 0.63 641.0 
63 59 144 151,995 1,174.6 0.41 2,866.8 
71 111 214 242,924 1,140.6 0.52 2,199.0 
72 89 170 73,051 446.6 0.52 853.0 
73 171 1,049 377,343 358.1 0.16 2,196.8 
81 180 414 800,210 1,967.6 0.43 4,525.5 
82 121 373 178,335 494.4 0.32 1,524.0 
83 377 1,119 842,350 774.9 0.34 2,299.9 
91 133 260 596,769 2,348.0 0.51 4,590.0 
92 85 191 235,837 1,247.5 0.45 2,803.2 
93 423 1,201 702,423 597.6 0.35 1,696.7 

101 157 292 136,045 471.4 0.54 876.8 
102 64 164 61,411 374.7 0.39 960.2 
103 62 113 122,955 1,105.9 0.55 2,015.6 
111 158 386 283,300 739.4 0.41 1,806.5 
112 85 256 98,976 386.9 0.33 1,165.2 
113 146 428 165,009 393.2 0.34 1,152.6 
121 105 210 477,713 2,286.0 0.50 4,572.0 
122 23 53 211,011 3,981.3 0.43 9,174.4 
123 297 1,476 1,388,179 1,057.1 0.20 5,253.7 
131 102 291 422,499 1,472.1 0.35 4,199.7 
132 109 180 100,436 558.9 0.61 922.9 
133 108 318 145,244 468.1 0.34 1,378.2 
151 121 204 780,406 4,108.8 0.59 6,927.3 
152 59 182 313,130 1,732.8 0.32 5,345.3 
153 446 1,587 833,175 541.9 0.28 1,928.4 
161 67 136 526,195 3,943.8 0.49 8,005.2 
162 66 134 301,681 2,324.5 0.49 4,719.5 
163 317 760 584,709 817.4 0.42 1,959.6 
181 178 348 667,226 1,944.2 0.51 3,801.0 
182 22 54 78,054 1,445.5 0.41 3,547.9 
183 119 247 221,224 941.1 0.48 1,953.4 
191 43 114 602,109 5,281.7 0.38 14,002.5 
192 88 201 334,720 1,688.9 0.44 3,857.5 
193 459 1,346 795,208 576.5 0.34 1,690.5 
201 149 300 362,683 1,229.6 0.50 2,475.8 
202 108 254 99,199 399.4 0.43 939.3 
203 73 251 128,337 534.2 0.29 1,836.8 

Total 8,012 22,018 22,508,364 1,117.79 0,36 2,883.87 
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Table A2.  

VARIABILITY AND MSE OF UNWEIGHTED AND WEIGHTED ESTIMATES 

(SHIW 2004) 

Calibrated- weight (w2) 

 
Unweighted 

Design weight 

(w0) 

Non-response 

adjusted weight 

(w1) 

Attrition-
adjusted weight 

(w2’) 

Autocorrelation-
corrected weight 

(w2’’) 

Final weight 

(w2’’’) 

 Estimates 

Age of the HH.................................  55.7 56.2 56.0 55.6 55.8 53.8 
Household size................................  2.569 2.527 2.505 2.510 2.529 2.577 
HH employee..................................  42.2 40.9 41.9 42.9 42.7 46.4 
HH self-employed ..........................  12.4 12.1 11.9 12.3 12.4 13.2 
Total income ...................................  29,866 28,802 29,310 28,976 29,203 29,484 

Wages .......................................  11,182 10,646 11,053 11,105 11,165 11,998 
Income from self-employment.  4,495 4,174 4,163 4,254 4,287 4,526 
Transfers ...................................  8,012 7,985 7,888 7,549 7,605 6,939 

Net wealth.......................................  213,817 200,284 204,379 199,896 204,537 199,943 
Tangible assets .........................  199,119 187,158 190,453 186,667 190,710 187,416 
Financial assets.........................  23,397 20,431 21,363 20,865 21,648 21,226 
Liabilities..................................  8,700 7,305 7,437 7,635 7,821 8,699 

Expenditure.....................................  22,390 21,596 21,993 21,800 21,920 22,139 

 Coefficient of variation (percentages)* 

Age of the HH.................................  0.386 0.593 0.531 0.535 0.517 0.564 
Household size................................  0.638 1.059 0.942 0.959 0.894 0.938 
HH employee..................................  1.387 1.804 1.596 1.581 1.629 1.608 
HH self-employed ..........................  3.142 4.921 4.855 4.791 4.563 4.356 
Total income ...................................  0.906 1.093 0.965 0.962 0.969 0.980 

Wages .......................................  1.502 2.119 1.832 1.820 1.820 1.797 
Income from self-employment.  4.339 4.938 4.728 4.744 4.729 4.768 
Transfers ...................................  1.432 1.759 1.618 1.624 1.647 1.823 

Net wealth.......................................  1.738 2.333 2.143 2.091 2.082 2.023 
Tangible assets .........................  1.790 2.294 2.111 2.068 2.096 2.048 
Financial assets.........................  3.423 3.794 3.616 3.574 3.403 3.319 
Liabilities..................................  9.038 9.626 9.179 9.259 9.088 9.906 

Expenditure.....................................  0.735 1.026 0.919 0.912 0.907 0.876 
 Relative Mean Square Error (percentages)** 

Household characteristics       
Age of the head of household .......  100.0 154.7 127.1 90.0 105.1 2.4 
Household size ..............................  100.0 1,147.5 2,097.0 1,877.3 1,046.6 217.8 
Head of household employee........  100.0 169.5 112.6 71.7 78.6 3.1 
Head of household self-employed  100.0 267.8 352.1 216.4 180.5 61.6 

Average ....................................  100.0 434.9 672.2 563.8 352.7 71.2 
Economic variables       
Total income .................................  100.0 291.2 54.8 178.9 84.5 44.4 

Wages .......................................  100.0 277.4 137.9 124.2 109.0 6.9 
Income from self-employment.  100.0 409.4 434.3 301.8 258.5 122.4 
Transfers ...................................  100.0 96.0 79.1 33.4 39.8 1.4 

Net wealth .....................................  100.0 10.9 18.6 8.7 19.6 8.2 
Tangible assets .........................  100.0 12.7 16.5 10.7 18.5 10.2 
Financial assets.........................  100.0 22.8 11.8 13.6 14.3 9.8 
Liabilities..................................  100.0 383.1 321.6 263.7 206.3 120.1 

Expenditure ...................................  100.0 453.5 78.4 207.9 117.8 50.7 
Average ....................................  100.0 217.5 128.1 127.0 96.5 41.6 

* Percentage standard error estimated on 325 jackknife replications, divided by the estimate of the sample. Individual characteristics are those of the head 
of household, i.e. the person earning the highest income. ** Mean squared errors (MSE) of weighted estimates expressed as a percentage of the 
unweighted MSE. The MSEs are estimated using 325 jackknife replications according to sample design (for details see Faiella, 2007). The MSE corrects 
the value of the squared bias with a jackknife estimate of the variance of the difference between the unweighted and the weighted estimator (see Little et 
al., 1997). In our computations the unbiased estimator is the weighted average using the final calibrated weights (w2’’’). 
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Table A3.  

RELATIVE MEAN SQUARE ERROR* 

(SHIW 2004) 

Non-response adjusted weight (w1) Final weight (w2’’’) Characteristics 
Income Expenditure Wealth Income Expenditure Wealth 

Gender       

male ...................................  53.2 72.9 32.1 55.6 64.0 12.9 
female ...............................  109.6 222.0 17.2 79.5 89.0 14.1 

Age        
up to 30 years ...................  132.1 237.0 119.5 57.6 163.7 66.7 
31 to 40 .............................  92.0 40.5 53.3 46.5 24.9 47.5 
41 to 50 .............................  53.7 40.6 27.0 50.6 41.0 25.9 
51 to 65 .............................  228.3 269.3 123.9 151.9 181.8 103.7 
over 65 ..............................  152.9 99.1 51.4 176.0 85.9 57.3 

Education        
none ..................................  37.6 31.7 16.2 38.0 30.8 14.1 
elementary school ............  202.4 156.8 17.1 215.1 136.2 18.6 
middle school ...................  30.4 39.9 33.6 26.9 37.0 10.7 
high school .......................  134.0 161.3 175.3 74.9 129.7 96.9 
university degree ..............  238.7 166.5 76.7 162.7 91.9 35.6 

Work status       
Payroll employed ..............  106.5 45.7 69.8 16.8 12.4 9.8 
Self-employed ..................  26.4 44.7 29.8 19.2 28.7 25.6 
Not employed ....................  66.0 66.9 35.5 60.8 61.1 29.1 

Household size       
1 member ..........................  61.7 49.1 42.6 58.9 45.1 18.0 
2 members ........................  117.1 139.5 98.4 129.3 103.7 60.0 
3 members ........................  66.0 92.8 28.5 40.2 62.8 20.0 
4 members ........................  47.4 52.3 33.3 31.6 31.3 20.2 
5 members or more ...........   50.3 14.8 183.8 32.2 11.6 172.1 

Town size        
up to 20,000 inhabitants ...  73.1 164.0 16.4 49.4 80.2 13.4 
from 20,000 to 40,000.......  128.1 25.9 28.6 100.8 14.9 29.5 
from 40,000 to 500,000.....  107.0 99.7 496.6 90.1 67.6 105.1 
more than 500,000.............  7.4 18.0 144.9 8.6 13.6 73.0 

Geographical area        
North .................................  53.9 142.9 34.9 60.9 131.0 13.2 
Centre ...............................  130.9 187.7 36.6 69.0 117.8 26.4 
South and Islands .............  20.5 21.2 24.9 15.6 15.8 22.0 

Total .......................................  54.8 78.4 18.6 44.4 50.7 8.2 

* Mean squared errors (MSE) of weighted estimates expressed as a percentage of the unweighted MSE. The MSEs are estimated using 325 
jackknife replications according to sample design (for details see Faiella, 2007). The MSE corrects the value of the squared bias with a jackknife 
estimate of the variance of the difference between the weighted and the unweighted estimator (see Little et al., 1997). In our computations the 
unbiased estimator is the weighted average using the final calibrated weights (w2’’’) 
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Table A4.  

LOGIT MODEL FOR NON-RESPONSE PROBABILITIES FOR PANEL UNITS 

Parameter Coefficient 
Estimate P-value Odds Ratio 

95% Wald 
Confidence 

Limits 
Intercept .....................................................................................  0.3239 0.5008  
Number previous interviews .....................................................  -0.168 0.0002 0.845 0.774-0.923 
Climate .....................................................................................  -0.1242 0.0243 0.883 0.793-0.984 
Town with more than 500,000 inhabitants ...............................  0.721 0.0146 2.056 1.153-3.667 
Town with more than 500,000 inhabitants in the North ...........  -0.1161 0.7531 0.890 0.432-1.836 
Town with more than 500,000 inhabitants in the Centre..........  0.527 0.1688 1.694 0.800-3.588 
All family members over 80 .....................................................  0.6352 0.0961 1.887 0.893-3.988 

Max-rescaled R-Square=0.06; Percent Concordant=61.8; Percent Discordant=34.7. Sample size, 4.842: 1.129 non-respondents (weighted). 
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Table A5.  

HOUSEHOLD INCOME AND WEALTH: COMPARISON BETWEEN 2002 AND 2004 
Transition Matrices 

Cross-section weights 
Household income       

2002 2004  up to €10,000 €10,000 - €20,000 €20,000 - €30,000 €30,000 - €40,000 more than €40,000 Total 

up to €10,000 52.8 35.3 6.5 1.6 3.7 100.0 

€10,000 - €20,000 5.9 60.8 22.2 7 4 100.0 

€20,000 - €30,000  1.6 17.1 47.3 23.5 10.5 100.0 

€30,000 - €40,000  1.3 7.7 15.6 35.9 39.5 100.0 

more than €40,000 0.7 2.5 9.3 13.7 73.8 100.0 

Longitudinal weights 
Household income       

2002 2004  up to €10,000 €10,000 - €20,000 €20,000 - €30,000 €30,000 - €40,000 more than €40,000 Total 

up to €10,000 60.6 26.8 6.4 0.7 5.5 100.0 

€10,000 - €20,000 5.1 65.8 19.4 7.1 2.6 100.0 

€20,000 - €30,000  1.5 21.3 45.5 23.0 8.7 100.0 

€30,000 - €40,000  2.1 7.1 17.9 38.0 34.9 100.0 

more than €40,000 0.3 2.5 8.4 12.4 76.5 100.0 

 
Cross-section weights 

Household wealth       

2002 2004  up to €20,000 €20,000 - €50,000 €50,000 - €100,000 €100,000 - 
€200,000 

more than 
€100,000 Total 

up to €20,000 70.3 11.4 6.3 4.9 7.1 100.0 

€20,000 - €50,000 15.4 33.1 25.7 17.1 8.7 100.0 

€50,000 - €100,000 9.5 6.5 35.2 35.6 13.2 100.0 

€100,000 - €200,000 3.2 3.5 8.6 44.5 40.3 100.0 

more than €100,000 1.8 0.6 1.6 13.8 82.3 100.0 

Longitudinal weights 
Household wealth       

2002 2004  up to €20,000 €20,000 - €50,000 €50,000 - €100,000 €100,000 - 
€200,000 

more than 
€100,000 Total 

up to €20,000 67.0 10.1 10.9 5.6 6.5 100.0 

€20,000 - €50,000 12.5 41.6 26.0 12.7 7.2 100.0 

€50,000 - €100,000 8.6 5.7 38.0 35.4 12.3 100.0 

€100,000 - €200,000 1.4 3.5 8.7 43.3 43.1 100.0 

more than €100,000 1.2 0.8 1.6 14.3 82.1 100.0 

 
 

Pearson Autocorrelation 

 Payroll employment Self-employment Transfers Total Income 

Cross-section weights ................................  80.7 52.8 81.6 63.4 

Longitudinal weights .................................  82.5 66.1 84.4 71.0 

 Real assets Financial assets Liabilities Net wealth 

Cross-section weights ................................  74.1 29.2 29.4 73.3 

Longitudinal weights .................................  78.0 26.9 29.5 78.1 
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Table A6.  

RELATIVE MSE* OF INCOME AND WEALTH TRANSITION MATRICES 

(MSE with cross-section weights=100) 
Cross-section weights + post-stratification 

Household income      

2002 2004  up to €10,000 €10,000 - €20,000 €20,000 - €30,000 €30,000 - €40,000 more than €40,000 

up to €10,000 141.9 89.8 188.1 80.1 138.8 

€10,000 - €20,000 99.8 154.7 153.2 159.9 106.7 

€20,000 - €30,000  100.0 105.4 92.8 104.1 148.3 

€30,000 - €40,000  96.7 100.7 117.9 96.7 95.8 

more than €40,000 110.7 97.3 120.1 83.3 84.6 

Average 109.8 109.6 134.4 104.8 114.8 

Longitudinal weights 
Household income      

2002 2004  up to €10,000 €10,000 - €20,000 €20,000 - €30,000 €30,000 - €40,000 more than €40,000 

up to €10,000 51.7 25.0 139.1 7.0 142.8 

€10,000 - €20,000 49.1 22.6 40.6 223.3 12.5 

€20,000 - €30,000  93.2 42.1 130.2 139.9 55.2 

€30,000 - €40,000  132.1 116.8 84.6 145.7 45.1 

more than €40,000 6.6 231.8 90.3 67.1 50.5 

Average 66.5 87.7 96.9 116.6 61.2 

Cross-section weights + post-stratification 
Household wealth      

2002 2004  up to €20,000 €20,000 - €50,000 €50,000 - €100,000 €100,000 - 
€200,000 

more than 
€100,000 

up to €20,000 104.4 89.0 104.1 111.5 165.7 

€20,000 - €50,000 96.9 91.8 106.1 115.0 105.7 

€50,000 - €100,000 127.6 80.9 134.9 104.5 189.8 

€100,000 - €200,000 84.0 206.4 104.9 87.0 83.3 

more than €100,000 137.6 101.8 106.2 126.6 107.5 

Average 110.1 114.0 111.3 108.9 130.4 

Longitudinal weights 
Household wealth      

2002 2004  up to €20,000 €20,000 - €50,000 €50,000 - €100,000 €100,000 - 
€200,000 

more than 
€100,000 

up to €20,000 89.2 65.4 59.5 139.9 135.7 

€20,000 - €50,000 69.7 79.5 256.8 32.7 77.7 

€50,000 - €100,000 79.2 79.9 80.9 128.5 103.9 

€100,000 - €200,000 3.7 114.5 156.7 150.0 77.9 

more than €100,000 21.8 198.8 140.3 169.1 173.3 

Average 52.7 107.6 138.9 124.0 113.7 

 
* Mean squared errors (MSE) of weighted estimates expressed as a percentage of the MSE computed using cross-section weights. The 
MSEs are estimated using 58 jackknife replications according to sample design. In our computations the unbiased estimator is the 
weighted average using the longitudinal calibrated weights. 
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Table A7.  

RELATIVE MSE* OF INCOME AND WEALTH: PEARSON AUTOCORRELATION 

(MSE with cross-section weights =100) 

  Payroll employment Self-employment Transfers Total Income 

Cross-section weights + post-stratification..  120.9 110.9 92.4 113.2 

Longitudinal weights ...................................  38.4 29.0 26.0 15.8 

  Real assets Financial assets Liabilities Net wealth 

Cross-section weights + post-stratification..  109.8 101.2 94.3 116.7 

Longitudinal weights ...................................  88.8 207.2 131.8 59.0 
 

* Mean squared errors (MSE) of weighted estimates expressed as a percentage of the MSE computed using cross-section weights. The 
MSEs are estimated using 58 jackknife replications according to sample design. In our computations the unbiased estimator is the 
weighted average using the longitudinal weights. 



(*) Requests for copies should be sent to: 
Banca d’Italia – Servizio Studi – Divisione Biblioteca e pubblicazioni – Via Nazionale, 91 – 00184 Rome
(fax 0039 06 47922059). They are available on the Internet www.bancaditalia.it.
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