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in production, hyperbolic utility discounting, and (possibly) hyperbolic technical

progress. On its optimal path, generally, welfare-equivalent income > wealth-

equivalent income > Sefton-Weale income > NNP, with possibly dramatic

differences among these measures; and sustainable income can be greater, equal or

less than NNP. This supports the view that there can be no best, exact definition

of income. For low enough discounting, growth is optimal even when technical

progress is zero. A particular discount rate makes all income measures and

consumption constant and (except NNP) equal; and zero technical progress then

gives the Solow (1974) maximin as a special case. General problems with

calculating sustainable income when there is technical progress are discussed, and

the optimal path is time-consistent if the discount rate can depend on the

economy’s stocks and absolute time.
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Exact measures of income in a hyperbolic economy

JOHN C. V. PEZZEY

Summary

This paper illustrates both how different five measures of income can be,

and how important hyperbolic discounting can be in avoiding a dilemma

between two classic approaches to intergenerational equity. The illustration

uses a theoretical, non-trading economy with an explicit functional form for

the dependence of production on a stock of human-made capital, a flow of

non-renewable resource depletion, and time in the form of an exogenous

technical progress factor. Results are calculated for the economy’s ‘optimal’

path that maximises the sum of the discounted wellbeing (utility) of a typical

person over the rest of time. The discount is hyperbolic, meaning it declines

as the inverse of a linear function of time, rather than being a constant as

usually assumed. The rate of technical progress in production is also

hyperbolic, with the same decline over time as the discount rate.

The five measures of income considered are welfare-equivalent income,

wealth-equivalent income, sustainable income and net national product

(NNP), all as reviewed by Asheim (2000); and Sefton-Weale income, after

Sefton and Weale (1996). On the optimal path, welfare-equivalent income,

wealth-equivalent income, Sefton-Weale income and NNP at any moment

form a strictly decreasing series of values, except in the special case where

optimal consumption is constant. With no technical progress, one can also

show that NNP and sustainable income are not generally equal. A plausible

numerical example reveals dramatic differences among the measures, with

for example wealth-equivalent income being initially about 15 times

sustainable income, and forever about 20 times NNP. These clear

differences between income measures are seen as support for the view that



there can never be a best, exact definition of income commanding universal

assent, because there are many different purposes in measuring income.

The two classic approaches to intergenerational equity in an economy

with capital and non-renewable resources are maximin, which yields constant

consumption, and optimality using a constant utility discount rate. The

dilemma in choosing between them in the case of no technical progress is

that constant consumption (and hence wellbeing) prevents any growth,

whereas constant discounting leads to a long run decline in consumption, and

hence wellbeing. For a low enough discount rate, the hyperbolic economy

avoids this dilemma by allowing sustained growth of consumption. The

Solow (1974) constant consumption solution is in fact a special case of the

hyperbolic economy, with zero technical progress and a discount rate just

high enough to prevent growth. Some notes are also given on how to

calculate sustainable income numerically when there is positive technical

progress.

Unlike for constant discounting, there is no axiomatic foundation

available to justify why an economy would be motivated to follow a path

with hyperbolic discounting. However, the resulting optimal path is shown

to be time-consistent, provided one breaks the convention that the discount

factor should depend only on relative time and psychological parameters.

For time-consistency under hyperbolic discounting, it it necessary that the

discount factor varies with the economy’s productive stocks and with

absolute time.
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1. Introduction

This paper gives exact formulae for four or five different definitions of

income on the optimal development path in a theoretical economy with

explicit functional forms. The economy is closed and deterministic, with

constant population and a representative agent, and the optimal path is that

which maximises the present value of utility over an infinite time horizon.

There are three inputs to production: the stock of human-made capital, the

depletion of a finite, non-renewable resource, and time in the form of

(exogenous) technical progress. The utility discount factor and technical

progress factor are both hyperbolic rather than exponential functions of time,

so it will be called‘the hyperbolic economy’ below.

Because of this economy’s explicit functional forms, the purposes of

studying it need careful explanation. One is to show the ethically attractive

property that as long as discounting is hyperbolic and small enough, forever

rising rather than constant consumption can be the optimal (present-value-

maximising) development path of an economy with human-made capital and

a non-renewable resource, even with no technical progress. This shows how

hyperbolic discounting can solve the well-known problem, that a maximum

constant consumption path may perpetuate poverty or be foolishly

conservative (Solow 1974), without causing the intergenerational equity that

may result from constant discounting, for example in Dasgupta and Heal

(1974).

Another, perhaps more important, purpose is to give a clear example,

inspired by the general theory reviewed by Asheim (2000), of why there can

be no single, exact definition of income. This will come from being able to

show analytically, that four out of five income measures have strictly

different sizes in the hyperbolic economy; and numerically, that the size
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differences can be dramatic for plausible parameter values. The hyperbolic

economy may also prove a useful testbed for the recent interest in hyperbolic

and other non-constant discounting, especially for the far-distant future (see

for example Henderson and Bateman 1995, Laibson 1997 and Weitzman

2001). It yields some additional insights into the estimation of sustainable

income when there is technical progress, and the definition of time

consistency. Finally, the hyperbolic economy adds to the range of

algebraically exact economies which can be used to develop or check new

theories about economies with both capital and non-renewable resources, and

perhaps to reveal the often limited generality of existing theories. This range

otherwise seems to comprise only Solow’s constant consumption solution,

the asymptotic steady state in Stiglitz (1974), and Pezzey and Withagen’s

(1998) solution of a‘single-peaked’ economy.

As a preliminary to illustrate the problem of limited generality, Section

2 lists ten features of an economy with human-made capital and natural

resources, which are hardly ever all fully general in well-known theoretical

results in the literature on optimal development and income measurement.

Section 3 defines the hyperbolic economy, lists and interprets its results, and

discusses whether or not its optimal path is well-motivated and time-

consistent. All calculations use straightforward, though tedious and hence

omitted, algebra (flagged by "it can be shown that..."), that starts from the

necessary first order conditions of the optimal control problem; full details

are available from the author. Section 4 concludes.

2. Ten sources of non-generality in theoretical results

Any new features in the hyperbolic economy spring from the lack of full

generality found in almost all theoretical models of economies with both

human-made capital and natural resources, even when these are confined to
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representative-agent models where population is constant and consumption

is the sole determinant of utility. For example, two of the best known

results of the mid-1970s use significantly different assumptions, which

conceals their interrelationship within the more general theory summarised

by Asheim (2000). Weitzman’s (1976) result, on the annuity-equivalent

properties of net national product, assumes non-linear production, non-

constant consumption, a linear utility function and a constant interest rate.

Hartwick’s (1977) rule, on constant consumption forever resulting from zero

net investment forever, assumes linear production, constant consumption, and

(implicitly) a non-linear utility function and a declining interest rate. The

hyperbolic economy here makes the same assumptions as Hartwick, except

that consumption can be constant, rising or falling.

As a reminder of these kinds of differences, Table 1 lists ten key

features about production functions, utility functions, intertemporal objectives

and trade, and simplifying assumptions which are often made about them.

The notation used is fairly standard, and is fully defined in the next section.
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Table 1 Ten key features, some of which are simplified in almost all
theoretical models of economies with human-made capital and
natural resources

No. General feature Simplifying assumption

1 Non-linear consumption/
investment frontier

Linear consumption/investment
frontier (e.g.F = C + K)

2 Resource discovery and extraction
costs

No resource discovery or extraction
costs

3 Capital depreciation No capital depreciation

4 Unspecified returns to scale in
production

Constant returns to scale in
production

5 Exogenous technical progress No exogenous technical progress

6 Non-linear utility function Linear utility function (i.e.U = C)

7 Non-constant utility discount rate Constant utility discount rateρ > 0
(i.e. discount factorφ(t) = e−ρt)

8 Non-constant interest rate Constant interest rater

9 Closed or large open economy
(so prices are endogenous)

Small open economy
(so prices are exogenous)

10 No constant consumption goal Constant consumption goal,C = 0

3. The hyperbolic economy

3.1 General assumptions and definitions of income

The economy is a special case of that described in the appendix of

Asheim (1997). Population is constant; consumers are identical and have no

age structure, with each generation represented by one agent at an instant in

continuous time, which stretches from zero to infinity; and the economy is

closed to trade. The variables below are non-negative quantities along any

development path in the economy, using terminology similar to that in
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Asheim (2000). Less familiar terms, or ones which are often given different

meanings in the literature, are highlighted in italics.

K(t) is the non-depreciating, human-made capital stock; K(0) = K0 > 0

S(t) is the non-renewable, natural resource stock; S(0) = S0 > 0

C(t) is consumption of a single produced good

R(t) = −S(t) is the resource depletion flow, with zero extraction costs

F(K(t),R(t),t) is output; F = F(K(t),R(t)) if technology is constant

U(C(t)) is instantaneous utility

φ(t) is the utility discount factor

Φ(t) := φ(t)UC(C) is the consumption discount factor

W(t) := ∫ t
∞[φ(s)/φ(t)]U[C (s)]ds, t ≥ 0 is (current) welfare. The

representative agent chooses consumption and resource depletion

paths to maximise welfare W(0), and the resulting path is called

optimal. Existence and uniqueness are assumed.

µK(t), µS(t) are respectively the co-state variables of K(t) and S(t)

resulting from this optimisation.

Θ(t) := ∫ t
∞[ Φ(s)/ Φ(t)]C(s)ds, t ≥ 0 is (current) wealth

δ(t) := −φ(t)/φ(t) is the current (utility) discount rate

δ∞(t) := ∫ t
∞φ(s)δ(s)ds / ∫ t

∞φ(s)ds is the time-averaged discount rate

r(t) := − Φ(t)/ Φ(t) is the current interest rate

r∞(t) := ∫ t
∞ Φ(s)r(s)ds / ∫ t

∞ Φ(s)ds is the time-averaged interest rate.

Five definitions of income are then

A(t) := U−1[δ∞(t)W(t)] is welfare-equivalent income (Asheim

2000)

Ye(t) := r∞(t)Θ(t) is wealth-equivalent income (Asheim 2000)

SW(t) := [∫ t
∞r(s) Φ(s)C(s)ds] / Φ(t) is Sefton-Weale income, after

Sefton and Weale (1996)
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Y(t) := C(t) + [µK(t)K(t) + µS(t)S(t)]/UC(t) is net national

product (NNP)

Ym[K(t),S(t)] := max C s.t. C(t′) ≥ C for all t′ ≥ t, i.e. sustainable

income or the maximum sustainable consumption level. Ym

is calculated only when there is no technical progress,

because an analytic solution is generally unavailable when

there is technical progress (a matter we defer discussing

until later).

An immediate question is whether one can decide which, if any, of these

definitions gives the ‘best’ measure of income that we ‘should’ use. As

already suggested, the view here is that there is no best measure; but we also

defer discussing this until values of the five income measures for the

hyperbolic economy, both analytically and for a numerical example, have

been derived.

3.2 Specific assumptions and the optimal path for the hyperbolic economy

The specific functional forms used in the hyperbolic economy are:

Production: F = KαRβ(1+θt)ν = K+C, θ > 0, ν ≥ 0 )

Instantaneous utility: U(C) = C1−α/(1−α), 0 < α < 1 ) [1]

Discount factor: φ(t) = (1+θt)−ρ, ρ > 0 )

The hyperbolic utility discount factor (1+θt)−ρ a third question that we will

discuss later: what would motivate the economy to maximise welfare W(.)

as defined above, given that non-exponential discounting is ‘known’ to make

the welfare-maximising path time-inconsistent (Strotz 1955/6)? This is a

third topic deferred for discussion later. The hyperbolic factor for exogenous
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technical progress (the (1+θt)ν term in F(.)) is necessary to reach an exact

solution, given the discount factor (1+θt)−ρ. However, since the progress rate

νθ/(1+θt) is positive but declining over time, it can also be viewed as a

compromise between the usual assumptions of zero progress, or a constant,

positive rate of progress.

Further necessary parameter restrictions, and algebraic abbreviations, are:

β < α < α+β ≤ 1 (β < α is needed to enable a constant

consumption path in Solow (1974)) [2]

ρ > 1+α−β+ν (> 1) (needed for convergence of welfare W) [3]

ξ := (ρ−α−ν)/(1−β) (> 1) [4]

σ := (α+ν−βρ)/(1−α)(1−β) [5]

⇒ ξ +σ = ρ+ασ = [ρ(1−α−β)+α(α+ν)] / (1−α)(1−β) (> 0)

θ := [α(ξ−1)βS0
β/(ξ+σ)K0

1−α]1/(1−β) (> 0) [6]

Definition [6], which relates θ not just to the functional parameters α, β, ξ

and σ, but also to the initial stock parameters K0 and S0, is very restrictive.

It is needed to place the economy exactly on a (hyperbolically) steady state

path from time zero. Without it, only steady state rates of growth can be

computed analytically, much as in Stiglitz (1974).

It can be shown that the optimal (welfare-maximising) paths are then:

Consumption C(t) = [(ρ−α)θK0/α] (1+θt)σ [7]

Capital K(t) = K0(1+θt)σ+1 [8]

Resource stock S(t) = S0(1+θt)−(ξ−1) [9]

Resource flow R(t) = (ξ−1)θS0(1+θt)−ξ

Output F(t) = [(ξ+σ)/(ρ−α)]C(t)

Current interest rate r(t) = (ξ+σ)θ/(1+θt) [10]

Time-averaged

interest rate r∞(t) = (ξ+σ−1)θ/(1+θt)
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3.3 The five measures of income for the hyperbolic economy

From the above results, it can further be shown that the five measures

of income on the optimal path of the hyperbolic economy are at any time:

For any rate of technical progress, ν ≥ 0:

Welfare-equivalent income A(t) = [1+(1−α)σ/(ξ−1)]1/(1−α)C(t) [11]

Wealth-equivalent income Ye(t) = [1+σ/(ξ−1)] C(t) [12]

Sefton-Weale income SW(t) = (1+σ/ξ) C(t) [13]

NNP Y(t) = [1−ν/(ρ−α)](1+σ/ξ) C(t) [14]

For α > β, and no technical progress, ν = 0, only:

Sustainable income Ym(t) = [(ξ+σ)(α−β)/(ξ−1)α]β/(1−β)(1+σ/ξ)C(t) [15]

Four algebraic features of these results are worth noting:

(a) Since all parameters are positive, as are (1−α), (ξ−1) and (ρ−α) thanks

to [2]-[4], the first four income measures are in the strict size order A

> Ye > SW > Y, consistent with the non-strict general order given in

Asheim (2000). Finding general conditions for this strict order to hold

remains for further work.

(b) The −ν/(ρ−α) term in NNP, and its absence in welfare-equivalent,

wealth-equivalent and Sefton-Weale incomes, clearly reflects the

‘ technical progress premium’ , which is overlooked by the national

accounting definition of income but included in present-value-equivalent

definitions. However, it remains to be seen if Weitzman’s (1997)

formula for the technical progress premium, which holds for an economy

with a constant interest rate, can be generalised to the non-constant

interest rate here.

(c) It can be shown that if α > β, and there is no technical progress (ν = 0):

α/β <
> ρ (> 1) ⇔ Ym <

> Y, [16]
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so that sustainable income Ym is only loosely related to NNP Y.

(d) From [5], if α+ν−βρ = 0, then σ = 0 and all measures of income are

constant, at levels which can be shown to be:

A(t) = Ye(t) = SW(t) = Ym(t) = C(t) = Y(t)/[1−ν/(ρ−α)] = C− ∀ t ≥ 0

where

C−(α,β,ν,K0,S0) := [α(1−β)+ν]{K0
α−β[α(α+ν−β)S0]

β/(α+ν)}1/(1−β) [17]

Then if ν > 0 (technical progress), the economy can forever consume

(C) more than it ‘produces’ (Y), because time is itself productive but the

value of time (i.e. of technical progress) is omitted from Y. (C− then

appears to be the first known algebraic expression for sustainable

income Ym in the case of technical progress, albeit restricted to the

special case where θ = αβ{[α(α+ν−β)S0]
β/(α+ν)K0

1−α}1/(1−β).) But if ν

= 0 (no technical progress), C− simplifies to the Solow (1974) constant

consumption path C(t) = (1−β){K0
α−β[(α−β)S0]

β}, and only then are all

five income measures defined, constant, and equal to consumption.

An idea of how big differences among income measures can be gained

from a numerical example. If ρ = 2, α = 0.6, β = 0.05, ν = 0.4, K0 = 1000,

S0 = 100 and time is measured in years, then to 3 decimal places, ξ = 1.053,

σ = 2.368 and θ = 0.010. The various instantaneous, annual rates in the

economy at time t = 0 are

utility discount rate ρθ = 0.019 ) [18]

technical progress rate νθ = 0.004 )

consumption growth rate σθ = 0.023 )

current interest rate (ξ+σ)θ = 0.033 )

These initial rates are the same order of magnitude as the constant rates used

by Weitzman (1997) and other authors, and so are not wildly implausible.

Inserting the numbers into [11]-[14] − and adding a calculation of
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sustainable income Ym done by numerical simulation just for time zero,

which we discuss later − then shows that the income measures vary

dramatically in this example, being (to one decimal place):

welfare-equivalent income A(t) = 1573.6 C(t) ) [19]

wealth-equivalent income Ye(t) = 46.0 C(t) )

Sefton-Weale income SW(t) = 3.3 C(t) )

sustainable income Ym(0) = 3.1 C(0) )

NNP Y(t) = 2.3 C(t) )

The fact that α/β > ρ and Ym(0) > Y(0) here suggests that result (c) above

may also apply to the case of positive technical progress.

However, any empirical significance of these results is hard to judge,

since the rates all decline over time as 1/(1+θt) from those in [18], contrary

to empirical experience in Western economies over the last two centuries or

so. Perhaps more significant are results from an exact solution of the

Stiglitz (1974) economy, where it can be shown1 that for the parameter

values ρ = 0.025, α = 0.6, β = 0.05 and ν = 0.01 (a fairly standard set of

exponential rates, except for the role of α in U(C)), the asymptotic income

measures are A = 3.2C, Ye = SW = 2.5C and Y = 1.5C.

3.4 Sustained growth

Another feature that could have been listed in the previous subsection,

but deserves more prominence, is that optimal consumption in the hyperbolic

economy is steadily growing if the discount rate is low enough (ρ < (α+ν)/β

⇒ σ = C/C > 0). Moreover, such sustained growth can be optimal even

1. The formulae for the corresponding special case of Stiglitz’s economy are F =

KαRβeνt, φ = e−ρt, ζ := (ρ−τ)/(1−β), ω := (τ−βρ)/(1−α)(1−β), (ζ+ω)K0
1−α = αζβS0

β

(the parameter restriction needed to start on an analytic path), C = (ρK0/α)eωt,

A = [1+(1−α)ω/ζ]1/(1−α)C, Ye = SW = (1+ω/ζ)C, and Y = (1−τ/ρ)(1+ω/ζ)C.
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if there is no technical progress (i.e. if ρ < α/β and ν = 0). This reflects

how a hyperbolic utility discount rate declines over time, in a way that can

match the declining return to capital in an economy with a stock of human-

made capital, a stock of non-renewable resource, and no technical progress.

By contrast, in the seminal example of such an economy in Dasgupta and

Heal (1974), the discount rate is constant, and ultimately becomes greater

than the declining return to capital. Hence optimal consumption

asymptotically falls toward zero there, no matter how small the discount rate.

-oOo-

We now discuss the three topics noted earlier: calculating sustainable income

when there is exogenous technical progress; whether there is a "best"

measure of income; and the motivation and time-consistency of the optimal

path.

3.5 Sustainable income and exogenous technical progress

The estimated number for initial sustainable income in a numerical

example of the hyperbolic economy, given in [19], was calculated using the

following method. The method works for a production function F(K,R,t) =

KαRβπ(t) with a general progess factor π(t), which includes both the

exponential case considered by Solow (1974), π(t) = eνt, and the hyperbolic

case, π(t) = (1+θt)ν. Standard optimal control techniques give the Hotelling

rule that an economy with sustainable income (maximum constant

consumption) Cm, must follow, like any dynamically efficient economy:

FR/FR = FK

⇒ α K/K − (1−β)R/R + π/π = αF/K

⇒ R/R = (π/π − αCm/K) / (1−β) [20]
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Finding Cm numerically involves initially guessing a Cm and an initial

resource depletion rate R(0), integrating forward [20] and K = F−Cm, and

then iterating the initial guesses so that Cm is maximised while the initial

resource stock S0 is completely depleted at an ‘ infinite time horizon’ . Such

a horizon can of course never be approached in simulation, but this

procedure appears to give stable estimates of Cm even when the termination

time is greatly increased. A point of interest is that, contrary to Solow’s

(1974, p41) speculation, capital K does not approach zero on a sustainable

income path, but grows without bound (which also happens in the special

case in Section 3.3(d) where an analytic solution exists). This is because

supplying resource flow R(t) over an infinite time from a finite stock S0

requires that R declines to zero from above, hence that R/R declines to zero

from below. This is impossible in [20] if K approaches zero, since αCm/K

and hence −R/R will then grow without bound.2

3.6 Which measure of income should be used?

During the development of this paper, a number of commenters have

remarked that it is unsatisfactory to give five, quantitatively quite different

measures of income, and yet no reason to prefer one measure to another.

However, the history of economic debate about income shows that any

criterion, purporting to judge the relative merits of different income measures

on a common scale, is bound to be disputed. This paper avoids the debate,

by taking the alternative view that income is not a well-enough defined

concept for there to exist a universally accepted, exact measure of income

2. What happens in simulations, in either the exponential or hyperbolic case, is that

R at first falls because K is at first relatively small. But then as K grows, αCm/K falls

below π/π, and from [20] R grows again. Cm and R(0) need to be iterated so that R

is constant at the same moment as the resource stock is exhausted.
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that is ‘best’. This is fundamentally because measuring income can serve

many different purposes, for example:

"...charting business cycles, comparing prosperity among nations, observing
industrial structure, measuring factor shares and so on. ...real income may
be interpreted as a family of concepts, each member of which is best for
some particular purpose." (Usher 1994, p124)

Along similar lines, Asheim (2000) noted that comparing prosperity among

nations is a quite different task from measuring one nation’s sustainability,

and requires a different income measure; and that Hicks (1946, Ch 14)

himself emphasised both sustainable income (our Ym) and wealth-equivalent

income (our Ye) as valid income concepts. However, Hicks used a

framework (a person facing exogenous prices, rather than a closed economy

facing endogenous prices, as above) where these two income definitions are

indistinguishable. So in particular, the phrase "Hicksian income" (used by

Nordhaus 2000 and numerous other recent writers) is almost always

contentious or ambiguous (see for example Vincent 2000, footnote 2), and

has been deliberately avoided here.

The algebraic results above demonstrate that even as a measure of

prosperity, income is hard to define uniquely. Clearly, a measure of current

prosperity should take proper account of the future, and consumption alone

is not a proper measure. But this leaves undefined what kind of future

society wants, and exactly how to take account of it. There are many

unresolved arguments about how one should choose from an infinitude of

intertemporal welfare objectives, each of which leads to a different future

with different accounting prices. Even when present value maximisation

with a particular discount factor is chosen, there is still a difference, given

a diminishing marginal utility of consumption, between the welfare-

equivalence and wealth-equivalence methods of accounting for the future.
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3.7 What is the economy’s motivation, and is the optimal path time-
consistent?

Two other questions raised during this paper’s development are about

the discount factor φ(t) = (1+θt)−ρ that is a defining characteristic of the

hyperbolic economy. First, is there a primitive welfare criterion underlying

its use, and thus some explanation of what basic principles motivate the

economy to follow the calculated optimal path? Second, does its use cause

the optimal path to be time-inconsistent?

There is no easy answer to the first question. No elegant axiomatic

foundation, of the kind that Koopmans (1960) established for exponential

discounting, exists for hyperbolic discounting, and one may never exist. But

even if it did, it would not necessarily resolve the choice between hyperbolic

discounting and other criteria (while clear axiomatically, the choice between

exponential discounting and maximin consumption remains unresolved).

Meanwhile, the above results on income measurement still seem useful.

The second comment, about time consistency, can be answered more

satisfactorily. The optimal consumption path in [7] is time-consistent, if one

interprets the discount factor in a particular way. Consider a ‘ re-

optimisation’ at some time t = x ≥ 0 after the start of the optimal path, and

use a redefined time variable starting from this time, s := t−x. Provided that

the discount factor φx(s) to be used from s = 0 onwards, with φ(0) = 1, is

φx(s) = (1+θxs)−ρ with )

θx := {[α(ξ−1)βS0
β / (ξ+σ)K0

1−α]−1/(1−β) + x}−1, ) [21]

but not := {α(ξ−1)β[S(0)]β / (ξ+σ)[K(0)]1−α}1/(1−β) [22]

(where S(0) and K(0) are evaluated at s = 0, not t = 0)

or := {α(ξ−1)βS0
β / (ξ+σ)K0

1−α}1/(1−β) (= θ in [6]), [23]
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then (1+θxs)−ρ = {[1+θ(x+s)] / (1+θx)}−ρ,

and so −φx(s)/φx(s) s=0 = −φ(t)/φ(t) t=x = ρθ/(1+θx). [24]

[24] means that the instantaneous discount rate remains unchanged by the

reoptimisation at s = 0 (i.e. t = x); and since x is arbitrary, the optimal path

is thereby time-consistent. This consistency is achieved by abandoning

Strotz’s requirement that the discount factor φ(t1,t2), used to make utility at

time t2 comparable with an earlier time t1, should depend on just the time

lapse t2−t1 and purely psychological parameters (as noted by Asheim 2000,

p31). In [21], φ is allowed to depend on the state of the economy at a fixed

moment (specifically, on the initial capital and resource stocks, K0 and S0)

and on the absolute time since that moment. Neither of the formulae [22]

or [23] for reoptimisation includes absolute time, and because of this either

would cause time-inconsistency. As long as one accepts the idea that

people’s discounting can be affected by the absolute state of the economy’s

stocks and technology (and hence absolute time), there is no reason to prefer

[22] or [23] to [21].

4. Conclusions

Exact solutions have been presented for the optimal path of a

‘hyperbolic’ theoretical economy with human-made capital, a non-renewable

resource, exogenous technical progress, and specific functional forms. This

economy illustrates some significant points in recent literature on income

and sustainability accounting, and may prove useful as a testbed for future

theoretical enquiry. Hyperbolic discounting gives the ethically attractive

property that optimal consumption grows forever if the discount rate is low

enough, even if there is no exogenous technical progress. This avoids some

well known problems of the Solow (1974) constant consumption path, which

is a special case of the hyperbolic economy with a particular discount rate
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and zero technical progress. Also in the hyperbolic economy, five measures

of income − welfare-equivalent income, wealth-equivalent income, Sefton-

Weale income, net national product (NNP) and sustainable income − are all

distinct theoretically, with the first four measures in descending size order,

and with quite different values in a plausible numerical example. So it is

hard to view any one definition of income as ‘correct’ , Hicksian or

otherwise. Instead, one is forced to recognise that different measures of

‘ income’ serve different purposes. Time-consistency is not a problem, as

long as the discount parameter is defined in terms of the original stocks and

absolute time in such a way that reoptimising at a later time continues with

the original hyperbolic discount factor. Further research on any empirical

significance of the above results for both economies would seem worthwhile.
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REFEREES’ NOTE FOR "EXACT MEASURES OF INCOME IN A
HYPERBOLIC ECONOMY" (23 January 2002 draft)

These are the calculations implied by the note at the end of Section 1 that
"full details are available from the author", and they would be placed on my
website. But if the referees prefer, they could be edited down to form an
Appendix included in the paper. (The division into a preliminary section
and then Appendix 1 is there because originally the paper had another
section which required an Appendix 2.)

In the hyperbolic economy the maximisation problem is

Max ∫0
∞φ(t)U[C(t)]dt )

C,R ) [A0.1]

s.t. K = J[F(K,R,t),C], S = −R; K(0) = K0, S(0) = S0 )

and the current value Hamiltonian is

H = U(C) + µKK + µSS = U(C) + µKJ[F(K,R,t),C] − µSR [A0.2]

The necessary first order conditions for an interior solution are

HC = UC + µKJC = 0 ⇒ µK = −UC/JC [A0.3]

HK = µKJFFK = −(φ/φ)µK − µK ⇒ µK/µK = −(φ/φ) − JFFK [A0.4]

HR = µKJFFR − µS = 0 ⇒ µS = µKJFFR [A0.5]

HS = 0 = −(φ/φ)µS − µS ⇒ µS/µS = −(φ/φ) [A0.6]

Appendix 1. Optimal solution paths for the hyperbolic economy

In [1], U(C) = C1−α/(1−α), φ(t) = (1+θt)−ρ [A1.1]

K = J(F,C) = F − C F(K,R,t) = KαRβ(1+θt)ν [A1.2]

[A0.3-6] then give

UC = C−α = µK; µS = µKFR = C−αβKαRβ−1(1+θt)ν

−αC/C = −φ/φ − FK = ρθ/(1+θt) − αKα−1Rβ(1+θt)ν [A1.3]

FR/FR = αK/K − (1−β)R/R + θν/(1+θt) = FK = αF/K

⇒ θν /(1+θt) − (1−β)R/R = αC/K [A1.4]

Also δ∞ := 1 / ∫ t
∞[φ(s)/φ(t)]ds = (1+θt) −ρ / [(1+θs)−ρ+1/(1−ρ)θ]∞

t

= (ρ−1)θ/(1+θt). [A1.5]
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Seek "hyperbolic steady state" solution

C= C0(1+θt)σ, K = K0(1+θt)σ+1 [A1.6]

S = S0(1+θt)−(ξ−1), R = (ξ−1)θS0(1+θt)−ξ [A1.7]

Comparing rates of growth and constant terms in [A1.3-4] then gives

σ = (σ+1)α − ξβ + ν [A1.8]

C0 = K0
α[(ξ−1)θS0]

β − (σ+1)θK0 [A1.9]

ασθ = αK0
α−1[(ξ−1)θS0]

β − ρθ [A1.10]

and C0 = (K0/α)[θν+(1−β)ξθ] [A1.11]

[A1.9-11] ⇒ C0/K0 = [ν+(1−β)ξ]θ/α [A1.12]

= K0
α−1[(ξ−1)θS0]

β − (σ+1)θ = (ασ+ρ)θ/α − (σ+1)θ

⇒ ν +(1−β)ξ = ρ−α ⇒ ξ = (ρ−α−ν)/(1−β) [4]

[A1.8-12],[4] ⇒ σ = (α+ν−βξ)/(1−α) = (α+ν−βρ)/(1−α)(1−β) [5]

and ασ+ρ = ξ+σ = [ρ(1−α−β)+α(α+ν)] / (1−α)(1−β) [A1.13]

Non-renewable resource stock requires S < 0, hence ξ−1 > 0, hence

ρ > 1+α−β+ν. [3]

[A1.10] ⇒ θ 1−β = αK0
α−1[(ξ−1)S0]

β/(ασ+ρ). With [A1.13], [4] this gives

θ = [α(ξ−1)βS0
β/(ξ+σ)K0

1−α]1/(1−β) [6]

Hence K, S, R are as in [8-9]; and [A1.12], [4] give

C = [(ρ−α)θK0/α] (1+θt)σ. [7]

F = K0
α [(ξ−1)θS0]

β (1+θt)σ = K0
α [(ξ−1)θS0]

β (1+θt)σ, and using [6]

= K0
α [θ(ξ+σ)K0

1−α/α] (1+θt)σ = [(ξ+σ)/(ρ−α)]C

FR = βF/R = [β(ξ+σ)θK0/α] (1+θt)σ / (ξ−1)θS0(1+θt)−ξ

= [βK0(ξ+σ)/(ξ−1)αS0](1+θt)ξ+σ

FRR = βF = [βξ/(ρ−α)](1+σ/ξ)C

Φ = φUC = (1+θt)−ρ [(ρ−α)θK0/α]−α (1+θt)−ασ

⇒ r = −Φ/Φ = (ρ+ασ)θ/(1+θt) = (ξ+σ)θ/(1+θt) [10]

r∞ = (ξ+σ−1)θ/(1+θt) follows analogously to δ∞. [A1.14]
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U = C0
1−α(1+θt)σ(1−α)/(1−α) = C0

1−α(1+θt)(α+ν−βρ)/(1−β)/(1−α)

φU = (1+θt)−ρC0
1−α(1+θt)[(α+ν−βρ)/(1−β)]/(1−α) = C0

1−α(1+θt)−ξ/(1−α)

W = (1+θt)ρC0
1−α(1+θt)−ξ+1/(1−α)(ξ−1)θ = (1+θt)U/θ(ξ−1)

⇒ δ ∞W = [(ρ−1)θ/(1+θt)](1+θt)U/θ(ξ−1) = (ρ−1)U/(ξ−1)

= [1+(ρ−ξ)/(ξ−1)]U = [1+(1−α)σ/(ξ−1)]U

K − FRR = (σ+1)αC/(ρ−α) − β(ξ+σ)C/(ρ−α)

= [(σ+1)αξ − βξ(ξ+σ) + ν(ξ+σ) − ν(ξ+σ)] C/ξ(ρ−α)

= { (α+ν−βρ+1−α−β+αβ)α(ρ−α−ν) +

(ν−βν−βρ+αβ+βν)[ρ(1−α−β)+α(α+ν)] − ν(ξ+σ)(1−α)(1−β)2 }

x C/ξ(ρ−α)(1−α)(1−β)2

= {(ν−βρ+αβ)ρ(1−β) + (1−β)α(ρ−α−ν) − ν(ξ+σ)(1−α)(1−β)2}

x C/ξ(ρ−α)(1−α)(1−β)2

= [σ−ν(ξ+σ)/(ρ−α)]C/ξ

Θ = ∫ t
∞[Φ(s)/Φ(t)]C(s)ds = (1+θt)(ξ+σ) [∫ t

∞(1+θs)−(ξ+σ)C0(1+θs)σds

= (1+θt)C/θ(ξ−1)

A = {(1−α)[1+(1−α)σ/(ξ−1)]U}1/(1−α) = [1+(1−α)σ/(ξ−1)]1/(1−α)C [11]

Ye = r∞Θ = [(ξ+σ−1)θ/(1+θt)](1+θt)C/θ(ξ−1) = [1+σ/(ξ−1)]C [12]

S-W income = ∫ t
∞[r(s)Φ(s)C(s)/Φ(t)]ds

= (1+θt)ξ+σ ∫ t
∞(ξ+σ)θ(1+θs)−1−(ξ+σ)+σC0ds

= (1+θt)ξ+σ ∫ t
∞(ξ+σ)θ(1+θs)−1−ξC0ds = [(ξ+σ)/ξ]C = (1 + σ/ξ)C [13]

Y = C + K − FRR

= [ξ+σ−ν(ξ+σ)/(ρ−α)]C/ξ = [1−ν/(ρ−α)](1+σ/ξ)C [14]

Sustainable income (α > β, and no technical progress, ν = 0 case, only)

From Solow (1974, p39), sustainable income when ν = 0 is:
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Ym(t) = (1−β){[K(t)]α−β[(α−β)S(t)]β}1/(1−β)

= (1−β){K0
α−β[(α−β)S0]

β}1/(1−β)(1+θt)x

where from [8-9], x = [(σ+1)(α−β)−(ξ−1)β] / (1−β)

= [(α-βρ+1-α-β+αβ)(α-β)/(1-α)(1-β) − (ρ-α-1+β)β/(1-β)] / (1-β)

= [(−βρ+1−β+αβ)(α−β) − (ρ−α−1+β)β(1−α)] / (1−α)(1−β)2

= [(−βρ+1−β+αβ+β−αβ)(α−β) − (ρ−1)β(1−α)] / (1−α)(1−β)2

= [(1−βρ)(α−β) − (βρ−β)(1−α)] / (1−α)(1−β)2

= [α−αβρ−β+β2ρ−βρ+β+αβρ−αβ)] / (1−α)(1−β)2

= [α+β2ρ−βρ−αβ)] / (1−α)(1−β)2

= (α−βρ) / (1−α)(1−β)

= σ, i.e. Ym has the same time dependence as the other income measures

And from [6] and [7],

C0 = (ρ−α) [α(ξ−1)βS0
βK0

1−β/(ξ+σ)K0
1−α]1/(1−β) / α

⇒ [αβ(ξ−1)βS0
βK0

α−β/(ξ+σ)]1/(1−β) = C0/(ρ−α)

⇒ (1−β)[S0
βK0

α−β]1/(1−β) = (1−β)C0 [(ξ+σ)/(ξ−1)βαβ]1/(1−β) / (ρ−α)

⇒ (1-β){K0
α-β[(α-β)S0]

β}1/(1-β) = (1-β)C0[(ξ+σ)(α-β)β/(ξ-1)βαβ]1/(1−β) / (ρ-α)

Multiplying both sides by (1+θt)σ then gives

⇒ Ym(t) = (1−β)C(t)[(ξ+σ)(α−β)β/(ξ−1)βαβ]1/(1−β) / (ρ−α)

= C(t)[(ξ+σ)(α−β)β/(ξ−1)βαβ]1/(1−β) / ξ

= C(t)[(1+σ/ξ)(α−β)β/(1−1/ξ)βαβ]1/(1−β)

= C(t)[(1+σ/ξ)β(α−β)β/(1−1/ξ)βαβ]1/(1−β)(1+σ/ξ)

Ym(t) = [(ξ+σ)(α−β)/(ξ−1)α]β/(1−β)(1+σ/ξ) C(t) [15]

In which case

Ym/Y = [(ξ+σ)(α−β)/(ξ−1)α]β/(1−β)

⇒ (Ym/Y)(1−β)/β = (ξ+σ)(α−β) / (ξ−1)α

= [ρ(1−α−β)+α2](α−β) / (1−α)(ρ−α−1+β)α

= [ρ(α−α2−αβ−β+αβ+β2)+α2(α−β)] / (α−α2)(ρ−α−1+β)

= [ρ(α−β+β2)+α2(α−β−ρ)] / [α(ρ−1+β)+α2(α−β−ρ)]

21



so Ym > Y if ρ(α−β+β2) > α(ρ−1+β)

i.e. if −βρ+β2ρ > −α+αβ

i.e. if α/β > ρ. [16]

The constant consumption case

From [4] and [5], α+ν−βρ = 0 ⇒ ξ = ρ and σ = 0.

Hence from [6], θ = [α(ρ−1)βS0
β/ρK0

1−α]1/(1−β)

Hence from [7], C− = (ρ−α)[α(ρ−1)βS0
β/ρK0

1−α]1/(1−β)K0/α

= (ρ−α){K0
α−β[α(ρ−1)S0]

β/ρ}1/(1−β)

Then substituting ρ = (α+ν)/β, ρ−α = [α(1−β)+ν]/β, ρ−1 = (α+ν−β)/β gives

C− = {[α(1−β)+ν]/β}{K0
α−β[α(α+ν−β)S0/β]β/[(α+ν)/β]}1/(1−β)

= [α(1−β)+ν]{K0
α−β[α(α+ν−β)S0]

β/(α+ν)}1/(1−β) [17]

and also gives

θ = {α[(α+ν−β)/β]βS0
β/[(α+ν)/β]K0

1−α}1/(1−β)

= {α1−ββ1−β[α(α+ν−β)]βS0
β/(α+ν)K0

1−α}1/(1−β)

= αβ{[α(α+ν−β)]βS0
β/(α+ν)K0

1−α}1/(1−β) as given.

[ends]
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