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Abstract

A new method is introduced and applied to analyze changes in productivity of Þrms
harvesting a natural capital stock. The index-number technique decomposes the con-
tributions of output prices, variable input prices, Þxed inputs and productivity to
Þrm proÞts, adjusted for changes in the natural capital stock. An application of the
method is given using micro-level data from a common-pool resource. The indexes
provide a ready-made comparison of all Þrms to the most proÞtable Þrm per unit of
resource stock. Benchmarking with the decompositions also allows Þrms and regulators
to determine what components are contributing most to economic proÞts and improve
overall industry performance.
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1 Introduction

The welfare of Þrms in resource-based industries is dependent upon their proÞts that, in turn,
depend on their productivity and the level of the natural capital stock. To help understand
Þrm and industry behavior over time requires a decomposition into the effects of prices,
Þrm capital stock, and productivity on proÞts, adjusted for changes in the natural capital
stock. To assist in such analysis, the paper applies a new methodology to derive proÞt and
productivity decomposition measures. The approach provides a useful method for assessing
the effects of shifts in regulation, level shocks to the natural capital, price ßuctuations and
other factors on Þrm and industry performance.

The proposed productivity and proÞt decomposition uses only observed data (rather
than estimated �benchmark frontiers�) and is derived from theoretical results based on the
relationship between the Törnqvist index and the translog proÞt function (Diewert, 1976;
Diewert and Morrison, 1986; Kohli, 1990; Kohli, 1991). The method allows for intra-Þrm
comparisons, but can be applied at the industry, regional or national level, and provides
insights about Þrm performance and behavior that are unavailable from traditional produc-
tivity and efficiency measures based on frontier estimation (Charnes, Cooper and Rhodes,
1978; Aigner, Lovell and Schmidt, 1977; Diewert and Parkin, 1983; Färe, Grosskopf and
Lovell, 1994; Greene, 1997; Coelli, Battese and Rao, 1998).

The proÞt decompositions have a range of potential uses in natural resource and en-
vironmental management. For example, by decomposing proÞts or productivity into its
contributing components the industry and regulators can identify the most important fac-
tors constraining economic performance. Further, benchmarking to the most proÞtable Þrm
per resource stock allows individual Þrms to assess the factors preventing increased proÞts or
productivity. Decompositions also permit a detailed analysis of whether regulatory change
achieves the desired goals, such as increased productivity, by examining the existence of
confounding effects, such as increases in input prices. Thus the method is a useful tool for
identifying factors that limit proÞtability and productivity and for assessing the impact of
regulatory changes in natural resource industries.

Section 2 presents the fundamentals of the method for decomposing proÞt ratios, and
gives a justiÞcation to the proposed technique which is based on the economic approach to
index numbers by exploiting exactness results between the Törnqvist index and the translog
functional form. Comparisons are also made with alternative decomposition techniques in
section 3. Section 4 describes the data used in the application and illustrates how to use
proÞt decompositions to assess the effects of changes in regulations on Þrm performance. The
results of the application of the index-number proÞt decomposition (INPD) are presented
in section 5. Interpretations of the proÞt decompositions are provided in section 6 with an
assessment of the effects of changes in regulations on the industry. The paper concludes
with a review of the method, the results and its applicability to the study of economic
performance.
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2 Index-Number Profit Decompositions

To derive the INPD, we Þrst deÞne the variable (or �restricted�) non-zero proÞts of an
arbitrary Þrm b, πb, relative to the proÞts of another Þrm a, πa:

Γa,b ≡ πb/πa. (1)

If Þrm a has the highest proÞts in the sample of Þrms being examined, then its proÞts provide
a natural denominator for comparisons. Such a comparison is particularly useful in natural
resource industries, such as Þsheries, where there may exist �highliners� who consistently
earn proÞts far in excess of their fellow resource users.
An important question is why proÞts may be different for the Þrms. Let P a,b be a price

index for the �netputs,� (i.e., a price index for the outputs and variable inputs, where inputs
are treated as negative outputs in order to simplify notation), and Qa,b is the correspond-
ing quantity index. From the �weak factor reversal test� of Fisher (1922), an important
requirement for these indexes is the following:

Γa,b = P a,b ·Qa,b. (2)

That is, a price index times the corresponding quantity index should equal the values index,
i.e., the ratio of values. Because of our deÞnition of the indexes in terms of �netputs,� the
value index here is a ratio of proÞts. Equation (2) can be thought of as a �preservation
of value� property�price times quantity should equal value in levels, and this should also
be true in terms of price changes times quantity changes equaling value changes. If this
condition is not satisÞed by a particular choice of index number for P a,b and Qa,b, then we
can deÞne either P a,b or Qa,b directly, and the other index is deÞned indirectly.1 Consider
the case where we deÞne P a,b directly. Then we deÞne Qa,b as follows, to ensure that (2) is
satisÞed:

Qa,b = Γa,b/P a,b (3)

Hence, Qa,b is termed an �implicit� index, as it is implicitly deÞned once the �direct� index
P a,b has been deÞned (Allen and Diewert, 1981).
A productivity index between Þrms b and a can be deÞned as an output index divided

by an input index, consistent with the usual calculation of total-factor productivity growth
(i.e., output growth divided by input growth), as follows:

Ra,b ≡ Qa,b/Ka,b = (Γa,b/P a,b)/Ka,b, (4)

whereKa,b is a (quasi-) Þxed input quantity index. Productivity in (4) is the difference in the
implicit netput quantity index, Qa,b, that cannot be explained by differences in Þxed-input
utilization, Ka,b. By rearranging Equation (4), we obtain:

Γa,b = Ra,b · P a,b ·Ka,b (5)
1Many commonly used indexes do not satisfy this weak factor reversal test. For example, the Laspeyres,

Paasche and Törnqvist indexes do not satisfy this test, while Fisher�s Ideal index does satisfy the test. See
Allen and Diewert (1981), and Diewert (1992a).
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where the ratio of Þrms� proÞts can be decomposed into contributions from productivity
(Ra,b), price (P a,b) and Þxed input (Ka,b) differences between the Þrms.
Any index number can be used for constructing the price and Þxed-input indexes for use

in (5). However, of all possible indexes, the Törnqvist (1936) index has several advantages
that recommend its use. Let pa ≥ 0 denote a price vector for Þrm a netput prices, so that
pa = (pa1, . . . , p

a
N), where there are N variable netputs, denoted by ya = (ya1 , . . . , y

a
N), and

where ya > 0 implies that the good is an output, while ya < 0 implies that the good is a
variable input. Similarly, let ra ≥ 0 be the price vector for Þrm a Þxed-input prices, so that
ra = (ra1 , . . . , r

a
M), where there are M Þxed inputs, denoted by ka = (ka1 , . . . , k

a
M).

Using theses deÞnitions, we can provide a general representation of a restricted proÞt
function for a Þrm, π, as follows:

π(p, k) = max
y
{p · y : (y, k) ∈ T} (6)

where T is the production possibility set for the Þrm. Hence, proÞt is maximized by the
choice of y, subject to the constraint that k is exogenously given in each period. The
conditions which deÞne a restricted proÞt function with constant returns to scale are that
it is (i) a nonnegative function, (ii) positive homogeneous of degree one in p, (iii) convex
and continuous in p for every Þxed k, (iv) positive homogeneous of degree one in k, (v)
nondecreasing in k for every Þxed p, and (vi) concave and continuous in k for every Þxed p.2

We consider the case where the log of π in (6) has the translog form (Christensen,
Jorgenson and Lau, 1973; Diewert, 1974; Russell and Boyce, 1974), such that for Þrm ι = a, b

lnπι(p, k) ≡ αι0 +
NX
i=1

αιi ln pi +
MX
l=1

βιl ln k +
1

2

NX
i=1

NX
j=1

αij ln pi ln pj

+
1

2

MX
l=1

MX
m=1

βlm ln kl ln km +
NX
i=1

MX
l=1

δil ln pi ln kl, (7)

where αij = αji, for i, j = 1, . . . , N,, βlm = βml, for l,m = 1, . . . ,M and the following
restrictions hold so that the functional form in (7) exhibits constant returns to scale:

P
αιi =

1,
P
βιi = 1,

P
αij = 0,

P
βlm = 0 and

P
δil = 0. Note that only the second-order terms in

(7) are restricted to be constant across Þrms.3

We deÞne the following theoretical productivity index to capture the difference between
Þrms a and b in terms of productivity:

Ra,b ≡
"
πb(pa, ka)

πa(pa, ka)

πb(pb, kb)

πa(pb, kb)

#1/2

, (8)

2See Diewert (1973), for proofs.
3This translog proÞt function is �ßexible� in the sense that is can approximate an arbitrary, twice con-

tinuously differentiable function to the second order (Diewert, 1974; p. 113). Hence, even if the actual proÞt
function is not of the translog form, it is ßexible enough to approximate it to a high order of approximation
at one point at least. Many functional forms, such as the commonly-used Cobb-Douglas form, do not have
even this rather minimal approximation property.
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where the Þrst ratio in the brackets is an index of productivity difference using Þrm a reference
netput prices and capital (exogenous) quantities, and the second ratio is a competing index of
productivity change which uses Þrm b reference netput prices and input quantities. Because
it is unclear which of these two possible theoretical indexes is preferred, a geometric mean of
the two is used in (8). The choice of the geometric mean also facilitates a useful theoretical
result from index number theory.
Diewert and Morrison (1986) exploited the translog identity of Caves, Christensen and

Diewert (1982a) to prove a relationship between the translog functional form and the Törnqvist
(1936) index formula and which they use for decomposing the growth in domestic product
for a trading economy.4 In the current context, we apply Theorem 1.

Theorem 1 If the functional form for a proÞt function, πι, is translog as deÞned by (7)
for Þrms ι = a, b and there is competitive proÞt maximizing behavior by both Þrms, then
the productivity index in (8) is exactly equal to a Törnqvist implicit netput quantity index,
Qa,b = Γa,b/P a,b, divided by a Törnqvist direct input index, Ka,b, where Γa,b = πb/πa and

P a,b ≡ exp
"
NX
n=1

1

2
(sbn + s

a
n) ln(p

b
n/p

a
n)

#
, (9)

where sn = (pnyn)/(p · y) is the proÞt share of netput n, using the notation p · y = P
pnyn,

and

Ka,b ≡ exp
"
MX
m=1

1

2
(sbm + s

a
m) ln(k

b
m/k

a
m)

#
, (10)

which is a Törnqvist quantity index, where sm = (rmkm)/(p · y) is the proÞt share of Þxed
input m.

Proof: Consider a proÞt function πι(pι, kι), for any Þrm ι. If producers are competitively
proÞt maximizing, then from Hotelling�s Lemma,

yι = 5pπ
ι(pι, kι) (11)

using vector notation, where 5p denotes the vector of Þrst order derivatives with respect to
each element of the price vector p. Following Diewert (1974, p. 140), we have the following
shadow pricing result, where the theoretical capital input price vector for Þrm ι, rι is now
deÞned as a vector of ex post user costs of capital (Diewert and Morrison, 1986; p. 662):

rι = 5kπ
ι(pι, kι). (12)

Assuming constant returns to scale,

πι(p, k) = pι · yι = rι · kι, (13)

4For other applications and further details of the GDP approach, see Kohli (1990, 1991).
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using the notation pι · yι = P
pιny

ι
n and r

ι · kι = P
rιmk

ι
m. For proÞt functions that are of

the translog form, as in (7), the theoretical productivity index (8) can be re-expressed as
follows, for ι = a, b:

Ra,b =

"
πb(pa, ka)

πa(pa, ka)

πb(pb, kb)

πa(pb, kb)

#1/2

=
πb(pb, kb)

πa(pa, ka)

"
πb(pa, ka)

πb(pb, kb)

πa(pa, ka)

πa(pb, kb)

#1/2

=
pb · yb
pa · ya exp

½
1

2
(lnπb(pa, ka)− lnπb(pb, kb)) + 1

2
(lnπa(pa, ka)− lnπa(pb, kb))

¾

=
pb · yb
pa · ya exp

(
1

2

h
5ln p lnπ

b(pb, kb) +5ln p lnπ
a(pa, ka)

i
· ln

Ã
pa

pb

!

+
1

2

h
5ln k lnπ

b(pb, kb) +5ln k lnπ
a(pa, ka)

i
· ln

Ã
ka

kb

!)
(14)

=
pb · yb
pa · ya exp

(
1

2

NX
n=1

"
pbny

b
n

pb · yb +
pany

a
n

pa · ya
#
ln

Ã
pa

pb

!

+
1

2

MX
m=1

"
rbmk

b
m

pb · yb +
ramk

a
m

pa · ya
#
· ln

Ã
ka

kb

!)
(15)

= Γa,b exp

(
NX
n=1

1

2
(sbn + s

a
n) ln(p

a
n/p

b
n) +

MX
m=1

1

2
(sbm + s

a
m) ln(k

a
m/k

b
m)

)

= Γa,b exp

(
−

NX
n=1

1

2
(sbn + s

a
n) ln(p

b
n/p

a
n)−

MX
m=1

1

2
(sbm + s

a
m) ln(k

b
m/k

a
m)

)
= (Γa,b/P a,b)/Ka,b, (16)

which is the productivity index (5), with P a,b as deÞned in (9) and Ka,b as deÞned in (10),
where equation (14) uses (13) and the �translog identity� of Caves, Christensen and Diewert
(1982a; p. 1412), that in turn uses the �quadratic identity� of Diewert (1976; p. 118), and
equation (15) uses (11),(12), and (13). Q.E.D.

The total-factor productivity index, Ra,b incorporates scale effects (Solow, 1957; Caves,
Christensen and Diewert, 1982a; Färe, Grosskopf, Norris and Zhang, 1994).5 As is discussed
in section 5 below, Ra,b can be thought of as an efficiency index for Þrm b compared with Þrm
a. That is, if Þrm a is a Þrm of interest for Þrm b, then Þrm b is interested in determining the
differences in proÞts between the Þrms that cannot be explained by prices faced and input
quantities used.

In a similar fashion to the productivity index in (8), we can relate the Törnqvist indexes in
(9) and (10) to the translog proÞt function deÞned in (7). Consider the following theoretical

5It is not possible to separate out these effects unless further assumptions are made. We leave this for
future research.
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netput price index:

P a,b ≡
"
πa(pb, ka)

πa(pa, ka)

πb(pb, kb)

πb(pa, kb)

#1/2

. (17)

It can be shown that if π has the translog form in (7) for both Þrms, then the index in (17)
is exactly equal to the Töornqvist price index in (9). It is also possible to consider the effect
on proÞts of individual price differences, i.e., for good n, we consider the change in the price
of good n while holding everything else constant:

P a,bn ≡
"
πa(pa1, . . . , p

b
n, . . . , p

a
N , k

a)

πa(pa, ka)

πb(pb, kb)

πb(pb1, . . . , p
a
n, . . . , p

b
N , k

b)

#1/2

. (18)

Exploiting the same relationship with the translog functional form in (7) , we can also obtain
the following Törnqvist price change index for good n going from Þrm a to Þrm b prices:

P a,bn ≡ exp
∙
1

2
(sbn + s

a
n) ln(p

b
n/p

a
n)
¸
. (19)

Using (19), we can derive the aggregate price index:

NY
n=1

P a,bn = P a,b, (20)

where P a,b is the aggregate Törnqvist price index in (9). Thus, it is possible to decompose
the aggregate price index, P a,b, into individual price indexes and also decompose P a,b to
obtain price indexes for groups of goods and, thus, separate the effects of input and output
price changes.
Further, consider the following theoretical input (capital) quantity index:

Ka,b ≡
"
πa(pa, kb)

πa(pa, ka)

πb(pb, kb)

πb(pb, ka)

#1/2

. (21)

If π has the translog form in (7) in each period, then the index in (21) is exactly equal to
the capital quantity index in (10). In other words, we can analyze the effect on proÞts of
differences in individual capital components, i.e., for good m, we consider the change in the
quantity of good m while holding everything else constant:

Ka,b
m ≡

"
πa(pa, ka1 , . . . , k

b
m, . . . , k

a
M)

πa(pa, ka)

πb(pb, kb)

πb(pb, kb1, . . . , k
a
m, . . . , k

b
M)

#1/2

. (22)

Exploiting the same relationship with the translog functional form in (7), as above, we can
then derive the following Törnqvist capital change index for good m:

Ka,b
m ≡ exp

∙
1

2
(sbm + s

a
m) ln(k

b
m/k

a
m)
¸
. (23)
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Using (23), we can derive the aggregate capital index:

MY
m=1

Ka,b
m = Ka,b, (24)

where Ka,b is the aggregate Törnqvist price index in (10). Hence, it is possible to decompose
the aggregate capital index, Ka,b, into indexes for individual capital components as well as
individual price effects.
Equations (5), (20) and (24) collectively represent a detailed decomposition of proÞts

between Þrms a and b that can be applied in a wide range of applications. These equations
may be referred to as index-number proÞt decompositions (INPDs).6 From above, we see
that the INPD can be derived from the �economic approach� to index numbers. That is,
under certain assumptions, the indexes in the INPD can be derived from theoretical indexes
which are well-founded in microeconomic theory.
It should be emphasized that the INPD represented by equations (5), (20) and (24) can

be motivated withoutmaking any behavioral assumptions or assumptions on the speciÞc form
of the technology. The use of the Törnqvist index in (5) can be justiÞed by the axiomatic
(or �test�) approach to index numbers, as this index satisÞes more reasonable axioms than
most commonly-used index numbers, such as the Laspeyres and Paasche indexes (Diewert,
1992b). In addition, it can be shown that the Törnqvist index closely approximates the
Fisher Ideal index, which satisÞes even more axioms. This is a result in numerical analysis
and does not depend on assumptions of optimizing behavior (Diewert, 1978). Thus strong
reasons exist for the choice of the Törnqvist index over many other index-number formulae
and, moreover, a justiÞcation exists from the axiomatic approach to index numbers for the
INPD represented by equations (5), (20) and (24).

3 Alternative Decompositions

Some alternative decompositions for proÞt comparisons have been suggested by other au-
thors. We describe some of the methods most closely related to our approach and note the
relative advantages of our method.
The approach most closely related to ours is that of Humphrey and Pully (1997). Ex-

amining the impact of regulatory reform of the U.S. banking industry in the 1980s, they
propose a decomposition of proÞt growth for a bank into technology and �business environ-
ment� components. They estimate a proÞt function and use the estimated parameters of
this proÞt function to calculate the separate proÞt components and present average results
for small and large banks. In their approach, they do not solve the problem of the choice
of weights in their indexes for technology and the business environment, and so present two
versions of each with equally justiÞable, but competing, results. Their method also is not

6Similar decompositions have been employed in different contexts. Fox and Warren (2001) use a similar
technique to decompose estimates of the output gap while Lawrence, Diewert and Fox (2001) decompose a
single Þrm�s proÞt growth.
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applied in a cross-sectional context and does not permit a detailed decomposition of a proÞt
ratio like the INPD.
Kohli (1990) has showed that a translog gross domestic product (GDP) function could be

estimated, and the parameters could be used in a decomposition of the growth in GDP using
the results of Diewert and Morrison (1986). Interestingly, Fox and Kohli (1998) compared
the index number approach and the theoretically equivalent (from the �economic approach�
to index numbers) GDP growth decomposition approach and found that the results were
similar to a high order of approximation.
Karagiannis and Mergos (2000) use a proÞt-function framework to decompose total-

factor productivity growth (TFP) into technical-change and returns-to-scale contributions.
Unfortunately, as with the method of Humphrey and Pully (1997), their decomposition is not
unique, as they propose both input- and output-oriented decompositions. The orientation
needs to be determined in order to separate out the contributing components of a constant
returns to scale measure of TFP, and this choice is essentially arbitrary. Further, they do
not derive a detailed decomposition of a proÞt ratio into components of interest, such as our
method yields.7

Diewert (2000) has also proposed a method for decomposing proÞt differences, rather
than ratios, into contributing components. This approach draws on the old literature on
index numbers in differences, and the Bennet (1920) index (or �indicator�) is found to have
some nice properties (Diewert, 1998).8 An adaptation of the approach to our context has
some potential advantages over our method. In particular, its additive nature is very useful
in many contexts. The Diewert decomposition of a proÞt difference into price and quantity
components (where the quantity component is set up to give �an additive measure of overall
efficiency change�), is interesting, but the individual components are difficult to interpret.
For example, a price contribution to proÞts in dollars does not convey the relative importance
of that price to relative proÞts. If we divide the price contribution by proÞts we can transform
the contributions into percentage terms, but on the right-hand side of the decomposition we
obtain a proÞt ratio (minus one). Thus a problem with this Bennet indicator decomposition
of a proÞt ratio is that it mixes multiplication and addition. Hence, although it is the subject
of ongoing research (e.g. Balk, 1999; Balk, Färe and Grosskopf 2001; Grifell-Tatjé and Fox
(2002); Diewert, Fox and Kohli, 2002), it seems that, at least for current purposes, the
Bennet indicator approach does not work out as neatly as the Törnqvist index approach.
Grifell-Tatjé and Lovell (2000) have also proposed a method for decomposing cost dif-

ferences using the Bennet indicator and estimated frontiers. Their approach can be used in
the proÞt decomposition case, in place of the less-attractive Laspeyres-type indicator used
by Grifell-Tatjé and Lovell (1999). Balk (1999), in a comment on their approach, proposes

7The authors also claim that the rate of proÞt augmentation is a biased and incorrect measure of the
TFP growth, but this is would require them to know the true TFP growth. Unfortunately, they deÞne the
true TFP growth measure as the conventional Divisia index of TFP changes which is not the same TFP
estimates that are obtained from the proÞt augmentation approach (see, e.g., Diewert and Wales, 1992; Fox,
1996).

8Following Diewert (1998) index numbers in differences are termed �indicators� in order to distinguish
them from standard index numbers that use ratios.
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a decomposition which he describes as �more meaningful� (Balk, 1999; p. 6). Regardless of
how these decompositions are performed, they require the calculation of frontiers, which is
not needed with the INPD.
Finally, we note some advantages of our method over methods which require the es-

timation of benchmark frontiers. While frontier analysis is based on the observed data,
benchmarking can involve comparing Þrms to parts of the estimated frontier between ob-
servations. This means that the shape of the constructed frontier is key for the analysis.
In addition, it means that there can be serious �dimensionality� problems�with a small
number of observations relative to the number of variables, it is possible for every Þrm to be
on some part of the frontier. In our method, this dimensionality problem is avoided. The
presentation of our method in this paper implies that price data are needed, and prices are
not necessary for basic frontier analysis. However, in the absence of price data, weights can
be chosen in their place and the same index numbers calculated, although with a different
interpretation. It can be noted that some methods for modifying basic frontier analysis tech-
niques, in order to overcome some of its limitations, also require the speciÞcation of weights
(e.g., Färe and Grosskopf, 2000; Golany and Roll, 1994; Thompson et al., 1990; Charnes et
al., 1990).

4 Application of the INPD

The INPD is applied to the British Columbia (BC) halibut Þshery to assess the effects on
proÞts, efficiency and productivity of regulatory changes across Þrms and over time. The
method is used to examine the effects of the introduction of individual harvesting rights into
the Þshery in 1991 by comparing Þrm-level differences in the periods 1988, 1991 and 1994.
Unlike other approaches, the INPD can decompose changes in property rights in terms of
output and variable input prices, productivity and utilization of the Þxed-input quantity.
Details of the industry are provided in Grafton, Squires and Fox (2000). In their study,

they compared changes in efficiency between the periods 1988, 1991 and 1994 by estimating
a stochastic frontier and deriving Þrm-level measures of economic, allocative and technical
efficiency. They found that some measures of efficiency initially fell from 1988 to 1991,
but increased from 1991 to 1994. They attribute the initial decline to deÞciencies in the
initial characteristics of the individual harvesting rights introduced in 1991, and temporary
adjustments by Þshers in the Þrst year of the program.
The stochastic frontier approach cannot easily and neatly decompose proÞt changes into

its component parts; productivity changes, input and output price changes and changes
in reproducible capital. By contrast, the INPD allows for a comparison of the relative
magnitude of the affect of each component on changes in proÞts. In other words, a proÞt
decomposition identiÞes which components of proÞts, such as output prices, changed in
response to regulations. For example, a shift to individual harvesting rights in 1991 made
previous input restrictions on season length redundant and led to a 30 fold increase in the
Þshing season (Grafton, Squires and Fox, 2000, p. 685). The much longer Þshing season, in
turn, increased the landings of fresh Þsh, reduced spoilage and damage and contributed to
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higher output prices for Þshers (Casey et al., 1995).
The data for the INPD were supplied by the Fisheries and Oceans Canada cost and

earnings surveys from an independent random sample of 97, 163 and 54 halibut Þshers in
1988, 1991, and 1994. The halibut ßeet is deÞned as all longline vessels having a plurality
of revenue from halibut, and the general ßeet includes all licensed longline vessels that
caught halibut. A selection of 105 observations (43 observations for both 1988 and 1991,
and 19 observations for 1994) was made from the data using the criteria that all vessels
used bottom longline harvesting gear, caught halibut, and their reported revenues matched
(within 10 percent) the independently obtained value of halibut landings recorded for each
licence holder. Summary statistics of the data are provided in table 1.9

Input prices include home-port fuel prices and were obtained from Chevron Canada and
Imperial Oil Canada. The price of labor is an opportunity cost and is derived from the
expected weekly earnings in manufacturing that varies by region where the home ports of
vessels are located. The measure of Þrm capital is vessel length and, along with the quantity
and value of halibut caught by each Þsher, was obtained from Fisheries and Oceans Canada.
The output price faced by Þshers is derived from the quantity and value data and varies by
vessel based on the time of landings, where the Þsh were landed, and the size and quality of
the Þsh harvested. A measure of the natural capital stock comes from the PaciÞc Halibut
Commission given in Sullivan, Parma and Leickly (1994) that deÞnes the total weight of the
Þsh that can potentially be harvested each season. All prices are deÞned in Canadian dollars
for 1994, and are calculated by inßating 1991 and 1988 values by the GDP implicit price
index.

5 Firm-Level Profit Decompositions

The INPD is applied by using Þrm-level data on halibut prices, fuel prices, price for labor
and a Þrm-level capital measure represented by vessel length. Assuming competitive and
proÞt maximizing behavior and constant returns to scale, then for each Þrm p · y − rk = 0,
or p · y = rk = π, where p is output price, y is output, k is capital, r is the rate of return
on reproducible capital and π is Þrm proÞt. Under these assumptions, the share of capital
in proÞt is equal to one and the capital quantity index in (10) simpliÞes to

Ka,b = kb/ka. (25)

In the BC halibut Þshery, the variable inputs are fuel (F) and labor (L) and from equations
(5), (20) and (24), our decomposition of the proÞt ratio between Þrm a and Þrm b, (b =
1, . . . , 105), Γa,b is:

Γa,b = Ra,b · PHa,b · PLa,b · PF a,b ·Ka,b. (26)

9Further details about the data are provided in Grafton, Squires and Fox (2000). The sample used here
differs slightly in that two further observations were excluded because of data inconsistencies. The sub-
sample used to generate the INPD for the ßeet included 13, 15 and 7 percent of all active vessels for the
periods 1988, 1991 and 1994.
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Hence, the proÞt of Þrm b relative to Þrm a can be decomposed to identify the sources
of the difference between the Þrms� proÞts. In this decomposition, given in equation (26),
differences in proÞt can be explained by differences in productivity, Ra,b, the price of halibut
faced by the Þrms, PHa,b, the price of labor, PLa,b, the price of fuel faced by the Þrms,
PF a,b, and the vessel length, Ka,b. The decompositions are, in general, not pure difference
indexes, but represent contributions of the components to the proÞt ratio.
For common-pool resources, an important issue to consider is the affect of the natural

capital stock on proÞts and productivity. To account for changes due to the stock over the
three sample periods, a harvest-adjusted natural capital stock index equal to the ratio of the
natural capital stock (measured in metric tons) to the total allowable harvest for the ßeet
(TAC), (also measured in metric tons), is deÞned by (27).

stockt ≡ biomasst/TACt, (27)

for t = 1988, 1991, 1994.
The natural capital stock index represents the available biomass per unit of the allowable

harvest (total allowable catch). Thus, for a stock-ßow production technology, an increase
(decrease) in the biomass, holding the TAC Þxed and all other factors constant, should make
it easier (harder) for Þshers to catch the allowable harvest and tend to increase (decrease)
proÞts. Using the stock index, a resource adjusted measure of efficiency between Þrms a and
b can be deÞned as

Γa,bs ≡ (πb/stockb)/(πa/stocka)

= (πa/πb) · (stocka/stockb) = Γa,b · (stocka/stockb) (28)

= Ra,b · PHa,b · PLa,b · PF a,b ·Ka,b · (stocka/stockb), (29)

where stocka is the value of the harvest-adjusted natural capital stockt in (27) for the year in
which the reference Þrm a is observed, and similarly for stockb. If Þrms a and b are observed
in the same period then equations (29) and (26) are identical (i.e., Γa,b = Γa,bs ). Thus Γs
can be decomposed into the contribution of the natural capital stock and the components
of Γ, as given in (26). Γs may be interpreted as a measure of efficiency as it represents the
restricted or variable proÞts achieved given an exogenously determined input, or the natural
capital stock per unit of allowable catch. Its decomposition into its component parts provides
insights into what factors are responsible for changes in efficiency, and the possible causes of
inefficiency across Þrms.10

For comparative purposes, a reference Þrm (a) must be chosen as the benchmark in the
INPD given in (29). The choice of the reference Þrm is important because of transitivity. In
other words, a different reference Þrm may result in different relative rankings between Þrms.
This potential problem is not unique to the INPD, and typically researchers use multilateral
index numbers (Caves, Christensen and Diewert 1982b; Hill 1997; Pilat and Rao 1996). In
these multilateral approaches, comparisons are often made to an �average� country/Þrm as

10In principle, similar decompositions are potentially possibly using estimated �benchmark� data.
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the denominator. However in the current context, and more generally, a composite or average
Þrm is of little interest as an assessment of Þrm performance relative to the most proÞtable
Þrm is more insightful. In other words, Þrm-level comparisons to the best performing Þrm,
in terms of proÞts, helps identify what factors may be limiting increases in proÞt in the rest
of the industry. 11 Thus a natural denominator or reference is the Þrm that maximizes proÞt
per unit of the harvest-adjusted natural-capital stock, as deÞned by (29). This reference
Þrm is observation 15 from a total of 19 observations in 1994, or observation 101 out of the
pooled sample of 105 observations for all sample periods.

An examination of the harvest-adjusted natural-capital stock (27) reveals stock1988 =
(438.76/12.8) = 34.28 for 1988, stock1991 = (425.06/7.145) = 59.49 for 1991, and stock1994 =
(282.59/8.967) = 31.5 for 1994. Thus, over all periods, it was easiest to catch the TAC
in 1991. That is, the harvest constraint was likely to be most binding for the industry in
1991 when the biomass per unit of TAC was greatest. Given that the reference Þrm a is
observation 15 in 1994, comparisons among Þrms for the same period are independent of
the stock index. For the other two periods, 1988 and 1991, from equation (29) we see that
adjustment by the stock variable is the same as multiplying both sides of the INPD (26)
by the same constant (stock1994/stock1988 ≈ 0.919 for 1988, stock1994/stock1991 ≈ 0.530 for
1991, and stock1994/stock1994 = 1 for 1994) to obtain a natural capital stock or resource
adjusted proÞt ratio, Γa,bs .

The results of the INPD are presented in tables 2 through 4 for years 1988, 1991 and
1994. Geometric means of the index numbers are given in table 5. To assist in the evaluation
of the INPD, the pooled index series are plotted in Þgure 1, where the observations for each
of the three years are separated by vertical dotted lines. When comparing the index values,
if an index takes a value greater (less) than one, it contributes by expanding (contracting)
the proÞt ratio, Γ. For the reference Þrm, observation 15 in 1994, its index values are unity
and the index values for all other Þrms are relative to this Þrm. For example, from table 2,
and without adjusting for the natural capital stock, observation 43 has a higher proÞt than
the reference Þrm, but lower restricted proÞt after adjusting for the stock variable. In other
words, observation 43 has a value of Γ which is greater than one (1.060), but a value of Γs
which is less than one (0.975).

For the decompositions, a value greater than one for the input indexes (PL, PF and K)
does not mean that price of the input is higher than for the reference Þrm. Instead, it implies
that the contribution of the price of the input to the proÞt ratio is greater than it is for the
reference Þrm. A higher contribution of the fuel price to proÞt, for example, may indicate
that the price of fuel is lower for the observation in question than that for the reference Þrm
because higher fuel prices imply lower proÞts. If fuel prices are identical for the observation
in question and the reference Þrm, a PF measure of greater than one implies that fuel costs
represent a smaller share of proÞts for the given observation than the reference Þrm. A

11In addition, using an average Þrm constructed using symmetric weights gives small Þrms the same weight
as large Þrms. For example, in constructing an average industry price using a symmetric mean would give
the same weight to the prices faced by small Þrms as by large Þrms (Caves, Christensen and Diewert, 1982b).
This problem is well known in the literature on multilateral comparisons.
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similar interpretation applies for PL, the opportunity cost of labor.

6 Profit Decompositions and Regulatory Change

Table 5 and Þgure 1 reveal important changes in the proÞts and decompositions across the
three years of the sample. In particular, table 5 shows that considerable variation exists
across the three periods in terms of productivity (R) and the output price (PH). The
results indicate that the average contribution of productivity to relative proÞts was highest
in 1988 (0.770) and lowest in 1991 (0.277), with a considerable recovery in 1994 (0.486).12

Thus the initial allocation of individual harvesting rights in 1991 is associated with a decline
in the contribution of productivity to proÞts. A possible explanation for such an outcome is
the adjustments required by Þrms in 1991 in response to a completely different regulatory
system. The subsequent increase in the contribution of productivity to proÞt performance
from 1991 to 1994 was associated with the trading of the individual harvesting rights that
was allowed in 1993. Transferability would have permitted Þrms with relatively higher levels
of productivity to increase their share of the harvest by the buying of harvesting rights from
relatively less productive Þrms who exited from the Þshery.

The proÞt decompositions may be compared to estimates of changes in efficiency esti-
mated with a production frontier for the same industry and periods. In the frontier analysis,
short-run technical cost efficency signiÞcantly declined for both small and large vessels over
the period 1988-1991 and increased from 1991-1994 for both vessel classes, but the change
was only statistically signiÞcant for small vessels (Grafton, Squires and Fox 2000). These
changes were accompanied by a 28 percent decline in the number of active vessels in the
industry between 1988 and 1994. Thus although the INPD and frontier estimates of changes
in the Þshery were obtained by very different methodologies, they provide comparable results
with initial declines in performance from 1988 to 1991, but subsequent gains from 1991 to
1994. The advantage of the INPD, and unlike the frontier approach, is that it allows us
to examine the relative importance of changes in prices (inputs and outputs), capital and
productivity on proÞtability across vessels and time periods.

The decompositions summarized in table 5 show that the most striking change in the
proÞt decompositions over all vessels occurred with respect to the output price (PH). The
increase in the price of halibut is directly attributable to the change in regulations as pre-
viously Þshers landed a frozen product caught in a total Þshing season of a few days. By
contrast, under the individual quota system the season length increased from 6 days in 1990
to 214 days in 1991. This had two effects. First, it allowed Þshers to land and market fresh
halibut which commands a much higher price than the frozen product, which represented
most of the sales prior to the introduction of harvesting rights. Second, the increased season
length reduced congestion externalities and provided Þshers with much more time to bring
their harvest on board and to avoid bruising and damaging of the product and increase

12Using the geometric mean for averaging over the indexes results in the means in table 5 maintaining the
relationship in (26).
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the price received (Grafton, Squires and Fox 2000). Further, these output price increases
occurred only for the BC halibut Þshery and not in the Alaska halibut Þshery which, at the
time, still operated as a �derby� Þshery (Herrmann 1996). Overall, the INPD results indi-
cate that the upward shift in output prices had a large and positive impact on the restricted
proÞts of Þrms.

Given that all other Þrms have a PH value less than unity, high output prices explain why
the reference Þrm had the greatest proÞts per unit of the resource stock. A comparison of
the mean value of the PH decomposition in table 5 reveals that, for the Þrms in the sample,
increases in the price of halibut was the single biggest factor in improving Þrm performance
from 1988 to 1994. Indeed, without the increases in the output prices attributable to the
introduction of private harvesting rights, average Þrm performance would have not increased
over the 1988-1994 period.

A comparison of the other proÞt decompositions for the fuel input price (PF ), labor
input price (PL) and the Þrm-level capital stock (K) reveal little change in the average
performance over the three periods. Nevertheless, a relatively lower average fuel price in
1991 is reßected in higher values for PF , or a greater contribution of fuel to the proÞts in
1991 relative to the reference Þrm in 1994. Similarly, the lower average price of labor in 1988
is reßected by the price of labor making positive contributions in 1988 to increasing proÞts
relative to the reference Þrm that is observed in 1994. Thus, for this industry, it would seem
that the greatest beneÞts associated with a shift to individual harvesting rights in 1991 has
been an increase in the output price, directly attributable to a much longer Þshing season.

Another comparison of interest is the effect of vessel size on proÞts and productivity.
Figure 1 provides three sets of observations for each of the three observation periods 1988,
1991 and 1994. For each period, observations are ranked in increasing order of vessel size.
Interestingly, a positive relationship appears to exist between vessel size and relative proÞts
for all three periods, and between vessel size and the output price for the period 1994.13 It
would suggest that increased vessel size is associated with improved economic performance.
This Þnding complements the results of Grafton, Squires and Fox (2001) who Þnd that if
Þshers were able to freely adjust their vessel size, they could substantially increase their long-
run technical cost efficiency. If improved performance is associated with increased vessel size,
it suggests that on-going restrictions on vessel size in Þsheries in which halibut Þshers are
active participants may be preventing the full economic gains from individual harvesting
rights.

Overall, the index decompositions provide a breakdown of the relative importance of
regulations on Þrm performance. They suggest, for example, that some of the greatest gains
associated with privatization of the commons may arise on the revenue side rather than
on the costs or input dimension. The results also indicate that regulatory change can lead
to signiÞcant productivity shocks among Þrms, but that Þrms can adjust rapidly to such
shifts. In addition, the indexes provide a ready-made comparison of all Þrms relative to the
most proÞtable Þrm per unit of resource stock. In turn, this provides useful information

13Non-parametric tests are required to determine the signiÞcance of such a relationship. Unfortunately,
such tests are not suitable in the current context because of the small number of observations.
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for benchmarking across Þrms at a point in time. Such pairings of Þrms to the reference
or benchmark indicate what components are contributing most to changes in proÞts, and
suggest what may be done to improve overall industry performance.

7 Concluding Remarks

The paper proposes a new method for assessing Þrm-level economic performance and eval-
uating changes in industries over time. The method explicitly accounts for changes in the
natural capital stock and decomposes contributions to proÞts in terms of productivity, vari-
able input prices, output prices, and reproducible capital. A decomposition, with this level
of detail and information, cannot easily and neatly be obtained using standard efficiency
and productivity analysis techniques. Moreover, standard efficiency-analysis techniques typ-
ically estimate multi-dimensional �benchmark frontiers,� whereas only observed data are
used in the proposed proÞt-decomposition technique. Further, the method can be justiÞed
from either the axiomatic approach to evaluating index numbers, which makes no behavioral
assumptions or assumptions on the speciÞc form of technology, or it can be justiÞed from
microeconomic theory through the economic approach to index numbers.
The index-number proÞt decomposition has a wide number of potential applications in

measuring Þrm, industry and regulatory performance. Using the approach with data from
the British Columbia halibut Þshery, the decompositions indicate that the major beneÞt from
a shift to individual harvesting rights in the industry in 1991 was an increase in output prices.
Further, the results indicate a positive relationship between relative proÞts in the industry
and vessel size following the introduction of individual harvesting rights. This suggests that
vessel size restrictions imposed upon Þshers may be preventing the full gains in economic
performance associated with the introduction of individual harvesting rights.
More generally, the application suggests that the method could be used in many different

industries for assessing economic performance and evaluating the effects of regulatory change.
For instance, by decomposing proÞt into the contributions of inputs and outputs, Þrms and
regulators can identify the most important factors constraining improved performance and
can analyze what may be contributing to regulatory success or failure. Further, benchmark-
ing across Þrms, and by decompositions, can assist individual Þrms understand what may
be preventing them from increased proÞtability. Ultimately, proÞt and productivity decom-
positions should prove useful to Þrms and regulators who want better decision-making and
improved management and industry performance.
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Table 1: Summary Statistics: Data on the British Columbia Halibut Longline Fishery

Mean Standard Deviation Minimum Maximum

All Years
Revenue 88727 69983 12474 346900
Landings 34108 29036 5180 162100
Price 2.79 0.73 1.75 4.51
Crew 3.74 1.47 2 9
Crew-weeks 3.27 1.63 1 10
Labor Price 560 34.02 508 620
Fuel Quantity 7043 9585 381 72845
Fuel Price 0.34 0.06 0.23 0.43
Vessel Length 1367 339 904 2479
1988
Revenue 109548 73595 12474 346900
Landings 52856 33598 6725 162100
Price 2.02 0.15 1.75 2.33
Crew 4.51 1.56 2 9
Crew-weeks 3.14 1.15 1 7
Labor Price 522 10.62 508 549
Fuel Quantity 8441 13325 1056 72845
Fuel Price 0.40 0.02 0.38 0.43
Vessel Length 1447 359 904 2479
1991
Revenue 48673 29507 14855 150880
Landings 15591 9046 5180 46389
Price 3.08 0.21 2.65 3.48
Crew 2.95 1.00 2 7
Crew-weeks 2.91 1.81 1 10
Labor Price 582 11.32 555 596
Fuel Quantity 4097 2275 381 13158
Fuel Price 0.27 0.02 0.23 0.29
Vessel Length 1241 257 913 2018
1994
Revenue 132257 82213 18662 309520
Landings 33583 19682 5253 68566
Price 3.85 0.30 3.41 4.51
Crew 3.79 1.27 2 6
Crew-weeks 4.37 1.74 2 10
Labor Price 597 12.45 582 620
Fuel Quantity 10546 7759 1791 30703
Fuel Price 0.33 0.00 0.33 0.34
Vessel Length 1473 378 1014 2269

Notes: Values are in $1994 Canadian dollars and are per vessel. Crew size includes the captain. Weeks fished pertain to weeks actively fishing
halibut. Halibut landings are in pounds and the price is per pound. Fuel quantity is in liters and vessel length is in centimeters. The price of labor
is the opportunity cost of labor per person per week. There are 43 observations for 1988 and 1991, and 19 observations for 1994.
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Table 2: Decomposition of ProÞt Ratios (Γ), 1988

Obs ProÞt Γs Γ R PH P F P L K

1 36647 0.112 0.122 0.576 0.413 0.996 1.003 0.511
2 220915 0.673 0.732 2.878 0.454 0.987 1.005 0.566
3 9746 0.030 0.032 0.152 0.359 0.982 1.025 0.587
4 24643 0.075 0.082 0.367 0.366 0.985 1.010 0.610
5 47108 0.144 0.156 0.662 0.383 0.996 1.006 0.614
6 41271 0.126 0.137 0.570 0.386 0.994 1.009 0.620
7 24392 0.074 0.081 0.336 0.371 0.997 1.004 0.649
8 21124 0.064 0.070 0.268 0.398 0.992 1.012 0.654
9 52944 0.161 0.176 0.586 0.458 0.998 1.003 0.654
10 21682 0.066 0.072 0.281 0.390 0.996 1.006 0.654
11 80099 0.244 0.266 0.988 0.402 0.996 1.012 0.663
12 94875 0.289 0.315 1.024 0.447 0.996 1.010 0.682
13 20113 0.061 0.067 0.248 0.392 0.987 1.013 0.685
14 70725 0.216 0.235 0.870 0.393 0.991 1.004 0.689
15 38076 0.116 0.126 0.430 0.425 0.996 1.005 0.689
16 110685 0.337 0.367 1.262 0.415 0.998 1.005 0.699
17 44208 0.135 0.147 0.463 0.444 0.993 1.015 0.706
18 112014 0.341 0.371 1.180 0.441 0.998 1.003 0.713
19 144313 0.440 0.478 1.367 0.483 0.998 1.007 0.720
20 36879 0.112 0.122 0.423 0.399 0.993 1.011 0.722
21 141533 0.431 0.469 1.569 0.413 0.997 1.005 0.722
22 114851 0.350 0.381 1.246 0.421 0.996 1.007 0.723
23 108003 0.329 0.358 1.054 0.462 0.997 1.005 0.733
24 100789 0.307 0.334 0.972 0.454 0.998 1.005 0.755
25 133247 0.406 0.442 1.117 0.507 0.998 1.006 0.777
26 126752 0.386 0.420 1.169 0.425 0.998 1.004 0.844
27 164951 0.503 0.547 1.493 0.430 0.995 1.005 0.851
28 53144 0.162 0.176 0.510 0.400 0.995 1.005 0.866
29 134791 0.411 0.447 1.119 0.445 0.996 1.005 0.895
30 228375 0.696 0.757 1.639 0.505 0.998 1.005 0.912
31 142163 0.433 0.471 1.058 0.477 0.997 1.006 0.931
32 164709 0.502 0.546 1.234 0.467 0.997 1.004 0.946
33 66349 0.202 0.220 0.491 0.465 0.991 1.009 0.964
34 86073 0.262 0.285 0.678 0.435 0.998 1.006 0.964
35 159838 0.487 0.530 1.168 0.452 0.997 1.006 1.002
36 35303 0.108 0.117 0.273 0.415 0.993 1.011 1.028
37 233703 0.712 0.775 1.622 0.461 0.997 1.005 1.034
38 148642 0.453 0.493 0.894 0.491 0.998 1.005 1.119
39 166143 0.506 0.551 1.159 0.422 0.997 1.008 1.121
40 187672 0.572 0.622 1.175 0.469 0.996 1.007 1.125
41 74333 0.227 0.246 0.519 0.412 0.995 1.006 1.154
42 124089 0.378 0.411 0.793 0.427 0.994 1.008 1.212
43 319704 0.975 1.060 1.667 0.455 0.992 1.006 1.401
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Table 3: Decomposition of ProÞt Ratios (Γ), 1991

Obs ProÞt Γs Γ R PH P F P L K

1 19975 0.035 0.066 0.206 0.622 1.007 0.997 0.516
2 16620 0.029 0.055 0.172 0.616 1.008 0.998 0.518
3 29471 0.052 0.098 0.283 0.611 1.003 0.999 0.563
4 26881 0.047 0.089 0.241 0.649 1.003 1.001 0.568
5 24933 0.044 0.083 0.225 0.644 1.004 0.999 0.568
6 17916 0.031 0.059 0.182 0.573 1.002 0.999 0.568
7 24730 0.043 0.082 0.237 0.605 1.006 1.001 0.569
8 17486 0.031 0.058 0.163 0.617 1.003 0.998 0.576
9 18804 0.033 0.062 0.174 0.604 1.011 0.998 0.587
10 13432 0.024 0.045 0.108 0.692 1.009 1.002 0.590
11 18888 0.033 0.063 0.168 0.623 1.006 0.998 0.594
12 13373 0.023 0.044 0.125 0.591 1.004 0.998 0.601
13 23522 0.041 0.078 0.203 0.628 1.008 1.001 0.606
14 31434 0.055 0.104 0.257 0.657 1.002 1.001 0.616
15 42880 0.075 0.142 0.335 0.681 1.004 1.001 0.620
16 36501 0.064 0.121 0.279 0.681 1.004 1.003 0.632
17 27447 0.048 0.091 0.191 0.744 1.003 1.002 0.638
18 46124 0.081 0.153 0.334 0.713 1.002 1.001 0.640
19 47289 0.083 0.157 0.339 0.712 1.007 1.003 0.643
20 52498 0.092 0.174 0.367 0.723 1.006 1.000 0.652
21 42582 0.075 0.141 0.331 0.646 1.002 0.999 0.660
22 30690 0.054 0.102 0.223 0.684 1.002 0.999 0.666
23 28371 0.050 0.094 0.243 0.570 1.008 1.001 0.675
24 23500 0.041 0.078 0.162 0.702 1.003 0.999 0.685
25 60796 0.107 0.202 0.443 0.659 1.004 1.000 0.688
26 58979 0.104 0.196 0.384 0.737 1.002 1.001 0.688
27 31657 0.056 0.105 0.216 0.691 1.002 1.001 0.699
28 52457 0.092 0.174 0.391 0.628 1.002 1.001 0.706
29 56882 0.100 0.189 0.389 0.670 1.002 1.000 0.722
30 80947 0.142 0.268 0.557 0.651 1.008 1.000 0.734
31 33381 0.059 0.111 0.211 0.710 1.004 0.998 0.739
32 39169 0.069 0.130 0.249 0.702 1.002 1.001 0.740
33 48306 0.085 0.160 0.300 0.719 1.003 0.998 0.741
34 67688 0.119 0.224 0.417 0.698 1.002 1.001 0.769
35 55851 0.098 0.185 0.326 0.708 1.002 0.999 0.802
36 71062 0.125 0.236 0.388 0.743 1.010 1.001 0.808
37 73436 0.129 0.243 0.435 0.686 1.001 1.001 0.814
38 84393 0.148 0.280 0.426 0.763 1.002 1.002 0.858
39 75461 0.133 0.250 0.471 0.615 1.002 1.001 0.861
40 99517 0.175 0.330 0.469 0.734 1.002 1.001 0.954
41 43650 0.077 0.145 0.212 0.676 1.005 1.003 1.005
42 144332 0.254 0.479 0.598 0.712 1.002 1.002 1.119
43 118302 0.208 0.392 0.504 0.680 1.002 1.001 1.140

24



Table 4: Decomposition of ProÞt Ratios (Γ), 1994

Obs ProÞt Γs Γ R PH P F P L K

1 48302 0.160 0.160 0.362 0.777 1.000 0.995 0.573
2 74907 0.248 0.248 0.497 0.815 1.000 0.997 0.616
3 49087 0.163 0.163 0.344 0.745 0.999 0.997 0.637
4 45990 0.152 0.152 0.306 0.774 0.999 0.999 0.646
5 158406 0.525 0.525 0.932 0.867 1.000 0.999 0.651
6 36729 0.122 0.122 0.224 0.825 0.999 0.997 0.663
7 16821 0.056 0.056 0.100 0.774 0.999 0.990 0.726
8 103993 0.345 0.345 0.519 0.912 0.999 1.000 0.729
9 60479 0.201 0.201 0.350 0.775 1.000 0.998 0.740
10 86540 0.287 0.287 0.424 0.895 1.000 0.999 0.756
11 138343 0.459 0.459 0.692 0.859 1.000 0.999 0.772
12 199279 0.661 0.661 1.001 0.850 1.000 0.999 0.777
13 195089 0.647 0.647 0.804 0.893 1.000 1.000 0.901
14 224863 0.746 0.746 0.961 0.814 1.000 1.000 0.954
15 301597 1.000 1.000 1.000 1.000 1.000 1.000 1.000
16 91222 0.302 0.302 0.332 0.883 0.999 1.000 1.033
17 152742 0.506 0.506 0.537 0.816 0.999 1.000 1.156
18 197772 0.656 0.656 0.556 0.986 1.000 1.000 1.197
19 221740 0.735 0.735 0.694 0.827 0.999 1.000 1.282

25



Table 5: Decomposition of ProÞt Ratios (Γ), Means

Obs No. ProÞt Γs Γ R PH PF PL K

All Years 105 84220 0.152 0.204 0.467 0.581 0.999 1.003 0.752
Small 56 51530 0.095 0.135 0.363 0.573 1.000 1.002 0.647
Large 40 137341 0.328 0.401 0.702 0.594 0.999 1.003 0.959
1988 43 103898 0.242 0.264 0.770 0.429 0.995 1.007 0.795
Small 24 70298 0.162 0.176 0.644 0.412 0.994 1.008 0.661
Large 19 142539 0.386 0.420 0.947 0.450 0.996 1.006 0.983
1991 43 45851 0.068 0.128 0.277 0.667 1.004 1.000 0.688
Small 33 34482 0.061 0.114 0.263 0.659 1.004 1.000 0.637
Large 10 83369 0.139 0.262 0.411 0.700 1.003 1.001 0.904
1994 19 126521 0.331 0.331 0.486 0.844 1.000 0.998 0.808
Small 9 66079 0.184 0.184 0.346 0.806 1.000 0.997 0.662
Large 10 180919 0.561 0.561 0.660 0.880 1.000 1.000 0.967

Notes: The arithmetic mean is used to average over the profit values, while the geometric mean is used to average over the indexes. The full
sample mean for the vessel length index (K) is used to split up observations into “small” and “large” vessels. Small vessels are defined as those
being shorter than the sample average (K < 0.752), and large vessels are defined as being longer than the sample average (K > 0.752). “No.”
denotes the number of vessels in each year/size category.
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