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Abstract:  

What is the magnitude of uncertainties about future greenhouse gas emissions, GDP 

and emissions intensity of economies? Is there a link between fluctuations in 

economic activity and fluctuations in emissions? These questions are crucial to 

understand the extent and composition of cost uncertainty under emissions trading 

schemes, the degree to which it can be reduced by mechanism design options such as 

intensity targets, and for calibrating models of emissions trading under uncertainty. 

This paper provides empirical analyses, using historical emissions data in forecast 

models and in country-level analysis over time. The results indicate that uncertainty 

about future energy sector CO2 emissions and emissions intensity is greater than 

uncertainty about future GDP; that uncertainties are greater in non-OECD than in 

OECD countries; and that there is a strong positive correlation between fluctuations in 

GDP and fluctuations in CO2 emissions, but not in all cases and not outside the energy 

sector.  
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1. Introduction 

Future economic activity, energy use and greenhouse gas emissions are uncertain. 

Consequently, the required effort inherent in an emissions target such as under the 

Kyoto Protocol, the EU emissions trading system, or indeed any other scheme of 

quantitative emissions control, is unknown in advance. This contributes greatly to 

uncertainty about compliance costs, which can be an important obstacle for emissions 

control policies. Cost uncertainty has clearly played a role in the failure to include 

developing countries in the first commitment period of the Kyoto Protocol, as well as 

the United States’ decision to reject the treaty, and remains a key problem for any post-

Kyoto climate treaty that relies on emissions targets. 

What is the magnitude of uncertainties about future emissions, GDP and emissions 

intensity? Is there a link between fluctuations in GDP and fluctuations in emissions, and 

how strong is the link? These questions are vital for assessing cost uncertainties under 

emissions trading, and for evaluating whether more flexible design of emissions targets 

and trading mechanisms can reduce cost uncertainty. For example, emissions intensity 

targets would link permit allocation to future economic growth, on the premise that 

higher than expected emissions (and therefore a greater compliance task) would be 

associated with higher than expected GDP (see for example Baumert (1999), Ellerman 

and Sue Wing (2003)).  

Most modelling of the Kyoto Protocol and possible future greenhouse gas reduction 

treaties has not taken uncertainty into account (for reviews see Weyant 1999, Springer 

2003). Some new modelling approaches take account of the effects of uncertainty under 

emissions trading, and thus require empirical work to inform model parametrisation (see 



2 

for example Webster et al. 2006). Existing empirical work is sparse on the magnitude of 

uncertainties, and also on the connection between fluctuations in GDP and fluctuations 

in emissions. The large existing literature on the long-term connections between 

economic growth and emissions is of little use in assessing short-to medium-term 

deviations from expectations, which matter most for typical emissions control policies. 

This paper attempts to fill some of these gaps, aiming for parsimony in using simple yet 

effective statistical techniques.  

In section 2, I briefly describe the conceptual framework for the analysis, and 

illustrate the research question with a review of forecast errors by the major 

international energy forecasting agencies. In Section 3, uncertainties about future 

greenhouse gas emissions, future GDP and future emissions intensity (defined as the 

ratio of CO2 emissions to GDP) are quantified by assessing how simple statistical 

forecasting models would have performed as forecasting tools, using historical data. In 

Section 4 I then examine the GDP-emissions linkage, using two independent methods: 

first, analysis of the correlation of ‘forecast errors’ derived in Section 3, and second by 

analysis of the correlation of fluctuations in CO2 emissions and in GDP for the 30 

largest emitters over the last three decades. Section 5 concludes. 
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2. Conceptual framework and performance of past forecasts 

Here the motivation and the conceptual framework for the paper is presented, followed 

by an analysis of how well the International Energy Agency (IEA) and the US Energy 

Information Administration (EIA) did with their forecasts in the 1990s.  

An example of uncertainty leading to forecast errors: China 

China in the 1990s is an example of drastic, unanticipated changes in the trends of 

emissions and emissions intensity. After decades of continuous growth, reported annual 

CO2 emissions for China suddenly leveled off and briefly even fell during the second 

half of the 1990s, despite continued strong economic growth of around 8% per year in 

real terms. The emissions intensity of the Chinese economy fell by over 6% per year 

through the 1990s, compared to an annual reduction of around 4% during the 1980s.  

This drastic reduction in emissions intensity has been traced to improved efficiency 

in the transformation sector where inefficient small-scale power plants were replaced 

with more modern, larger-scale plants; a reduction in coal output and use, resulting from 

government reform policies to the coal mining sector; and gains in energy efficiency at 

the firm level, driven by structural shifts and changes in relative prices. Despite some 

controversy over China's energy statistics, it appears to be a fact that CO2 emissions 

essentially stagnated in the second half of the 1990s (Wu et al. 2005, Fisher-Vanden et 

al. 2004, Sinton and Fridley 2000).  

Forecasts by leading international agencies did not anticipate these developments 

and had large errors. Forecasts published in 1995 overestimated China's CO2 emissions 
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for the year 2000 by 15% or more. GDP was underestimated, and emissions intensity 

greatly overestimated.  

Had an emissions target been set for China for the year 2000 based on these forecasts, 

the effective stringency of the target would have been much less than anticipated, and 

given China a favourable position under international emissions trading. Of course, 

forecasts could also have underestimated future emissions levels, making the target 

much more ambitious than expected. 

Conceptual framework 

The cost of complying with an emissions target is subject to uncertainties arising from a 

range of sources. The key uncertainty (and the subject of this paper) is about future 

emissions under business-as-usual (BAU), which determine how much effort is required 

to comply with a given target. Future BAU emissions depend on unknown future trends 

in economic activity and the emissions intensity of that activity, which in turn depends 

on composition of activity, the fuel mix and technical efficiency. Further uncertainties 

(not considered here) include those about abatement options, regulatory and institutional 

uncertainties, uncertainties about transaction costs, and uncertainty about the permit 

price under emissions trading.  

Forecast errors can occur because of uncertainty about parameters (such as demand 

and supply elasticities), uncertainty about exogenous inputs (such as economic growth 

assumed in energy forecasts), or because of model mis-specification or inability to 

know the true model. Furthermore, relationships that held in the past may change or 

break down.  
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To the purpose of evaluating the uncertainty faced under emissions targets framed 

in terms of intensity, some decomposition of overall emissions is necessary. Emissions 

E can be decomposed into the product of economic activity Y (at the national level 

measured in units of GDP) and emissions intensity η = E/Y (in kg of greenhouse gas 

emissions per $ of GDP): 

E = Y (E/Y) .         [1] 

Under uncertainty, realized values deviate from prior expectations about them. With 

E and Y denoting expectations, ε denoting random deviations from these expectations, 

and a tilde symbol (~) denoting realized values, we can write for realized emissions: 

Ẽ = E (1+ε)  .         [2] 

Error ε  here is specified as a proportional deviation from expectations, in order to 

facilitate cross-country comparison and aggregation in the analysis below. 

And in the decomposition: 

Ẽ = E (1+εE) = (E/Y) (1+εη) Y (1+εY)  .     [3] 

Standard deviations of forecast errors are σE = )]([ 2
EεΕ  , ση = )]([ 2

ηεΕ , and σY = 

)]([ 2
YεΕ . They are a suitable summary measures of the magnitude of forecast errors, as 

they abstract from any bias in the mean of estimates, and can easily be applied in the 

calibration of stochastic models. Standard deviations σ will be used as proxies for the 

degree of uncertainty about the three variables in the analysis below and in Section 3.  
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This decomposition applies for those parts of an economy where sectoral activity is 

correlated with GDP. This will be the case for many parts of the economy, but there will 

be exceptions – for example, agricultural activity will often move more in line with 

world market conditions than with overall economic activity, and emissions from 

heating or cooling depend to a large degree on the weather. Conversely, emissions in 

some parts of the economy may respond disproportionately to changes in the rate of 

overall GDP growth – for example in some manufacturing industries. This is the subject 

of Section 4.  

Performance of agencies’ forecasts  

The International Energy Agency (IEA) and the US Department of Energy’s Energy 

Information Administration (US-EIA) are the two most widely used international sets of 

projections of energy consumption and CO2 emissions. The US-EIA projections in 

particular have frequently been used to calibrate partial equilibrium models of permit 

trading under the Kyoto Protocol and possible post-Kyoto schemes.  

 Here forecasts for the year 2000 published in 1995 and based on data of ca. 1992 

(IEA 1995, EIA 1995), are compared with realized data for all available countries and 

regions, yielding a total of 22 observations.1 From the published forecasts for emissions 

and GDP assumptions, the implicit emissions intensity can be computed. Future GDP is 

generally not actually a forecast but rather a projection (see below), so emissions 

intensity equally cannot necessarily be regarded as true forecasts. 

                                                 
1 Forecasts are provided by the two agencies in 5- and 10-year intervals respectively, the year 2000 being 
the latest year for which comparisons with actual data can be made. The latest actual data published in 
these reports is for the year 1992. IEA and US-EIA only started publishing emissions forecasts in the 
mid-1990s. 
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In several countries there were rapid changes in growth rates of emissions, GDP and 

emissions intensity during the second half of the 1990s, as in the China example. 

Forecasts in most cases did not to anticipate such turnarounds, and often resemble 

extrapolations of past medium-term trends. This supports the notion that deviations 

from trends in most cases are manifestations of uncertainty, which is the basis for the 

statistical forecast models in Section 3 below. Some very large forecast errors occurred 

for individual countries and regions. For example, in 6 out of the 22 cases errors in 

emissions forecasts were greater than 20% in absolute terms. 

Standard deviations σ as defined above are reported in Table 1, for forecast errors 

pooled across all countries/regions as well as for OECD and non-OECD 

countries/regions separately. Overall, standard errors were about the same magnitude 

for emissions and emissions intensity, and lower for GDP.  

[Table 1 about here] 

Interestingly, error ranges were of similar magnitude for OECD and non-OECD 

regions. This may be due to regional aggregation. There are large forecast errors for 

some individual OECD countries, while most developing countries are subsumed into 

regional aggregates (such as the whole of Latin America, Africa, or East Asia), thus 

masking underlying country-level errors.2 Forecast errors for non-OECD countries and 

regions overall would be greater if they were made at the country level. Further 

                                                 
2 For example, there was a large overestimate by US-EIA for emissions in Canada, which, coupled with 
an underestimate in GDP, resulted in a very large (32%) overestimate of emissions intensity. If the 
forecast for Canada had been aggregated with that for the United States (as in the IEA’s published 
forecast for the North America region), this would have resulted in a much smaller forecast error for the 
aggregate region, and a smaller standard deviation for the group of OECD countries. 
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limitations of these data in assessing uncertainties for emissions targets are that the 

number of observations is small, and their short projection time span.  
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3. Quantifying uncertainties from historical data 

Uncertainty about future emissions, emissions intensity and GDP can be quantified by 

using information about historical growth rates and variability. In this way, the 

limitations inherent in the analysis of published forecasts can be overcome, with a large 

number of national-level observations available over longer time spans. 

Here, I use statistical models based on historical data for emissions, GDP and 

emissions intensity to construct country-level forecasts over a 15-year time span. These 

forecasts are compared to realized values, and the spread of the resulting 'forecast errors' 

is interpreted as a measure of uncertainty. The 15-year time span is chosen with 

reference to the Kyoto Protocol targets, which were negotiated in 1997 for the period 

2008-12. The main analysis is for CO2 emissions in the energy sector, GDP and CO2 

emissions intensity. Some additional analysis is provided for uncertainties about other 

greenhouse gas emissions and sources. 

Uncertainty assessments and projection methods in the literature 

No analysis specifically comparing uncertainty about emissions, emissions intensity and 

GDP is available in the literature. The most relevant work is by Lutter (2000) who 

estimated a reduced-form autoregressive model, with CO2 emissions in the current 

period depending on emissions, GDP and GDP per capita in the preceding period.3 Sue 

Wing et al. (2006) did a statistical analysis focusing on the correlation between 

emissions and GDP. A limited amount of empirical work has also been done on the 

                                                 
3 Lutter’s (2000) study used data for 117 countries for the period 1950-1992, broken down into 5-year 
intervals and pooled across countries. The study found that a 1% increase in emissions in a given 5-year 
period was associated with an 0.5% increase in emissions and an 0.6% increase in GDP over the 
subsequent 5-year period. 
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linkage between fluctuations in GDP and in emissions (Philibert 2004, Höhne and 

Harnisch 2002). These are discussed in Section 4 below.  

Much of the long-term emissions projection literature uses structural indicators as 

explanatory variables for emissions growth, sometimes with reference to the 

Environmental Kuznets Curve (EKC) hypothesis (for example Galeotti and Lanza 

(1999) and Roberts and Grimes (1997)). Others used observed long-term historical 

relationships between CO2 emissions and GDP to project future global emissions levels 

(for example Holtz-Eakin and Selden 1995, Heil and Selden 2001, Schmalensee et al. 

1998). While this body of work draws out important features of the broad long-term 

relationships between growth in emissions and in income, it cannot shed much light on 

variability and forecast uncertainty over the medium term (say, 10 to 20 years), which is 

particularly relevant emissions targets. Thus the EKC literature can contribute little to 

the question at hand in this paper. 

Changes in emissions intensity over time are determined by modernization of 

production systems, substitution in fuels, changes in economic structures and shifts in 

patterns of consumption. None of these can be reliably predicted by existing models. In 

producing forecasts and projections, agencies such as the International Energy Agency 

(IEA) and the US Energy Information Administration (US-EIA) rely on expert 

judgments about factors such as the future structure of energy systems, oil prices, future 

efficiency improvements, as well as demand and supply elasticities (IEA 2004, EIA 

2004).   

GDP forecasts are published generally only for the short term, as it is difficult to 

make meaningful judgments about investment, monetary factors, the business cycle and 

so forth over the medium- to long term. For example, the International Monetary Fund 
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in its World Economic Outlook publishes forecasts only two years ahead (IMF 2004). 

Longer-term GDP projections are typically done by way of regression models (see for 

example Heil and Selden 2001) that posit (conditional) convergence of per capita 

incomes in the long run, as well as factors including human capital, institutions, 

geography, the broader 'social infrastructure' and social networks (Barro 1997, Hall and 

Jones 1999). Any such long-term explanations of economic growth are however of little 

use for medium-term forecasting.  IEA for example derives the GDP assumptions 

underlying its projections from GDP forecasts by IMF and OECD for the short term, 

and simply uses countries' past long-term average annual rates beyond that (IEA 2000, 

p. 336).  

Statistical forecast models  

To estimate the degree of uncertainty about emissions, emissions intensity and GDP, 

simple cross-country regression models are used here to project future values over a 15-

year period. The models are calibrated to observed relationships between growth and a 

range of explanatory variables in a cross-country sample over the 10-year period 1975–

85, using annual data. Country-level ‘forecasts’ are then constructed by assuming that 

the same relationships hold 15 years into the future, that is, to the year 2000. The 

forecasts use only information that would have been available at 1985, and are thus out-

of-sample. These forecasts are then compared with year 2000 data to yield 'forecast 

errors'. 

Country-level forecast errors are pooled across countries, yielding a probability 

distribution of errors for each emissions, GDP and emissions intensity. The standard 

deviation in the pooled sample, as a measure of dispersion of errors around their mean, 
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is then interpreted as a proxy for the degree of uncertainty about future levels of each 

variable. Data is only used for countries for which there is a complete dataset of energy 

sector CO2 emissions and GDP. Observations from very small emitters and from 

countries with missing data are omitted, leaving observations for 62 countries (23 

OECD and 39 non-OECD). All data are from the CAIT database (WRI 2003). 4 

Cross-country regression models are specified for emissions and for GDP. 

Explanatory variables include first the annual average growth rate in the preceding 

period in the country in question, of emissions or GDP respectively. This is to capture a 

host of country-specific factors that make some countries’ emissions or GDP tend to 

grow faster or slower than others’. It also mimics a basic practical forecasting approach: 

if growth in a particular country has been slow in the past, it is likely to be slow also in 

the future, all other things equal. The second explanatory variable is levels of per capita 

income at the time of the forecast. This is to capture the fact that growth rates of both 

GDP and emissions are generally higher in lower-income countries – in other words, 

that there is (conditional) convergence between countries. Finally, regional dummy 

variables capture effects that are common to countries in specific geographical regions. 

Dummy variables were tested for the main geographical regions in each regression, and 

only those that were statistically significant are used as explanatory variables. 

The following multivariate models were estimated using ordinary least squares (OLS), 

with p-values in brackets, and i denoting countries: 

Emissions: 

                                                 
4 ‘Energy sector’ emissions consist of CO2 from fossil fuel combustion and cement production. Data is 
used only for the largest 100 countries in terms of national CO2 emissions in the year 2000, and GDP data 
is incomplete for 38 of these countries. 
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ΔEi1975-85  = 0.0113 + 0.4144 ΔEi1965-75
  – 0.0012 Yi1975 + 0.0335 MDE_AFRi + εi  , R2 = 0.52  [5] 

                   (0.24)      (0.000)                  (0.055)            (0.008)  

GDP: 

ΔYi1975-85  =  0.0166 + 0.3614 ΔYi1965-75
  – 0.0005 Yi1975 + 0.0211 ASIAi – 0.0118 LAMi + εi  , R2 = 0.54  [6] 

                   (0.2020)  (0.000)                   (0.079)             (0.001)             (0.047) 

Here, 

ΔEi1975-85 is the average annual real growth rate in emissions during 1975-85 in each country i; 

ΔEi1965-75 is the average annual real growth rate in emissions during 1965-75; 

ΔY i1975-85 is the average annual real growth rate in income during 1975-85 in each country i;   

ΔY i1965-75 is the average annual real growth rate in income during 1965-75;  

Yi1975 is per-capita income in constant US$ 1000s at exchange rates, in 1975; and 

MDE_AFRi, ASIAi and LAMi are regional dummy variables, taking on value 1 for African and 
Middle-Eastern, Asian and Latin American countries respectively. 

The signs of the estimated coefficients for previous growth rates and income level 

are as expected, and all coefficients are statistically significant at the 99% and 90% 

confidence level respectively.  

Emissions intensity is implicit in the forecasts for emissions and GDP, so no 

separate model for emissions intensity needs to be estimated. 

It needs to be stressed that these models are very simple, and the GDP model in 

particular leaves out the many potential explanatory factors for growth performance 

identified in the literature (see above). This is to a large degree compensated for by 

inclusion of each country’s growth rates in the preceding period as an explanatory 

variable, encapsulating a whole range of country-specific factors such as human capital 



14 

or quality of institutions.5 Further, better forecasts may be achievable by disaggregated 

models, forecasting emissions and GDP sector-by-sector. This is the case with some 

energy and emissions forecasts such as those discussed in Section 2, though the large 

deviations between published forecasts and realized values indicate that such models are 

also subject to large errors. 

It is not claimed that the models specified here are particularly well suited for 

forecasting emissions and GDP – developing such models is not the purpose in this 

paper. The models simply mimic a forecasting approach that extrapolates past trends, 

with some additional information about expected future trends based on income levels 

and regional factors. 

Forecast errors and uncertainty estimates  

To create a set of statistical forecast errors, the models estimated above are applied into 

the ‘future’, that is from 1985 to 2000. For example, annual average emissions growth is 

computed (modified from equation [5]) as 

ΔEi1985-2000  = 0.0113 + 0.4144 ΔEi1975-85
  – 0.0012 Yi1985 + 0.0335 MDE_AFRi + εi      [7] 

and a forecast emissions level computed as  

Ei2000 = Ei1985 (1+ ΔEi1985-2000 )15       [8]. 

                                                 
5 Exploratory econometric analysis for this sample of countries and the period under study showed that a 
larger model, taking account of selected economic, socioeconomic and institutional indicators (life 
expectancy, school enrolment rates, newspaper circulation, share of rural in total population, and trade 
openness index) in addition to the explanatory variables used here would not have improved on the 
explanatory power of the simple model presented above. 
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Similar computations are done to get GDP forecasts, modifying equation [6]. 

Emissions intensity forecasts are derived from emissions and GDP forecasts. 

Forecasts for the year 2000 are then compared to realized values in 2000 for each 

country. These forecast errors are then pooled across countries, and the standard 

deviation of errors (σ) interpreted as a measure of the degree of uncertainty for each 

variable.  

Formally, forecast errors (again for the example of emissions) are defined as 

1~/ˆ −ii EE    (times 100% if reported as percentages)    [9] 

with    –1 ≤  ( 1~/ˆ −ii EE )  ≤ 1 . 

Here, the 'hat' symbol ^ denotes forecasts and the 'tilde' symbol ~ denotes realized 

(true) values. The lowest theoretically possible value for forecast errors is –1, in the case 

of a zero forecast and a positive actual (implying an infinite underestimate). Pooling the 

forecast errors yields broadly bell-shaped probability distributions of errors. The 

distributions are right-skewed, because the forecast errors are expressed in proportional 

terms to allow pooling across countries.6   

Forecast errors for emissions, emissions intensity and GDP are pooled for OECD 

and non-OECD countries, as well as for a single pool of all countries. The results are in 

Table 2. The standard deviation of errors is greatest for emissions (σE), followed by 

emissions intensity (ση), then GDP (σY). This result holds for the groups of OECD and 

                                                 
6 The range of forecast errors is truncated at +1 (100% overestimate) at the upper end, in order to avoid a 
bias in the uncertainty estimates from a small number of outliers. This applies in only three cases of 
energy sector emissions forecasts (out of 62, all three being non-OECD countries). No GDP or emissions 
intensity forecasts are affected by the truncation.  
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non-OECD countries separately, as well as for all countries combined. However, only 

the differences between the standard deviations for emissions and for GDP are 

statistically significant.7  

[Table 2 about here] 

Uncertainty estimates are greater for the OECD than for non-OECD group. These 

differences are statistically significant for emissions as well as for emissions intensity, 

but not for GDP. For emissions, the fact that variability declines with rising income is 

confirmed by Lutter (2000). 

The relationship between uncertainties about the three variables can be summarized 

thus:  

− Uncertainty about future emissions is of similar magnitude as uncertainty about 
emissions intensity, and both are large. 

− Uncertainty about future GDP is significantly lower that that about emissions and 
emissions intensity, but nevertheless sizeable. 

− Forecast errors are greater in non-OECD countries than in OECD countries. 

A concern in estimating uncertainties for different groups of countries is that data 

quality may differ systematically between countries. Lower accuracy of forecasts for 

non-OECD countries might in part be due to greater errors in measurement and 

reporting, which might artificially increase variability. In the absence of data about the 

quality of country-level data, this hypothesis cannot be tested. By ignoring small 

countries and outliers, as was done in this analysis, the impact of data quality problems 

on the overall estimates is likely to be mitigated.  

                                                 
7 A one-tailed F-test shows that the difference between standard deviations of forecast errors for 
emissions and GDP is statistically significant at the 99% confidence level for all countries combined, and 
at the 95% confidence level for the groups of OECD and non-OECD countries separately.  
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Comparison with the pooled forecast errors by agencies over the period 1992/95–

2000 (Table 1) shows both parallels and differences. The key result from the statistical 

analysis of uncertainty about emissions and emissions intensity being of similar 

magnitude, and GDP uncertainty lower, is mirrored in the performance of agency 

forecasts. The absolute magnitude of forecast errors is however much larger in the case 

of the statistical forecast models; and the differences between OECD and non-OECD 

countries in the statistical forecasts are not evident in the evaluation of agencies’ 

forecasts. These differences can, at least in part, be explained by the longer time horizon 

of the statistical forecast models (15 years compared to 5–8 years), with forecasting 

errors tending to be larger over longer time horizons (O’Neill and Desai 2005). Second 

and as discussed above, most agency forecasts are for highly aggregate regions 

(especially for non-OECD countries), and thus mask forecast errors at the country level. 

Similar models as used here for CO2 emissions can be applied to emissions outside 

the energy sector. However, data quality is much poorer and data availability more 

limited, especially for non-CO2 emissions. A tentative analysis of uncertainty ranges for 

emissions outside the energy sector, using simple extrapolation forecast models, yields 

the following values for emissions uncertainty σE: CO2 from land-use change 0.31 (15-

year horizon), Methane 0.12 (5-year horizon), nitrous oxide 0.18 (5-year horizon). No 

significant differences are apparent in uncertainty ranges between OECD and non-

OECD countries.  
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4. Do emissions fluctuate with GDP?  

A crucial empirical question for the design of flexible emissions targets, in particular 

intensity targets, is whether fluctuations in overall economic activity bring 

corresponding fluctuations in emissions. To recall, emissions intensity targets would 

link the permit allocation to realized GDP levels and could reduce uncertainty about 

how much effort will be needed to comply, provided emissions do in fact move in line 

with aggregate economic activity. 

The analysis here provides new and more comprehensive quantitative estimates, 

building on the limited existing empirical work. A brief overview of conceptual issues 

and related literature is provided; next, the correlation between forecasting errors for 

GDP and emissions is examined to test for the existence of the GDP–emissions link; 

then the degree of the linkage is quantified by way of time-series analysis for the 30 

largest CO2 emitters.   

Conceptual issues and previous studies 

The question is whether and by how much emissions deviate from their longer-term 

trend in response to economic growth deviating from its trend (‘trend’ in this analysis is 

defined in terms of average annual growth over the period 1971–2000). In other words, 

we are interested in the co-movement of fluctuations in emissions and fluctuations in 

GDP – what happens to emissions when the economy grows at below or above average 

rates.  

This issue is quite distinct from the long-term structural relationship between 

economic growth and greenhouse emissions that is the subject of most of the ample 
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literature on the long-term relationship between GDP and CO2 emissions, referred to in 

the previous section. The time path of emissions as economies develop is important in 

devising long-term emissions scenarios, but for the design of emissions targets and 

trading unexpected divergences from trends are what matters. 

The recent literature on intensity targets has recognised that the responsiveness of 

emissions to changes in GDP is a crucial parameter for the performance of intensity 

targets (Ellerman and Sue Wing 2003). In the present analysis, this 'multiplier', or 

elasticity of fluctuation in emissions with regard to fluctuations in GDP, is denoted α.  

Relevant empirical research has so far been restricted in scope, but the selective 

results available point to a positive GDP-emissions link. Sue Wing et al. (2006) did 

backcasting analysis and found a strong positive correlation between emissions and 

GDP for some developing countries, and for developed countries at some points in time, 

but not at other times. Philibert (2004) constructed forecast errors for a sample of 

countries from a one-period linear extrapolation model, and regressed emissions 

forecast errors on GDP forecast errors. A positive relationship was evident, which was 

interpreted to mean that variations in GDP are linked with variations in emissions, 

though only a small share of variability in emissions is explained by variability in 

economic growth. The analysis below applies this method to the sets of forecast errors 

derived in statistical analysis in Section 3 above. 

Höhne and Harnisch (2003) looked at fluctuations in GDP and emissions over time 

for four countries, concluding that a relationship between energy sector emissions and 

GDP was apparent in three of the four cases, with α estimated between 0.8 and 1. Kim 

and Baumert (2002) in a case study for Korea, identified a close link between emissions 
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and GDP, with an α close to 1. Research on the link between emissions and GDP was 

also done in preparation for Argentina’s voluntary greenhouse target proposed in the 

aftermath of the Kyoto Protocol negotiations (Bouille and Girardin 2002), concluding 

that emissions were linked with GDP only in certain sectors of the economy, with an 

implicit α of 0.5 for Argentina's total greenhouse emissions, including non-CO2 gases. 

Correlation between forecast errors 

The correlation between forecast errors for GDP and for emissions can be interpreted as 

an indication for whether there is a systematic connection between fluctuations in GDP 

and fluctuations in emissions. If there is such a link, then an underestimate in future 

GDP should be accompanied by an underestimate in future emissions, and likewise for 

overestimates. 

On the basis of data from the regression forecast models from Section 3, emissions 

forecast errors εE for the energy sector are associated with GDP forecast errors εY of the 

same sign in almost two thirds of observations, with a correlation coefficient of 0.5. To 

test the strength of the correlation, a linear OLS regression model of the form 

Emissions_forecast_errori = constant + α GDP_forecast_errori + εi  

or 1~/ˆ −ii EE    = constant + α ( 1~/ˆ −ii YY ) + εi    , 

or εEi    = constant + α εYi          + εi    .   [10] 

was estimated on the basis of forecast errors from regression models for the energy 

sector developed in Section 3, using the same dataset described there (N = 62).  

The estimation result is  
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 εEi    = 0.03    +    0.89 εYi          + εi    ,  R2 = 0.46  

                                           (0.50)       (0.000) 

This means that a GDP forecast error of +1% is associated with an emissions 

forecast error of +0.89% across the sample, the estimated coefficient being statistically 

highly significant. In this regression, the coefficient of determination R2 can be 

interpreted as a measure of how much of the forecast error for emissions is attributable 

to errors in the underlying forecasts of economic activity (Philibert 2004), so in this 

interpretation GDP uncertainty is responsible for almost half of emissions uncertainty.  

In the agency forecasts discussed in Section 2, a positive correlation is also evident 

between forecast errors for emissions and GDP. However, in this small sample the 

relationship is not statistically significant, and the goodness of fit is low.  

Doing the same exercise for forecast errors on emissions intensity εη as a function 

of GDP forecast errors εY from the statistical forecast models reveals that there is no 

systematic correlation between the two.  

Similarly, there is no positive correlation between non-energy sector emissions and 

GDP. For CO2 emissions from land-use change and for nitrous oxide emissions, a slight 

negative correlation between forecast errors for emissions and GDP is evident. A 

positive correlation between GDP and greenhouse gas emissions outside the energy 

sector would generally not be expected, primarily because such emissions are 

concentrated in a small number of specific activities, such as certain agricultural and 

industrial production processes, landfills, and land-use-change. These do not necessarily 

move in line with overall economic activity.  
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Deviations from trends over time 

The degree of correlation between fluctuations in emissions and fluctuations in GDP 

can be quantified by way of time-series analysis for individual countries. Here, the 

relationship between fluctuations in CO2 emissions from the energy sector and 

fluctuations in GDP over the period 1971 to 2000 is examined for the 30 largest 

emitters, to get estimates of the elasticity parameter αi for individual countries.  

A country example: USA 

In most countries, both emissions and GDP (measured in constant US$) have increased 

over the last three decades, with emissions typically growing slower than GDP, and 

both variables fluctuating around their trend over the period. This is shown for the 

United States in Figure 1, which plots the index of energy sector CO2 emissions and 

GDP (in constant prices) along with their trend (based on annual average growth) over 

the period 1971–2000. The co-movement of emissions and GDP can be gleaned from 

this Figure. For example, emissions fell during the economic stagnation around 1980, 

and then increased again with strong economic growth through the 1980s.  

Variability in US emissions has been greater than variability in GDP; and emissions 

were typically below their trend during times when GDP was below its trend, and vice 

versa. This becomes clear when plotting the differences between the actual values and 

their trend, that is, the fluctuation of emissions and GDP around their trend (Figure 2). 

‘Deviation from trend’ is defined formally in equation [12] below. 

[Figures 1 and 2 about here] 

The tightness of the fit between the two variables differs greatly between countries, 

as does the responsiveness αi of fluctuations in emissions to fluctuations in GDP. The 
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United States case over the period examined is fairly typical for how closely the two are 

linked, but shows a very high level of responsiveness  compared to other countries.  

Regression model 

To quantify the co-movement between fluctuations in GDP (Y) and fluctuations in 

emissions (E), a simple model is estimated on a country-by-country basis, where the 

deviation of emissions from their trend in each year is explained as a function of the 

deviation of GDP from its trend in the same year. The model is estimated separately for 

each of the 30 largest emitters, on the basis of 30 observations for each country, one for 

each year from 1971–2000.  It can be written as: 

E_diffit  =  const  +  αi Y_diffit  +  εit     , with t = {1971...2000}.  [11] 

Here, the deviation of CO2 emissions from their trend over the period 1971–2000 is 

defined as 

E_diffit =  ( Eit / E_trendit) – 1 

         = ( Eit / Ei1971((Ei2000 / Ei1971)(1/29) )t ) – 1    [12] 

and correspondingly, the deviation of GDP from its trend over the period 1971–

2000 as 

Y_diffit =  ( Yit / Y_trendit) –  1 

         = ( Yit / Yi1971((Yi2000  /Yi1971)(1/29) )t ) – 1   .    [13] 

The coefficient αi in [11] measures by what percentage emissions deviate from their 

trend for every percentage point deviation of GDP from its trend. A coefficient of αi = 
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0.5 for example means that on average, a deviation of GDP 10% above its 30-year trend 

was associated with emissions 5% above their trend in the same year. 

As is to be expected, the data are serially correlated. In order to correct for serial 

correlation, the generalized least squares (GLS) estimation procedure is used, rather 

than estimation by ordinary least squares (OLS). An AR(1) process was specified to 

take account of serial correlation, and fitting done by restricted maximum likelihood 

estimation. 

Regression results 

For 23 out of the 30 countries – that is, for three quarters of all observations –, there is a 

statistically significant or highly significant relationship between fluctuations in 

emissions and fluctuations in GDP. The estimated coefficient αi is positive in all cases 

where there is a significant relationship; it ranges from 0.36 to 1.64. Table 3 gives the 

full set of results.  

The mean and median of the estimated coefficients for the 23 countries with a 

statistically significant correlation are just above one (mean = 1.07, median = 1.08).8 

This implies that averaged through time and across countries, a 1% fluctuation in GDP 

for the sample of countries was associated with a 1.07% fluctuation in energy related 

emissions in the same direction. This in turn implies a mean α parameter of broadly 

around 1 for the energy sector, but with very large variability around this mean. 

                                                 
8 Unweighted means are reported here as the analysis aims to extract features common to all countries, 
independent of their size. The weighted by emissions levels, the mean is 1.15. Results for the seven 
countries where there is no statistically significant correlation are omitted. This includes cases with 
negative coefficients αi, which if significant, would imply that emissions and GDP fluctuated in opposite 
directions. 
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The explanatory power of the model differs strongly between countries, as 

measured by the coefficient of determination (R2) in the corresponding OLS estimation. 

On average, fluctuations in GDP around its trend explain around half of the variability 

in fluctuations in emissions around its trend, for the 23 countries where the relationship 

is statistically significant. 

Each individual episode of below- or above-average growth in GDP differs in its 

effect on emissions. For example, if GDP increases because of a boom in service 

industries, this will translate into only a small change in emissions. If on the other hand 

GDP deviates from its trend because of increased production in energy intensive 

industries such as mining or heavy manufacturing, this can lead to a disproportionate 

change in emissions, because these industries typically have an emissions intensity of 

output many times higher than that of the economy as a whole.   

No systematic pattern between the estimate for αi in this sample and structural 

indicators of countries is apparent. Nevertheless, country-specific factors are likely to 

play a role in determining αi, in addition to differences in the nature of the economic 

fluctuations during each episode of below- or above-average growth.  
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5. Conclusions 

This paper has provided empirical estimates of uncertainties for future greenhouse gas 

emissions and its drivers, and for the link between fluctuations in GDP and in 

emissions. These estimates fill gaps in the literature by shedding light on the relative 

and absolute magnitude of uncertainties affecting emissions targets, and on the in-

principle suitability of intensity targets for reducing cost uncertainty under emissions 

trading.  

 Evaluating past forecasts by the leading agencies involved in energy forecasting 

shows that forecasting errors on future emissions, emissions intensity and also GDP 

were remarkably large, even over relatively short time horizons. Statistical forecast 

models, applied to historical data, are used to construct sets of country-level forecast 

errors over 15-year time spans. This analysis shows that uncertainty about future 

emissions and future emissions intensity in the energy sector are of roughly the same 

magnitude; that these uncertainties are greater than about future GDP (uncertainty about 

which is nevertheless sizeable); and that uncertainties are greater in non-OECD than in 

OECD countries.  

The analysis further shows a clear positive correlation between fluctuations in GDP 

and fluctuations in energy sector CO2 emissions. Such a link is evident from the 

correlation between forecasting errors for energy sector CO2 emissions and for GDP 

from the regression models. A country-level analysis over three decades for the thirty 

largest emitters shows that this relationship holds for three quarters of cases examined, 

with above-trend GDP associated with above-trend emissions. The elasticity of 

fluctuation in emissions with regard to fluctuations in GDP is approximately one-to-one 
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on average, but with strong variations between individual episodes of below- or above 

average growth. No such link between fluctuations in GDP and emissions is found for 

emissions outside of the energy sector. 

These findings have implications for mechanism design that attempts to reduce cost 

uncertainty under emissions trading, in particular intensity targets, where permit 

allocations are linked to future GDP. Intensity targets could reduce cost uncertainty if 

there is a link between fluctuations in emissions and fluctuations in overall economic 

activity, over the near- to medium-term. The analysis here confirms that such a link 

exists – but not in all cases, and probably not for many emissions sources outside the 

energy sector. Furthermore, uncertainty about future emissions intensity – which cannot 

be alleviated by indexation to GDP – is larger than GDP uncertainty.  

Results from the present study can help inform numerical modelling of emissions 

trading under uncertainty. Further useful empirical work would include more refined 

statistical forecasting models, including greater disaggregation of emissions by sector, 

and empirical investigation of country-specific factors.  
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Tables 

Table 1 Summary of agencies’ forecast errors, 1992/95 to 2000 

 
OECD 

countries 
Non-OECD 

countries All countries 
Standard deviation of errors, proportional 
Emissions (σE) 0.15 0.17 0.17 
GDP (σY) 0.10 0.11 0.10 
Emissions intensity (ση) 0.20 0.16 0.17 

Forecasts for the year 2000 published in 1995, and using data from ca. 1992. 
Number of observations for each variable: n=22.  
US-EIA data: International Energy Outlook 1995 and 2003 (EIA 1995, EIA 2003). Using the 
US-EIA’s standard scenario. IEA data: World Energy Outlook 1995 and 2002 (IEA 1995, IEA 
2002). Using the mean of the two alternative scenarios presented in the OECD projections 
(‘energy saving’ and ‘capacity constraints’ scenarios, which provide the same GDP projections 
but different emissions projections). Forecasts for the Former Soviet Union and the Central and 
Eastern Europe region were combined into a single forecast for transition economies because of 
lacking comparison data for the same aggregations. 
 
 

Table 2 Forecast errors, regression models, 1985 to 2000 

 
OECD 
countries 

Non-OECD 
countries All countries 

Standard deviation σ of forecast errors, proportional 
Emissions (σE) 0.30 0.46 0.40 
GDP (σY) 0.20 0.27 0.24 
Emissions intensity (ση) 0.23 0.43 0.37 

N = 62 countries (23 OECD, 39 non-OECD). 
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Table 3 Regression results for co-movement of GDP and CO2 
emissions, 30 largest emitters, 1971–2000 

  Intercept α coefficient p-value R2 
United States  -0.008 1.445 0.0001** 0.60 
China 0.095 -0.134 0.4092 0.02 
Russian Federation 0.038 0.704 0.0001** 0.98 
Japan 0.037 -0.082 0.6934 0.01 
India 0.043 0.661 0.0014** 0.31 
Germany 0.050 1.248 0.0051** 0.25 
United Kingdom -0.020 0.775 0.0001** 0.46 
Canada -0.022 1.024 0.0001** 0.59 
Korea (South) 0.063 0.759 0.0012** 0.32 
Italy 0.000 0.627 0.0023** 0.29 
Mexico 0.108 1.601 0.0001** 0.88 
France -0.026 1.267 0.0098** 0.21 
South Africa 0.107 0.871 0.0164* 0.19 
Australia 0.024 0.315 0.2626 0.04 
Brazil -0.059 1.042 0.0001** 0.69 
Spain 0.021 1.571 0.0001** 0.54 
Poland 0.206 0.360 0.0273* 0.16 
Iran 0.138 -0.219 0.214 0.05 
Indonesia 0.114 0.477 0.0634 0.12 
Saudi Arabia 0.244 1.643 0.0041** 0.26 
Taiwan 0.034 0.518 0.1321 0.08 
Turkey 0.036 1.308 0.0001** 0.53 
Netherlands 0.051 1.107 0.0001** 0.51 
Thailand -0.080 1.090 0.0001** 0.61 
Argentina -0.019 0.432 0.0001** 0.52 
Venezuela 0.194 -0.050 0.9131 0.00 
Egypt 0.042 1.550 0.0001** 0.76 
Belgium -0.054 1.476 0.0008** 0.33 
Malaysia -0.040 1.085 0.0001** 0.42 
Pakistan -0.028 1.066 0.0001** 0.71 
Aggregates (only for estimates significant at 95% confidence level or better): 
Mean  1.08  0.51 
Median  1.07  0.48 
Range  0.36 to 1.64   

30 largest countries in terms of CO2 emissions in 2000, listed in order of magnitude of 
emissions. Excludes Ukraine and North Korea, for which historical GDP data are not readily 
available. 
**: Significant at the 99% confidence level. *: Significant at the 95% confidence level. 
Emissions of CO2 from fossil fuel combustion and cement manufacturing, GDP in constant US$. 
Data from CAIT database (WRI 2003) as described above, with additional GDP data from Penn 
world tables (Heston et al. 2002). 
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Figures 
 

Figure 1 Emissions and GDP, United States 1971-2000  

 

 

 

 

 

Figure 2 Fluctuation of emissions and GDP around their trend, United 
States 1971-2000 
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