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Abstract

This paper discusses results concerning multivariate normal distributions that are subject

to truncation by a hyperplane and how such results can be applied to uncertainty analysis

in the environmental sciences. We present a suite of results concerning truncated multi-

variate normal distributions, some of which already appear in the mathematical literature.

The focus here is to make these types of results more accesible to the environmental sci-

ence community and to this end we include a conceptually simple alternative derivation

of an important result. We illustrate how the theory of truncated multivariate normal

distributions can be employed in the environmental sciences by means of an example from

the economics of climate change control.
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1. Introduction

A problem that arises in a number of applications in environmental modelling is the need

to find the expectation of a function of many uncertain variables, subject to some kind

of sharp cut-off, threshold or truncation limit. For example, beyond a certain climatic

limit, snowfall may suddenly become zero; beyond geographic limits like coastlines, rivers

or mountain ranges, the population densities of many species suddenly become zero; and

beyond some economic limits, firms or countries may suddenly choose to opt out of some

voluntary environmental scheme, because it is unprofitable to them.

The functions in these applications will usually in fact be non-linear, and also the under-

lying probability distributions will usually be non-normal. However, within an acceptable

margin of error, one can often linearise the functions and assume a multivariate normal

(multinormal) distribution of random variables. For example, the latter assumption is

often employed when the random variables represent errors in a model or uncertanties in

a process.

In environmental modelling, uncertainty is typically dealt with by solving a deterministic

model under a number of alternative realisations of the random variables, using Monte

Carlo experiments or other procedures such as Gaussian quadrature (see for example

Abler, et al., 1999; Krajewski, et al., 1991), where expectations of functions of random

variables are approximated by averaging over the results of a large number of model runs.

While such methods can accommodate truncated as well as non-normal distributions of

random variables, they have some serious downsides. For larger models, computational

requirements to achieve reliable approximations may be excessive; it may not be possible

to solve the model for the optimal parameter settings; and since model uncertainty is
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dealt with only numerically, there can be no analytical insights. The method we propose

and illustrate suffers from none of these limitations.

The particular example which motivates us comes from an environmental economics anal-

ysis of greenhouse gas control (Jotzo and Pezzey, 2004). In this analysis there arises

the need to calculate a country’s perceived payoff from signing up to a global treaty

that limits future emissions of greenhouse gases, where that country’s emissions target is

“non-binding” (i.e. optional), and all countries’ future emissions are uncertain. Jotzo and

Pezzey assume that once the uncertain future actually arrives, a country enacts a non-

binding traget only when its perceived net payoff (from selling spare emission permits) is

positive. Since the payoff is a linearised function of the uncertainties, this condition holds

on one side of a truncating hyperplane that bisects probability space.

The problem of deriving expectations with respect to a multinormal distribution subject

to various truncating conditions has been considered by many authors in the mathematical

literature. Below we consider a single planar truncation, which excludes all n-vectors x

that are not part of the set

{
x = (x1, . . . , xn)T ∈ Rn : αTx ≥ c, α = (α1, . . . , αn)T ∈ Rn, c ∈ R

}
, (1)

and derive expectation results for multinormal distributions truncated by this hyperplane.

The most investigated case has actually been that of rectangular truncation1 (Birnbaum

and Meyer, 1953; Tallis, 1961; Horrace and Hernandez, 2001; Horrace, 2004), but there

1A rectangular truncation excludes all n-vectors that are not part of the set

{x = (x1, . . . , xn)T ∈ Rn : x1 ≥ c1, . . . , xn ≥ cn}.
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is also the paper of Tallis (1965) that deals with the theory of planar truncations. This

derived results for multinormal distributions truncated by a number of hyperplanes, and

our results overlap Tallis’s to some extent, though they also include some minor exten-

sions. However, Tallis used the method of moment-generating functions (also used in

Tallis, 1961), whereas we use direct integration methods. Also he treated any truncated

distribution as a probability distribution in its own right (i.e. with total probability of 1);

whereas we treat it as part of a distribution of probability 1 over all of Rn. This is because

in the motivating example, even though values on both sides of the truncating hyperplane

occur with non-zero probability, calculating the expected payoff only requires considera-

tion of values on the side of the hyperplane corresponding to profitable outcomes. This

difference in approach means our results do not contain Tallis’s normalising factors.

Our paper therefore has three purposes: to obtain Tallis’s results using an alternative,

more direct method, and to give some modest extention to his results, as well as presenting

some related truncated multinormal expectation results; to show how all the results can

be used in the context of a climate change control treaty; and most importantly, to make

all the results more accessible to environmental modellers. In section 2 we use a well-

known theorem on multinormal distributions to prove a specialised truncated expectation

result, and then derive the truncated multinormal expectation of both a linear scalar

function, and the exponential of a linear scalar function, with respect to an arbitrary

truncating hyperplane. Such functions are commonly employed in enviromental modelling

applications, particularly in hydrology (Keig and McAlpine, 1974; Makhlouf and Michel,

1994; Xiong and Guo, 1999; Ferdowsian, et al., 2001;) and ecology (Ratnieks, 1996;

Pacala, et al., 1996; Baguette, 2003). The results follow as corollaries of Tallis’s results,
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but are inobvious and therefore hitherto unavailable to a typical environmental modeller.

In section 3 we show how our results can be used in the motivating application of Jotzo and

Pezzey (2004) of a climate change control treaty, where a country would make a future,

and therefore uncertain, dollar-valued net gain of G̃ from joining the treaty. However, its

psychologically perceived “payoff” (used to determine whether or not it chooses to join

the treaty) is modelled as

U(G̃) = G̃ + s
(
1− exp(−rG̃)

)
, (2)

with s, r positive constants. This is a strictly increasing, concave function of G̃ which

allows for the diminishing marginal value of money gains. Our results allow the expected

payoff E[U(G̃)], to be calculated and compared across countries, which will help to gauge

the political feasibility of various types and levels of emission targets.

2. Expectations with respect to truncated multinormal distributions

2.1 Notation and definitions

We use bold, lower-case Greek characters such as α = (α1, . . . , αn)T and β = (β1, . . . ,βn)T

to denote vectors of fixed parameters, and bold, lower-case Latin characters such as x =

(x1, . . . , xn)T and y = (y1, . . . , yn)T to denote multinormal random variables in the n-

dimensional Euclidean space Rn.

The standard Euclidean inner product is

αT β =
n∑

i=1

αiβi

and the square of the standard Euclidean norm is ‖α‖2 = αT α.
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We will assume x has zero mean so that its probability density function is given by

φn(x, M) =
exp

(
−1

2
xT M−1x

)
(2π)n/2|M |1/2

.

Here M is the dispersion (variance-covariance) matrix of the multinormal distribution

and |M | is its determinant. Although we restrict our attention to zero mean multinormal

variables, our results could easily be generalised to accommodate a nonzero vector of

means. Given a function f of the random variable x, its expectation, or expected value

(over all of Rn), is defined as

E[f(x)] =

∫
Rn

f(x) φn(x, M) dx.

If the multinormal distribution is truncated then the integral is taken over the subset of

Rn defined by the truncating condition.

A scalar function, or functional, is a function whose range lies in the scalar field of real

numbers R. An important mathematical theorem (Kreyszig, 1978; p188) asserts that if

` : Rn → R is a bounded linear functional acting on Rn then the action of ` on an element

of Rn may be realised via the inner product as

`(x) = αTx

for some uniquely suitable α ∈ Rn. Hence every bounded linear scalar function acting on

Rn corresponds uniquely to some element of Rn.

2.2 Standard results for multinormal distributions

A characterising feature of the multinormal distribution is its amenability with respect

to linear functionals. This is apparent, for example, in the following well known result

(Rohatgi and Saleh, 2001; Section 5.4,Theorem 7).
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Theorem 1 Let x = (x1, . . . , xn)T . Then x has an n-dimensional normal distribution

with zero mean and dispersion matrix M if and only if every linear combination αTx has

a univariate normal distribution with zero mean and variance σ2 = αT Mα.

In particular, the above Theorem immediately implies the following Corollary concerning

the multinormal expectation of a continuous function whose argument is of the form

(αTx− c), where x is a multinormal variable.

Corollary 2 Let U be a continuous function and x = (x1, . . . , xn)T be a multinormal

variable with zero mean and dispersion matrix M . Then

∫
Rn

U(αTx− c) φn(x, M) dx =

∫ ∞

−∞
U(η − c)

exp
(
−1

2
η2

σ2

)
σ
√

2π
dη (3)

where σ2 = αT Mα.

In essence the result states that, because αTx is linear in x, the multinormal probability

density has been concentrated along a single canonical direction, i.e. the direction of α.

The multivariate integral has been reduced to a univariate integral, which is much easier

to deal with.

2.3 Results for canonical half-spaces

If U : R → R is a strictly increasing, continuous function and there exists ζ ∈ R such that

U(ζ − c) = 0 then the expression U(αTx− c) has associated with it a canonical splitting

of Rn into two half-spaces,

U+
n =

{
x ∈ Rn : U(αTx− c) ≥ 0

}
U−n =

{
x ∈ Rn : U(αTx− c) < 0

}
.
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The separating hyperplane is defined by αTx = ζ. Applying the previous Corollary to

the subset of continuous functions that are strictly increasing, we obtain the following

result. The proof is in Appendix 1.

Theorem 3 Suppose that U is continuous, strictly increasing and that U(ζ − c) = 0.

Suppose also that α ∈ Rn is an arbitrary, but fixed, vector and that x = (x1, x2, . . . , xn) ∈

Rn is a multinormal random variable with mean zero and dispersion matrix M . If σ2 =

αT Mα then

∫
U+

n

U(αTx− c) φn(x, M) dx =

∫ ∞

ζ

U(η − c)
exp

(
−1

2
η2

σ2

)
σ
√

2π
dη. (4)

Note that if U is a continuous function and there is no ζ ∈ R for which U(ζ − c) = 0,

then either U > 0, which implies that U+
n = Rn, or U < 0, which implies that U−n = Rn.

In each of these cases Theorem 3 reverts to Corollary 2.

For a non-binding target for greenhouse gas emissions, the function U would be a country’s

payoff from signing up to the target, with the zero-payoff hyperplane being the boundary

between U+
n , where the target is enacted, and U−n , where the target is not enacted.

2.4 Results for arbitrary truncating hyperplanes

The uncertain payoff that one country (say B) will get as a result of country A enacting

a non-binding emissions target is given (to a linear approximation) by some function of

βTx, for some parameter vector β ∈ Rn and some random variable x ∈ Rn which includes

various uncertainties in emissions. Country A chooses whether or not to enact the target

depending on whether αTx ≥ c or not (and hence whether or not U(αTx − c) ≥ 0, if

we define payoff U(·) as a strictly increasing function with U(0) = 0, as for example in
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(2)). But βTx, the uncertain determinant of country B’s payoff, will generally be quite

different from αTx.

The question thus arises whether a result similar to Theorem 3 holds above (or below)

some arbitrary hyperplane that is not associated with the argument of the function U . The

answer is unfortunately that no simple general expression exists. However, restricting our

attention to linear functionals of real multinormal variables, it is possible to derive a simple

expression. The following Lemma establishes such a result for zero mean, independent,

unit variance multinormal variables whose dispersion matrix M is thus the identity matrix.

The general case will then follow from the Lemma. The Lemma’s proof relies only on

simple changes of coordinates and integration by parts, but is quite lengthy and is therefore

left to Appendix 2. The Lemma and the subsequent Theorem make use of the following

notation. We denote the half-space above the hyperplane αTx = c, (α 6= 0) as

Hα
c = {x ∈ Rn : αTx ≥ c}.

We may assume without loss of generality that ‖α‖ = 1.

Lemma 4 Suppose that α, β ∈ Rn are fixed arbitrary vectors, with ‖α‖ = 1, and x ∈ Rn

is a multinormal random variable such that each xi, i = 1, . . . , n is an independent,

normal random variable with zero mean and unit variance. Then

∫
Hα

c

βTxφn(x, I) dx = exp

(
−c2

2

)
αT β√

2π
. (5)

We note here that Lemma 4 and the ensuing Theorem 5 could also be established using the

mean vector µ derived by Tallis (1965), after taking into account the fact that we do not

require the truncated distribution to be a probability distribution as Tallis did. As such,
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the proofs of Lemma 4 and Theorem 5 serve as a conceptually more simple, alternative

derivation of Tallis’s mean vector that avoids the need for the moment-generating function.

The proof of Theorem 5 is in Appendix 3.

Theorem 5 Suppose that α, β ∈ Rn are fixed, arbitrary vectors and x ∈ Rn is a zero

mean multivariate normal random variable with dispersion matrix M . Then∫
Hα

c

βTxφn(x, M) dx = exp

(
−1

2

c2

σ2

)
αT Mβ

σ
√

2π
(6)

where σ2 = αT Mα.

We may also obtain a simple expression for the expectation of the exponential of a linear

functional. Such an expectation is, modulo a normalising factor, the moment generating

function, and hence the result is in Tallis (1965), but for completeness we include the

result here and provide the proof in Appendix 4.

Theorem 6 Suppose that α, β ∈ Rn are fixed, arbitrary vectors and x ∈ Rn is a zero

mean multivariate normal random variable with dispersion matrix M . Then∫
Hα

c

exp (rβTx) φn(x, M) dx = exp (1
2
r2βT Mβ) Φ

[
rαT Mβ − c

σ

]
, (7)

where Φ[z] := 1√
2π

∫ z

−∞ exp (−1
2
s2) ds is the cumulative distribution function of the uni-

variate normal distribution, and σ2 = αT Mα.

3. Example from a climate change treaty with uncertainty in emissions: quan-

tifying risk aversion

Here we calculate the expected payoffs for two different countries, A and B, that result

from country A signing up to a climate change treaty by accepting a non-binding target
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for its future greehouse gas emissions, given that the payoff function is U(G̃) = G̃ +

s
(
1− exp(−rG̃)

)
as in (2). Because the target is non-binding, signing up to the target

now does not mean that it will be enacted when an uncertain future arrives. It is precisely

because of country A’s option to enact the target when the future arrives that the expected

payoff to both countries are defined over truncated half-spaces. The simplified linear

model of Jotzo and Pezzey (2004) shows how the expected payoffs can be defined in terms

of vectors αT and βT and parameters sA, cA, sB, cB and r as follows, and we show in

appendices how to calculate the expected payoffs stated using the above Theorems.

3.1 Expected payoff to country A from A signing up to a non-binding target

Assuming that the dollar-valued net gain, G̃A, of country A is a linearised function of the

multinormal random variable x, we have G̃A = αTx− cA. According to equation (2) the

payoff to country A is given by

U(G̃A) = G̃A + sA

(
1− exp(−rG̃A)

)
where we suppose that sA > 0, and r > 0. The expected payoff to country A from A

signing up to a non-binding emissions target is therefore defined as

E[U(G̃A)|A] =

∫
G̃A≥0

[
G̃A + sA

(
1− exp (−rG̃A)

)]
φn(x, M) dx

Applying Theorem 3 we obtain the result (see Appendix 5 for proof):

E[U(G̃A)|A] = (sA − cA)Φ

[
−cA

σ

]
− sA exp (rcA + 1

2
r2σ2)Φ

[
−(cA + rσ2)

σ

]
+

σ√
2π

exp

(
−c2

A

2σ2

)
(8)

with σ2 = αT Mα.
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3.2 Expected payoff to country B from A signing up to a non-binding target

The expected payoff to country B from A signing up to a non-binding emissions target is

defined as

E[U(G̃B)|A] =

∫
G̃A≥0

[
G̃B + sB

(
1− exp (−rG̃B)

)]
φn(x, M) dx

where G̃A and r are as before, and now G̃B = βTx− cB and sB > 0.

Theorems 5 and 6 can be utilised to obtain the result (see Appendix 6 for proof):

E[U(G̃B)|A] = (sB − cB)Φ

[
−cA

σ

]
− sB exp (rcB + 1

2
r2βT Mβ)Φ

[
−(cA + rαT Mβ)

σ

]
+

αT Mβ√
2πσ

exp

(
−c2

A

2σ2

)
(9)

with σ2 = αT Mα.

These results highlight the effect of risk aversion that results from the strict concavity

of the payoff function (2). The parameter r describes the sharpness of a country’s risk

aversion, and sA and sB its respective importance in comparison to the dollar valued gains

G̃A and G̃B themselves. So setting r = sA = sB = 0 in the above results, and subtracting

the outcomes from the original results reveals the net effects of risk aversion.

4. Conclusion

The results presented here provide a way of calculating the expected values of some of the

functions commonly used in environmental modelling, when the underlying distribution

is taken to be multivariate normal, subject to a truncation or cut-off condition. Cut-

off conditions arise naturally in many instances in environmental and other sciences and

the associated variables can often be characterised as being approximately normally dis-

tributed. The formulae presented in this paper should therefore be widely applicable. As
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well as allowing efficient estimation of mean values of functions encountered in modelling

applications, the results also provide theoretical insight into the nature of uncertainties

associated with particular modelling approaches. It is our hope that by enhancing the ac-

cessibility of such results and illustrating their use with a concrete example, environmental

modellers will find it easier to use them in their own applications when appropriate.
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Mathematical Appendices

In this section we present mathematical proofs for the results cited above.

Appendix 1. Proof of Theorem 3

Define the continuous function Ũ as

Ũ(z) =

U(z) if z ≥ ζ − c

0 if z < ζ − c

Note that since U is strictly increasing, Ũ ≥ 0. From Corollary 2 we therefore have

∫
U+

n

U(αTx− c) φn(x, M) dx =

∫
Rn

Ũ(αTx− c) φn(x, M) dx

=

∫ ∞

−∞
Ũ(η − c)

exp
(
−1

2
η2

σ2

)
σ
√

2π
dη

=

∫ ∞

ζ

U(η − c)
exp

(
−1

2
η2

σ2

)
σ
√

2π
dη

with σ2 = αT Mα.

Appendix 2. Proof of Lemma 4

For convenience we let

J =

∫
Hα

c

βTxφn(x, I) dx.

Employing the change of coordinates y = x− cα we find that

(2π)n/2 J = exp

(
−c2

2

)∫
Hα

0

βT (y + cα) exp

[
−1

2

(
yTy + 2cαTy

)]
dy

= exp

(
−c2

2

) n∑
j=1

Jj

where

Jj =

∫
Hα

0

βj (yj + cαj) exp

[
−1

2

n∑
i=1

(
y2

i + 2cαiyi

)]
dy1 · · · dyn
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=

∫
Rn−1

∫ ∞

ξ

βj (yj + cαj) exp

[
−1

2

n∑
i=1

(
y2

i + 2cαiyi

)]
dy1 · · · dyn,

and where we have set ξ = − 1
αn

∑n−1
i=1 αiyi.

Hence if j 6= n then

Jj =

∫
Rn−1

Anβj (yj + cαj) exp

[
−1

2

n−1∑
i=1

(
y2

i + 2cαiyi

)]
dy1 · · · dyn−1

where

An =

∫ ∞

ξ

exp

[
−1

2

(
y2

n + 2cαnyn

)]
dyn.

To simplify the expression for Jj we perform an integration by parts. By the Fundamental

Theorem of Calculus we have

dAn =
αj

αn

exp

−1

2

 1

α2
n

(
n−1∑
i=1

αiyi

)2

− 2c
n−1∑
i=1

αiyi

 dyj

and that if

dv = βj (yj + cαj) exp

[
−1

2

(
y2

j + 2cαjyj

)]
dyj

then

v = −βj exp

[
−1

2

(
y2

j + 2cαjyj

)]
.

The integration by parts formula reads

∫
R

An dv = [Anv]∞−∞ −
∫

R
v dAn

and so integrating by parts, noting that Anv → 0 as yj → ±∞, we get

Jj =

∫
Rn−1

αjβj

αn

exp

−1

2

n−1∑
i=1

y2
i +

1

α2
n

(
n−1∑
i=1

αiyi

)2
 dy1 · · · dyn−1

=
αjβj

αn

J∗
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where

J∗ =

∫
Rn−1

exp

−1

2

n−1∑
i=1

y2
i +

1

α2
n

(
n−1∑
i=1

αiyi

)2
 dy1 · · · dyn−1.

Conversely, if j = n then

Jn =

∫
Rn−1

βn Cn exp

[
−1

2

n−1∑
i=1

(
y2

i + 2cαiyi

)]
dy1 · · · dyn−1,

where

Cn =

∫ ∞

ξ

(yn + cαn) exp

[
−1

2

(
y2

n + 2cαnyn

)]
dyn

= exp

−1

2

 1

α2
n

(
n−1∑
i=1

αiyi

)2

− 2c
n−1∑
i=1

αiyi

.

Substituting this expression for Cn into the expression for Jn gives Jn = βnJ
∗, which in

turn implies that

(2π)n/2 J = exp

(
−c2

2

) n∑
j=1

αjβj

αn

J∗.

The integral J∗ can now be reduced to a simple expression by means of a reduction

formula. Considering the exponent in the integrand we may deduce that

n−1∑
i=1

y2
i +

1

α2
n

(
n−1∑
i=1

αiyi

)2

=
1

α2
n

(y1

√
α2

n + α2
1 +

α1

∑n−1
i=2 αiyi√

α2
n + α2

1

)2


+
n−1∑
i=2

y2
i +

1

α2
n + α2

1

(
n−1∑
i=2

αiyi

)2

.

Letting

t = y1

√
α2

n + α2
1 +

α1

∑n−1
i=2 αiyi√

α2
n + α2

1

we have dt =
√

α2
n + α2

1 dy1 and so

J∗ =

∫
Rn−2

exp

−1

2

n−1∑
i=2

y2
i +

1

α2
n + α2

1

(
n−1∑
i=2

αiyi

)2


∫ ∞

−∞

exp
(
−1

2
t2

α2
n

)
√

α2
n + α2

1

dt dy2 · · · dyn−1

=

√
2π αn√
α2

n + α2
1

∫
Rn−2

exp

−1

2

n−1∑
i=2

y2
i +

1

α2
n + α2

1

(
n−1∑
i=2

αiyi

)2
 dy2 · · · dyn−1.
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Iterating this result we obtain

J∗ = αn (2π)(n−1)/2.

Substituting this back into the expression for (2π)n/2 J , cancelling like terms, we find

J = exp

(
−c2

2

)
αT β√

2π

and the proof is complete.

Appendix 3. Proof of Theorem 5

For convenience let

J =

∫
Hα

c

βTxφn(x, M) dx

so that

(2π)n/2|M |1/2 J =

∫
Hα

c

βTx exp

(
−1

2
xT M−1x

)
dx1 · · · dxn.

The matrix M−1 is by definition a symmetric, positive definite matrix and so possesses

a Cholesky decomposition M−1 = ΨT Ψ, where Ψ, the Cholesky factor, is a nonsingular,

upper triangular matrix (Gentle, 1998). Transforming the variables to y = Ψx we find

that dy = |Ψ| dx. Note that M−1 = ΨT Ψ implies that |M | = |Ψ|−2 and so we have

(2π)n/2 J =

∫
Ĥα

c

β̂
T
y exp

(
−1

2
yTy

)
dy

where we have set β̂ = Ψ−T β and

Ĥα
c = Ψ (Hα

c ) =
{
y ∈ Rn : α̂Ty ≥ c

}
(10)

where α̂ = Ψ−T α. Applying Lemma 4 we find that

J = exp

(
−1

2

c2

‖α̂‖2

)
α̂T β̂√
2π ‖α̂‖

= exp

(
−1

2

c2

σ2

)
αT Mβ

σ
√

2π
.
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with σ2 = αT Mα

Appendix 4. Proof of Theorem 6

Let

J =

∫
Hα

c

exp (rβTx) φn(x, M) dx

Introducing the Cholesky decomposition of M−1 = ΨT Ψ and transforming the variables

to y = Ψx, as was done in Appendix 3, we find that

(2π)n/2|M |1/2|Ψ| J =

∫
Ĥα

c

exp
[
−1

2
(yTy − 2β̂

T
y)
]
dy,

where Ĥα
c is defined in Appendix 3 and β̂ = rΨ−1β.

Setting z = y−β̂ it follows that yTy−2β̂
T
y = zTz−‖β̂‖2. Hence if we define p = c−α̂T β̂

we have

(2π)n/2|M |1/2|Ψ| J = exp (1
2
‖β̂‖2)

∫
Ĥα

p

exp (−1
2
zTz) dz

Following the method of Tallis (1965), we let z = Bw, where the first column of the

matrix B is the unit vector α̂/‖α̂‖ and the other columns of B form an orthonormal

basis for the hyperplane defined by α̂Tz = p. Then

Ĥα
p = {w ∈ Rn : α̂T Bw ≥ p} = {w = (w1, . . . , wn)T ∈ Rn : w1 ≥ p̂}, (11)

where p̂ = p/‖α̂‖.

Therefore, separating the integral accordingly, we have

(2π)n/2|M |1/2|Ψ| J = exp (1
2
‖β̂‖2)

∫
Rn−1

exp

(
−1

2

n∑
i=2

w2
i

) ∫ ∞

p̂

exp (−1
2
w2

1) dw1 dw2 · · · dwn

= exp (1
2
‖β̂‖2) (2π)(n−1)/2

∫ ∞

p̂

exp (−1
2
w2

1) dw1

= exp (1
2
‖β̂‖2) (2π)n/2 Φ [−p̂]

18



Cancelling like terms and substituting for α̂, β̂ and p̂ we obtain (7) as required.

Appendix 5. Derivation of equation (8)

The result follows from Theorem 3. We note that U(z) = z + sA(1 − exp (−rz) is a

continuous function that is increasing with z, satisfying U(0) = 0. Noting also that

G̃A ≥ 0 defines the half-space

U+
n = {x ∈ Rn : U(αTx− cA) ≥ 0},

Theorem 3 implies

E[U(G̃A|A)] =

∫ ∞

cA

[η − cA + sA(1− exp (−r(η − cA))]
exp

(
−1

2
η2

σ2

)
σ
√

2π
dη

= (sA − cA)IA1 + IA2 − sA exp (rcA)IA3,

where σ2 = αT Mα and

IA1 =

∫ ∞

cA

exp
(
−1

2
η2

σ2

)
σ
√

2π
dη

=

∫ ∞

cA/σ

exp
(
−1

2
v2
)

√
2π

dv, by substituting v = η/σ

= Φ

[
−cA

σ

]
, by symmetry of the normal distribution.

IA2 =

∫ ∞

cA

η
exp

(
−1

2
η2

σ2

)
σ
√

2π
dη

=
1√
2π

[
−σ exp

(
−1

2

η2

σ2

)]∞
cA

=
σ√
2π

exp

(
−1

2

c2
A

σ2

)
.

IA3 =

∫ ∞

cA

exp
(
−1

2
η2

σ2 + rη
)

σ
√

2π
dη

=

∫ ∞

cA

exp
(
−1

2
(η+rσ2)2

σ2 + 1
2
r2σ2

)
σ
√

2π
dη

= exp (1
2
r2σ2)

∫ ∞

(cA+rσ2)/σ

exp
(
−1

2
v2
)

√
2π

dv, after substituting v = (η + rσ2)/σ
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= exp (1
2
r2σ2) Φ

[
−(cA + rσ2)

σ

]
.

Combining the above expressions we obtain equation (8).

Appendix 6. Derivation of equation (9)

Noting that G̃A = αTx− cA ≥ 0 defines the half-space

Hα
cA

= {x ∈ Rn : αTx ≥ cA},

we wish to calculate

E[U(G̃B|A)] =

∫
Hα

cA

[
G̃B + sB

(
1− exp (−rG̃B)

)]
φn(x, M) dx

with G̃B = βTx− cB.

We can write E[U(G̃B|A)] = (sB − cB)IB1 + IB2 − sB exp (rcB)IB3, where

IB1 =

∫
Hα

cA

φn(x, M) dx

IB2 =

∫
Hα

cA

βTxφn(x, M) dx

IB3 =

∫
Hα

cA

exp (−rβTx) φn(x, M) dx

IB1 may be evaluated by first completing the square and then using the method of Tallis

(1965)to transform the coordinates, as was done in appendix 4. This results in

IB1 = Φ

[
−cA

σ

]
with σ2 = αT Mα. Theorems 5 and 6, respectively, imply that

IB2 =
αT Mβ

σ
√

2π
exp

(
−1

2

c2
A

σ2

)
IB3 = exp

(
rcB + 1

2
r2βT Mβ

)
Φ

[
−(cA + rαT Mβ)

σ

]
.

Combining the above expressions for IB1, IB2 and IB3 we obtain equation (9).
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