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The Correlation Matrix of the Brazilian Central Bank’s 

Standard Model for Interest Rate Market Risk 
 

 

José Alvaro Rodrigues Neto* 

 

 

Abstract 

 
 

Central Bank of Brazil is implementing a Value At Risk (V.A.R.) 
methodology to establish minimum capital requirements for financial 
institutions to bear market risk derived from interest rate fluctuations. This 
article shows that the construction of the correlation matrix of the Brazilian 
Central Bank’s Standard Model for Interest Rate is coherent, in the sense it 
is positive defined. 

                                                      
* Central Bank of Brazil. The author thanks Alexandre Tombini, André Amante, Fabio Araujo, Guilherme 
Arcoverde, Marta Baltar Moreira and Sérgio Werlang for their help. The remaining errors are only my 
responsability.  



 5 

The Correlation Matrix of the Brazilian Central Bank’s 

Standard Model for Interest Rate Market Risk 

 

 

1. Introduction 

 

Brazilian Central Bank recently established capital requirements in order to prevent 

market risk derived from interest rate fluctuations. It was constructed a model to do so, 

named the Standard Model for Interest Rate Market Risk. It is based on a value at risk 

(VaR) methodology. 

 

This article deals with a technical aspect of Brazilian Central Bank’s Standard Model  

for capital requirements for financial institutions to bear market risk. This Standard 

Model has a parameterized structure. Within this structure, the correlation matrix of the 

series of the factors associated to the so called vertexes of the term structure of the 

interest rate has a crucial importance. 

 

This concepts were implemented by the construction of a matrix depending on two 

parameters that captures the observed behavior of the historical correlation between the 

vertexes. 

  

The problem that the construction brought was to guarantee that for all range of the 

parameters the adopted procedures are mathematically correct, that is, the correlation 

matrix must be positive defined, so the calculated value at risk is a well defined real 

positive number. 

 

The Brazilian VaR model for interest rate risk can be found in [1] and [2]. For a general 

treatment of VaR see  [3] or the references there. 
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This work is divided in four sections, one table and 4 graphs. Section 2 explains the 

mathematical problem. Section 3 shows two ideas used to attack the problem, while 

section 4 explains the nature of the difficulty in solving it analytically, argues why it is 

necessary to use careful numerical procedures and explains why it is safe to say that the 

correlation matrix is in fact positive defined for a certain range of the parameters. 

 

 

2. The Mathematical Problem 

 

The 7x7 matrix of correlation 77 xA  with coefficients ( )7
1, =jiijρ  is symmetric, with main 

diagonal of ones. The problem is to prove that it is positive defined for a certain range 

of values of its two parameters k ,ρ . 

 

The definition of the coefficients are:  

 

),()1( jim
ij ρρρ −+= , 

 

where k
ijbjim )(),( = , and the matrix 7 ,1)( ≤≤ jiijb  is given by: 

 

=≤≤ 7 ,1)( jiijb





























15.136121836
5.112481224

32124612
6421236

1284215.13
1812635.112
3624126321

 

 

with the parameters k  ,ρ  varying between 9.01.0 ≤≤ ρ   and  9.01.0 ≤≤ k .  
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Let [ ] [ ]9.0 ,1.09.0 ,1.0 ×=K . It is clearly a compact set.  

 

It is easy to see that 77 xA  is symmetric. It is a well known fact that every symmetric 

matrix is equivalent to a diagonal matrix of its eigenvalues, which are real numbers. So 

it will be positive defined if and only if all eigenvalues (and hence the minimum of 

them) are strict positive numbers. 

 

So it is enough to consider the function ℜ→ℜ⊂ 2: Kf  that takes the parameters k ,ρ  

in the minimum of the eigenvalues. Nevertheless it is not easy to measure the sensibility 

of ℜ→ℜ⊂ 2: Kf  with respect to k  ,ρ , that is, to calculate 
k
ff

∂
∂

∂
∂  ,
ρ

. In fact, it is not 

clear that this function is differentiable or even if it is continuos1. The figures 1 and 2 

below show that when a parameter of a polynomial is changing smoothly, the minimum 

real zero of the polynomial can change in a non smooth way: 

 

f(x,e)=0.2(x+1.2)(X+0.8)(x-0.8)(x-1.2) +ex

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

f(x
)

 

 

Figure 1: 0)0,( =xf  has 4 real roots. The lower one is smaller than –1. 
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f(x,e)=0.2(x+1.2)(x+0.8)(x-0.8)(x-1.2)+ex

-0.5

0

0.5

1

1.5

2

-3 -2 -1 0 1 2 3

f(x
)

 

 

Figure 2: 0)06.0,( =−xf  has only two real roots. The smaller one is greater than zero. 

 

Figures 3 and 4 in the end show the complete graph of  ℜ→ℜ⊂ 2: Kf  and its level 

curves. Figures 5 and 6 show zooms at particular region of the graph, where f  has a 

strange behavior. Notice that f  is always a continuos function. 

 

 

                                                                                                                                                            
1 In this case f will be continuos. 
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3. The Solution 

 

3.1 First Solution 

 

Initially the idea was to use the following well known theorem: 

 

Theorem (Sylvester’s Criterion for a Positive Defined Matrix): 

Let A  be a real symmetric square matrix. So A  is positive defined if and only if 

0det >A  and 0det >kA  for all minors kA , the square sub matrix of A , of order k , 

obtained from A  by deleting the last rows and columns, that is: 

 

011 >ρ ; 0
2221

1211 >
ρρ
ρρ

; ...; 0>A . 

 

The algebraic expressions for this minors have many parcels and most of them are non 

analytical, so whether all the minors are positive in the desirable range of the parameters  

( 9.01.0 ≤≤ ρ  and 9.01.0 ≤≤ k , a continuos range) can only be verified numerically.  

 

A serious problem is that it is necessary to make an infinity number of calculations to 

check it out. 
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3.2 Second Approach – Spectral Decomposition 

 

An different approach could be given by the observation that it is enough to prove that 

for all 7ℜ∈x  the quadratic formQ  defined by: 

 

ℜ→ℜℜ 77: xQ  

 

),( yxQ ∑∑
==

=
7

1
,

7

1 j
jiji

i

yxρ   

 

and associated with the symmetric matrix A , with coefficients ijρ , has the property: 

),( xxQ 0 ´ ≥⋅⋅= xAx , 7ℜ∈∀x , with equality holding if and only if 70 ℜ∈=x .  

 

The main idea was the study of the problematic directions, that is, the directions where 

),( xxQ  assumes its minimum values. Formally, since ),( yxQ  is a homogeneous 

function of second degree, it is enough to prove the claim for all 6Sx∈ , the six 

dimensional sphere with unitary radius and center in the origin of 7ℜ . 

 

The Signal Matrix 

 

In order to find which parcels of ),( xxQ  are positive it can be defined a 7x7 matrix ∑ , 

whose coefficients are either the positive sign (+) or the negative sign (-). 
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For instance, if jx  is positive for 4,3,2,1=j  and negative for 7,6,5=j  the matrix 

becomes: 

 

=Σ





























+++−−−−
+++−−−−
+++−−−−
−−−++++
−−−++++
−−−++++
−−−++++

 

 

It can be observed that the problematic directions are those corresponding to the vectors 
6Sx∈  with 4 positive coordinates and 3 negative coordinates or vice versa. In this case 

it can be easily checked there are 25 positive parcels and 24 negative ones in ),( xxQ .  

These are the configurations of signs from the jx , 7,,1�=j , that gives the minimum 

net amount of positive signs. So, without loss of generality, it can be supposed there are 

4 positive values of jx  and 3 negative ones. 

 

Let nlk xxx  , x, , m  be positive and r x, , qp xx  be negative, with: 

 

{ } { }rqpnmlk ,,,,,,7,,1 =�  

 

In this case: 

 

=),( xxQ +∑
=

7

1

2

i
iii xρ ∑∑

−⊕

+
12

,

9

,

22
ji

jiij
ji

jiij xxxx ρρ  
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where ∑
⊕9

, ji

represents positive parcels, that is, ),( ji  such that { }nmlkji ,,,, ∈  or 

{ }rqpji ,,, ∈  and ∑
−12

, ji

represents the negative ones ( { } { }rqpjnmlki ,,,,,, ∈∈  or vice 

versa). 

 

It was numerically verified that the parameters 1.0=ρ , 1.0=k  of A  are those which 

make it have the lower minimum eigenvalue. With this parameters it can be observed 

that all the coefficients ijρ  are about the same, say ρ , between 0.96 and 0.99. A table 

with some matrixes for different parameters is presented in the end. 

 

Fix the worst direction, that is, the direction that makes the smaller eigenvalue of the 

matrix A (with fixed parameters 1.0=ρ , 1.0=k ) assumes its minimum. This direction 

is formally represented by 6Sx∈ . Associated with this fixed values of jx  there is an 

unique signal matrix Σ . 

 

In this case: 

 

),( xxQ ),(. xxRρ≅ , where =),( xxR +∑
=

7

1

2

i
ix ∑∑

−⊕

+
12

,

9

,

22
ji

ji
ji

ji xxxx  

 

So the problem becomes to minimize ),( xxR , with 6Sx∈ . But R  is an semi-positive 

quadratic form. Its defined by a symmetric matrix (by abuse of notation it is also called 

R ) with eigenvalues  0 ,0 ,0 ,0 ,0 ,0 ,7 . The corresponding eigenvectors forms an 

orthogonal basis of 7ℜ . 

 



 13 

Let 7v  be the eigenvector corresponding to the eigenvalue 7. It can be seen 

=),( xxR x∀  ,0  such that 0, 7 =〉〈 vx . So, there is an hiper-plane H  of co-dimension 

one, such that for all Hx∈ , =),( xxR 0 . 

 

In that way ),( xxQ  can be extremely close to zero in an set with strict positive 

Lebesgue measure. Whether ),( xxQ  will be greater than zero depends on the 

combination of two factors: the chosen direction and the values ijρ  (the parameters). At 

each fixed direction ( Σ  uniquely defined) the sign of ),( xxQ  will be determinate by the 

sums: 

 

∑
−12

,

2
ji

jiij xxρ   and   +∑
=

7

1

2

i
iii xρ ∑

⊕9

,

2
ji

jiij xxρ . 

 

 

4. The Results and Conclusions 

 

Within the parameters ( 9,0,1,0 ≤≤ kρ ) the Brazilian Central Bank adopts, the region 

where the lower eigenvalue of the matrix A  has its minimum is a neighborhood2 of the 

point: 

 





=
=

1.0
1.0

k
ρ

 

 

being this value approximately 0.0028.  

 

                                                      
2 In fact, this point is the minimum.  
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For this the numerical values of the function ℜ→ℜ2:f  and its partial derivatives 

k
ff

∂
∂

∂
∂  ,
ρ

 were calculated. By the mean value theorem the desired result follows3. 

However, it should be clear that it was used a numerical procedure. 

 

So, within the specified parameters k  ,ρ  of A  it is possible to guarantee that A  is 

positive defined. 

 

Nevertheless, the pure analytical prove by Sylvester’s Criterion is not possible because 

the determinants of all the minors kA  are made of many parcels and a great part of them 

are non analytic. Checking if these expressions are positive for all range of the 

parameters is a problem similar to find a solution for the equation xx =2 . It can only be 

done numerically. 

 

The methodology develop in this study can be easily expanded for similar problems4. 

It is also interesting to observe the behavior of the function: 

 

[ ] [ ] ℜ→× 9.0  ,1.09.0  ,1.0:f  (which takes the parameters k  ,ρ  in the minimum 

eigenvalue of A ) in the region: 

 





≤≤
≤≤

9.07.0
3.01.0

k
ρ

 

 

It looks like it is close to a non continuos point. See figure 5 in the end. 

                                                      
3 In fact, to be more rigors the numerical error of the derivatives should be calculated by the second 
derivatives, being their errors corrected by the third derivatives and so on. But numerical values are 
sufficient to ensure the desired results. 
4 Similar problems with a different formula for the coefficients or with different dimension. 
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Table 1 

 
m(i,j)

Rho 0.1 1.00 0.99 0.99 0.98 0.97 0.97 0.96 1.00 1.07 1.12 1.20 1.28 1.37 1.43
k 0.1 0.99 1.00 1.00 0.99 0.98 0.97 0.97 1.07 1.00 1.04 1.12 1.20 1.28 1.34

0.99 1.00 1.00 0.99 0.99 0.98 0.97 1.12 1.04 1.00 1.07 1.15 1.23 1.28
0.98 0.99 0.99 1.00 0.99 0.99 0.98 1.20 1.12 1.07 1.00 1.07 1.15 1.20
0.97 0.98 0.99 0.99 1.00 0.99 0.99 1.28 1.20 1.15 1.07 1.00 1.07 1.12
0.97 0.97 0.98 0.99 0.99 1.00 1.00 1.37 1.28 1.23 1.15 1.07 1.00 1.04
0.96 0.97 0.97 0.98 0.99 1.00 1.00 1.43 1.34 1.28 1.20 1.12 1.04 1.00

m(i,j)
Rho 0.1 1.00 0.92 0.85 0.69 0.47 0.26 0.17 1.00 1.87 2.69 5.02 9.36 17.47 25.16

k 0.9 0.92 1.00 0.96 0.85 0.69 0.47 0.34 1.87 1.00 1.44 2.69 5.02 9.36 13.48
0.85 0.96 1.00 0.92 0.79 0.60 0.47 2.69 1.44 1.00 1.87 3.48 6.50 9.36
0.69 0.85 0.92 1.00 0.92 0.79 0.69 5.02 2.69 1.87 1.00 1.87 3.48 5.02
0.47 0.69 0.79 0.92 1.00 0.92 0.85 9.36 5.02 3.48 1.87 1.00 1.87 2.69
0.26 0.47 0.60 0.79 0.92 1.00 0.96 17.47 9.36 6.50 3.48 1.87 1.00 1.44
0.17 0.34 0.47 0.69 0.85 0.96 1.00 25.16 13.48 9.36 5.02 2.69 1.44 1.00

m(i,j)
Rho 0.9 1.00 0.98 0.98 0.96 0.95 0.94 0.94 1.00 1.07 1.12 1.20 1.28 1.37 1.43

k 0.1 0.98 1.00 0.99 0.98 0.96 0.95 0.95 1.07 1.00 1.04 1.12 1.20 1.28 1.34
0.98 0.99 1.00 0.98 0.97 0.96 0.95 1.12 1.04 1.00 1.07 1.15 1.23 1.28
0.96 0.98 0.98 1.00 0.98 0.97 0.96 1.20 1.12 1.07 1.00 1.07 1.15 1.20
0.95 0.96 0.97 0.98 1.00 0.98 0.98 1.28 1.20 1.15 1.07 1.00 1.07 1.12
0.94 0.95 0.96 0.97 0.98 1.00 0.99 1.37 1.28 1.23 1.15 1.07 1.00 1.04
0.94 0.95 0.95 0.96 0.98 0.99 1.00 1.43 1.34 1.28 1.20 1.12 1.04 1.00

m(i,j)
Rho 0.9 1.00 0.91 0.90 0.90 0.90 0.90 0.90 1.00 1.87 2.69 5.02 9.36 17.47 25.16

k 0.9 0.91 1.00 0.94 0.90 0.90 0.90 0.90 1.87 1.00 1.44 2.69 5.02 9.36 13.48
0.90 0.94 1.00 0.91 0.90 0.90 0.90 2.69 1.44 1.00 1.87 3.48 6.50 9.36
0.90 0.90 0.91 1.00 0.91 0.90 0.90 5.02 2.69 1.87 1.00 1.87 3.48 5.02
0.90 0.90 0.90 0.91 1.00 0.91 0.90 9.36 5.02 3.48 1.87 1.00 1.87 2.69
0.90 0.90 0.90 0.90 0.91 1.00 0.94 17.47 9.36 6.50 3.48 1.87 1.00 1.44
0.90 0.90 0.90 0.90 0.90 0.94 1.00 25.16 13.48 9.36 5.02 2.69 1.44 1.00

0.0067

0.0601

m
in

im
um

 
ei

ge
nv

al
ue

m
in

im
um

 
ei

ge
nv

al
ue

m
in

im
um

 
ei

ge
nv

al
ue

m
in

im
um

 
ei

ge
nv

al
ue

0.0028

0.0328

A(i,j) =

A(i,j) =

A(i,j) =

A(i,j) =

 
 
 

Table 1: matrixes A  and m(i,j), for four sets of the parameters k  ,ρ and its minimum 

eigenvalue. 
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Figure 3: function ℜ→ℜ⊂ 2: Kf . The vertical axis represents the values of f . The 

ρ  axis has only one division (at 0.5) and the k  axis has marks at 0.2, 0.4, 0.6 and 0.8.  

 

 

 

 

 

 

 

 

 

 

Figure 4: Level curves of ℜ→ℜ⊂ 2: Kf . 
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Figure 5: the “strange” region of ℜ→ℜ⊂ 2: Kf  

 

 

 

 

 

 

 

 

 

 

 

Figure 6: level curves of the previous graph. 
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