ISSN 1518-3548

provided by Research Papers in Economics

Working Paper Series

Optimal Monetary Rules: the Case of Brazil

Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak February, 2003

ISSN 1518-3548 CGC 00.038.166/0001-05

Working Paper Series	Brasília	n. 63	Feb	2003	p. 1 – 15

Working Paper Series

LXU	ш	CU	by

Research Department (Depep)

(E-mail: workingpaper@bcb.gov.br)

Reproduction permitted only if source is stated as follows: Working Paper Series n. 63

Authorized by Ilan Goldfajn (Deputy Governor for Economic Policy).

General Control of Subscription:

Banco Central do Brasil

Demap/Disud/Subip

 $SBS-Quadra\ 3-Bloco\ B-Edifício\,\hbox{-Sede}-2^o\ subsolo$

70074-900 Brasília – DF – Brazil

Phone: (5561) 414-1392 Fax: (5561) 414-3165

The views expressed in this work are those of the authors and do not reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem a visão do Banco Central do Brasil.

 $A inda \ que \ este \ artigo \ represente \ trabalho \ preliminar, \ cita \\ \~cão \ da \ fonte \ \'e \ requerida \ mesmo \ quando \ reproduzido \ parcialmente.$

Banco Central do Brasil Information Bureau

Address: Secre/Surel/Dinfo

SBS – Quadra 3 – Bloco B Edifício -Sede, 2º subsolo 70074-900 Brasília – DF

Phones: (5561) 414 (....) 2401, 2402, 2403, 2404, 2405, 2406

DDG: 0800 992345

FAX: (5561) 321-9453

Integrate http://www.bab.e.

Internet: http://www.bcb.gov.br
E-mails: cap.secre@bcb.gov.br
dinfo.secre@bcb.gov.br

Optimal Monetary Rules: The Case of Brazil

Charles Lima de Almeida

Marco Aurélio Peres

Geraldo da Silva e Souza

Benjamin Miranda Tabak*

Abstract

Within a dynamic programming approach we derive an optimal rule for the central bank to attain it's inflation targeting goals. The short-run nominal interest rate is used as an instrument to achieve monetary objectives. The model is tested for the Brazilian economy and compared with results found for other countries. Evidence for the estimated feedback interest rule for the Central Bank suggests that the cost of reducing inflation in an open economy is lower than that of a closed economy.

JEL Classification: E43, E52.

Keywords: optimal Taylor rule, monetary policy, inflation targeting.

Resumo

Através de técnicas de programação dinâmica derivamos uma regra ótima para o Banco Central atingir suas metas de inflação. A taxa nominal de juros é utilizada como instrumento para atingir os objetivos de política monetária. O modelo é testado para a economia brasileira e comparam-se os resultados com encontrados para outros países. Evidência para regra de *feedback* encontrada sugere que os custos de reduzir a inflação em economias abertas é menor do que em economias fechadas.

2

^{*} Research Department, Central Bank of Brazil. Corresponding author's e-mail address: benjamin.tabak@bcb.gov.br

1. Introduction

Recently, several countries have been adopting a target inflation framework for monetary policy. New Zealand, Canada and United Kingdom have decided to employ an inflation targeting framework in the conduit of monetary policy and have successfully reduced their inflation rates and gained control on inflation. It is often argued that an independent central bank is a key element for a successful monetary policy. The good performance in the maintenance of low inflation rates that the National Bank of Switzerland and the Bundesbank have had is mainly attributed to their high level of independence, and it has certainly strongly influenced the position of the system of European central banks toward an independent central bank.

Following this trend, other countries (e.g. Chile, Mexico, Argentina, Spain and France) have been granting a greater independence for their central banks allowing them to conduce monetary policy with much less government interference. The main goal is price stability and a common point among these countries has been the adoption of an inflation targeting framework. In Brazil, since mid-1999, six months after abandoning the fixed exchange rate regime, the Central Bank of Brazil has adopted an inflation targeting regime for the conduit of monetary policy.

The main purpose of this paper is to derive an optimal feedback rule based on the model proposed by Ball (1998) and to estimate a short run reaction function for interest rates for Brazil, for an open economy. The main assumption is that interest rates are the central bank's main instrument to reduce inflation and the level of activity.

Normally, models estimating IS-AS-type models use OLS regressions. In this paper we derive an optimal feedback rule and use the estimated coefficients from IS-AS equations to find an empirical relation between central bank's instrument and macroeconomic variables such as inflation, output gap and exchange rates. We suggest the use of two stage least squares using adequate instrumental variables to estimate these equations to overcome problems inherent to the nature of Brazilian macroeconomic variables². We also compare our results with those found in the literature.

The plan of the paper is as follows. In the first section we derive a Taylor rule for the Brazilian economy. Section two presents empirical results. In the last section we conclude and give directions for further research.

2. The model

In this section an optimal monetary rule is derived for the Brazilian economy. We use the following IS equation:

$$y_{t+1} = a_1 y_t - a_2 i_t + a_3 e_t + u_{t+1}$$
 (2.1)

where y_t stands for the output gap, i_t is the real interest rate, e_t is the real exchange rate,

1

¹ For an interesting analysis of inflation targeting see Walsh (2001).

² Using instrumental variables for the terms containing lagged inflation is crucial because these terms are correlated with the residuals.

and u_t is a demand shock, assumed to be normally distributed.

The supply curve is represented by the traditional Phillips curve:

$$\boldsymbol{p}_{t+1} = \boldsymbol{p}_t + \boldsymbol{g} y_t + \boldsymbol{m} (\boldsymbol{e}_t - \boldsymbol{e}_{t-1}) + \boldsymbol{h}_{t+1}$$
 (2.2)

where p_t is the inflation rate, Δe_t is the depreciation rate in the nominal exchange rate and h_{t+1} is the supply shock not correlated with u_{t+1} .

The policy maker chooses in instant t the interest rate i_t , and the state variable in instant t is:

$$z_t = \mathbf{g} y_t + \mathbf{p}_t + \mathbf{m} (\mathbf{e}_t - \mathbf{e}_{t-1})$$
 (2.3)

The optimal feedback rule will be given by:

$$\boldsymbol{q}_{t} = X_{\mathcal{Z}_{t}} \tag{2.4}$$

where

$$\mathbf{q}_{t} = a_{1} y_{t_{t}} + a_{2} i_{t} + \mathbf{m} \mathbf{e}_{t} \tag{2.5}$$

Equations (1) and (2) can be rewritten as:

$$y_{t+1} = q_t + u_{t+1} \tag{2.6}$$

and

$$\boldsymbol{p}_{t+1} = \boldsymbol{z}_t + \boldsymbol{h}_{t+1} \tag{2.7}$$

We assume that the central bank's loss function is given by:

$$L = \frac{1}{2} E_t \sum_{i=1}^{\infty} \boldsymbol{b}^{i} \left[\boldsymbol{l} y_{t+1}^2 + \boldsymbol{p}_{t+1}^2 \right]$$
 (2.8)

The objective of the policy maker is to minimize this loss function subject to:

$$z_{t+1} = z_t + gq_t + h_{t+1} + gu_{t+1}$$
(2.9)

Define the value function as:

$$V(z_t) = \min E_t \left[\frac{1}{2} (\mathbf{I} y_{t+1}^2 + \mathbf{p}_{t+1}^2) + \mathbf{b} V(z_{t+1}) \right]$$
 (2.10)

replacing (2.6), (2.7) and (2.9) in the value function we obtain:

_

$$V(z_{t}) = \min_{\mathbf{q}_{t}} \left\{ \frac{1}{2} \mathbf{I} E_{t} (\mathbf{q}_{t} + u_{t+1})^{2} + \frac{1}{2} E_{t} (z_{t} + \mathbf{h}_{t+1})^{2} + \mathbf{h}_{t+1} (2.11) \right\}$$

$$\mathbf{b} E_{t} V(z_{t} + \mathbf{g} \mathbf{q}_{t} + u_{t+1} + \mathbf{g} \mathbf{h}_{t+1})$$

Solving problem (2.11) with respect to \mathbf{q}_t gives the first order condition:

$$lq_{i} + gbV_{i}E_{i}(z_{i+1}) = 0 (2.12)$$

Applying the envelope theorem with respect to z_t obtains:

$$V_{z}(z_{t}) = z_{t} + \boldsymbol{b}V_{z}E_{t}(z_{t+1})$$
(2.13)

Multiplying (2.13) by g, substituting in (2.12), taking this expression one-step forward and the expectations

$$E_{t}V_{z}(z_{t+1}) = z_{t} + gq_{t} - \frac{1}{g}E_{t}(q_{t+1})$$
(2.14)

Replacing (2.14) in (2.12):

$$\boldsymbol{q}_{t} = -\frac{\boldsymbol{g}\boldsymbol{b}}{\boldsymbol{l} + \boldsymbol{g}^{2}\boldsymbol{b}} \boldsymbol{z}_{t} + \frac{\boldsymbol{b}\boldsymbol{l}}{\boldsymbol{l} + \boldsymbol{b}\boldsymbol{g}^{2}} \boldsymbol{E}_{t}(\boldsymbol{q}_{t+1})$$
(2.15)

When the policy is established in instant t, z_t is the state variable and thus the optimal policy rule has a quadratic form $\mathbf{q}_t = Xz_t$. Therefore

$$E_{t+1}(\mathbf{q}_{t+1}) = XE_{t}(z_{t+1}) = X(1 + \mathbf{g}X)z_{t}$$
(2.16)

replacing this expression in (2.15) obtains the following quadratic form:

$$\mathbf{l} \, \mathbf{b} \mathbf{g} X^{2} - (\mathbf{l} - \mathbf{b} \mathbf{l} + \mathbf{g}^{2} \mathbf{b}) X + \mathbf{g} \mathbf{b} = 0 \tag{2.17}$$

Stability requires |1+2g(1+a)X| < 1. Hence, the solution for (2.17) is given by:

$$X = \frac{(\mathbf{l} - \mathbf{b}\mathbf{l} + \mathbf{g}^{2}\mathbf{b}) \pm \sqrt{(\mathbf{l} - \mathbf{b}\mathbf{l} + \mathbf{g}^{2}\mathbf{b})^{2} + 4(\mathbf{g}^{2}\mathbf{b}^{2}\mathbf{l})}}{2\mathbf{b}\mathbf{g}\mathbf{l}}$$
(2.18)

remembering that:

$$z_{t+1} = z_t + gq_t = (Xg + 1)z_t \tag{2.19}$$

After some algebraic operations the product of the roots is:

_

$$X_1 X_2 = -\frac{1}{I} < 0 \tag{2.20}$$

The root of interest is the one that satisfies the stability condition, that is the negative root X_2 . Finally, replacing X_2 in (2.4) gives

$$\mathbf{q}_{t} = \frac{(\mathbf{l} - \mathbf{b}\mathbf{l} + \mathbf{g}^{2}\mathbf{b}) - \sqrt{(\mathbf{l} - \mathbf{b}\mathbf{l} + \mathbf{g}^{2}\mathbf{b})^{2} + 4(\mathbf{g}^{2}\mathbf{b}^{2}\mathbf{l})}}{2\mathbf{b}\mathbf{g}\mathbf{l}} z_{t}$$
(2.21)

We can derive the optimal rule for the interest rate

$$i_{t} = \frac{a_{1} g X_{2}}{a_{2}} y_{t} + \frac{a_{3}}{a_{2}} \Delta e_{t} + \frac{X_{2}}{a_{2}} p_{t} + h \frac{X_{2}}{a_{2}} e_{t}$$
(2. 22)

3. Empirical Results

For the econometric analysis we have used quarterly data and our sample begins in the first quarter of 1994 and ends in the last quarter of 2001. All variables are in natural logs. As a proxy for the output gap we have estimated a Hodrick-Prescott filter and used the difference between observed GDP and the filtered series. The inflation rate is given by IPCA. The interest rate is given by SELIC which is the instrument that the central bank uses to achieve it's price stability goals.

According to the results found in table 1 both the lag of the output gap and lagged interest rate are significant in explaining current output gap, and the sign of the coefficients are in line with the expected sign. We used as instruments a dummy for the Russian crisis, three lags for the interest rate and four lags for the government spending.

Table 1. IS equation - Closed Economy

Variables	Coefficients	p-value	
\mathcal{Y}_{t-1}	0.34**	0.04	
	(0.1697)		
i_{\cdot}	-0.06*	0.00	
•	(0.0117)		
Adjusted $R^2 = 77\%$			

Standard errors are given in parenthesis

Table 2 presents empirical results for the Phillips equation. Both lagged output gap and inflation are significant in explaining current inflation. We have used as instruments a dummy for the Russian crisis, six lags for the inflation rate and two lags for government spending.

^{*} Rejection of the null with 99% confidence

^{**} Rejection of the null with 95% confidence

Table 2. Phillips equation - Closed Economy

Variables	Coefficients	p-value	
\mathcal{Y}_{t-1}	0.34**	0.029	
	(0.014)		
$oldsymbol{p}_{t-1}$	0.60*	0.000	
	(0.023)		
Adjusted $R^2 = 90\%$			

Standard errors are given in parenthesis

Applying Augmented Dickey and Fuller tests the null of a unit root for the output gap, interest rates and inflation is rejected. Results for these unit roots are available upon request from the authors.

In order to derive the optimal policy rule for the Brazilian economy we assumed b = 0.7 and l = 1, which are the intertemporal discount factor and the relative weight of output gap in the loss function. After replacing this parameters and coefficients in table 1 and 2 one obtains

$$i_{t} = 5,5 \, y_{t} + 4,2 \mathbf{p}_{t} \tag{3.1}$$

Our results are quite different from those found in Taylor (1993) and Ball (1998) and are more in line with those found in Walsh (1997).

Table 3. Comparison of optimal rules - Closed Economy

Coefficients	\mathcal{Y}_t	$\boldsymbol{p}_{\scriptscriptstyle t}$	\mathcal{Y}_{t-1}
Taylor (1993)	0.50	1.50	-
Walsh (1997)	4.37	1.26	1.59
Authors	5.5	4.2	-
Ball (1998)	0.80	1.46	-

The coefficient on the output gap is similar to that found in Ball (1998), while the coefficient on inflation is much higher than that of the rest, which suggests that the central bank of Brazil has to increase it's interest rates much more than developed countries in order to counterbalance an increase in inflation.

In tables 4 and 5 we present results for an open economy.

^{*} Rejection of the null with 99% confidence

^{**} Rejection of the null with 95% confidence

Table 4. IS equation - Open Economy

Variables	Coefficients	p-value	_
y_{t-1}	0.36**	0.04	_
• 1 1	(0.168)		
e_{t-2}	-0.04**	0.05	
1-2	(0.018)		
i.	0.06*	0.00	
l	(0.014)		
Adjusted $R^2 = 75\%$			

Standard errors are given in parenthesis

Table 5. Phillips equation - Open Economy

Variables	Coefficients	p-value	
y_{t-1}	0.08**	0.02	
J 1-1	(0.05)		
$\Delta oldsymbol{e}_{\scriptscriptstyle t}$	0.07**	0.03	
ι	(0.01)		
$oldsymbol{p}_{t-1}$	0.65*	0.00	
I I-1	(0.038)		
Adjusted $R^2 = 64\%$			

Standard errors are given in parenthesis

Replacing the results one obtains the optimal rule:

$$i_t = 5.2y_t + 0.3\mathbf{p}_t + 0.6\mathbf{e}_{t-1} + 0.2\Delta e_t \tag{3.2}$$

To the best of our knowledge, most research on developed countries has estimated different optimal feedback rules, making comparisons more difficult. As we can see, the coefficient on inflation has decreased to 0.3. Thus, the nominal interest rate is increased more than five-to-one with increases in output gap. The cost to reduce inflation seems to be lower in an open economy, which is an argument in favor of commercial liberalization.

4. Conclusions

In this paper we have presented an optimal policy rule for the central bank to achieve it's monetary policy goals, derived using a dynamic programming approach and a dynamic loss function. We estimated IS-AS equations using two stage least squares and fitted an optimal feedback rule for short run interest rates for both a closed and open economy.

We have found that the feedback rule behaves differently from similar rules estimated for developed countries. For the open economy evidence suggests that interest rates needs to raise less than a one-to-one with inflation (while the contrary happens within a closed economy). Thus, it is found that within an open economy the central banks have much more power to reduce inflation than within a closed economy. This issue will be left for further research.

^{*} Rejection of the null with 99% confidence

^{**} Rejection of the null with 95% confidence

^{*} Rejection of the null with 99% confidence

^{**} Rejection of the null with 95% confidence

References

- Ball, L. (1998) Policy Rules for open Economies, NBER Working Paper 5952, October.
- Taylor, J. B. (1993) Discretion versus Policy Rules in Practice, Carnegie-Rochester Conferences on Public Policy, 39, December, 95-214.
- Walsh, C. E. (1997) Monetary Theory and Police, MIT Press: Chicago.
- Walsh, C.E. (2001) Teaching Inflation Targeting: An analysis for intermediate macro, University of California. Forthcoming in Journal of Economic Education.

Banco Central do Brasil

Trabalhos para Discussão

Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series

 $Working\ Papers\ in\ PDF\ format\ can\ be\ downloaded\ from:\ http://www.bc.gov.br$

1	Implementing Inflation Targeting in Brazil Joel Bogdanski, Alexandre Antonio Tombin e Sérgio Ribeiro da Costa Werlang	Jul/2000
2	Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil Eduardo Lundberg	Jul/2000
	Monetary Policy and Banking Supervision Functions on the Central Bank Eduardo Lundberg	Jul/2000
3	Private Sector Participation: A Theoretical Justification of the Brazilian Position Sérgio Ribeiro da Costa Werlang	Jul/2000
4	An Information Theory Approach to the Aggregation of Log-Linear Models Pedro H. Albuquerque	Jul/2000
5	The Pass-through from Depreciation to Inflation: A Panel Study Ilan Goldfajn e Sérgio Ribeiro da Costa Werlang	Jul/2000
6	Optimal Interest Rate Rules in Inflation Targeting Frameworks José Alvaro Rodrigues Neto, Fabio Araújo e Marta Baltar J. Moreira	Jul/2000
7	Leading Indicators of Inflation for Brazil Marcelle Chauvet	Set/2000
8	The Correlation Matrix of the Brazilian Central Bank's Standard Model for Interest Rate Market Risk José Alvaro Rodrigues Neto	Set/2000
9	Estimating Exchange Market Pressure and Intervention Activity Emanuel-Werner Kohlscheen	Nov/2000
10	Análise do Financiamento Externo a Uma Pequena Economia Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	Mar/2001
11	A Note on the Efficient Estimation of Inflation in Brazil Michael F. Bryan e Stephen G. Cecchetti	Mar/2001
12	A Test of Competition in Brazilian Banking Márcio I. Nakane	Mar/2001

13	Modelos de Previsão de Insolvência Bancária no Brasil Marcio Magalhães Janot	Mar/2001
14	Evaluating Core Inflation Measures for Brazil Francisco Marcos Rodrigues Figueiredo	Mar/2001
15	Is It Worth Tracking Dollar/Real Implied Volatility? Sandro Canesso de Andrade e Benjamin Miranda Tabak	Mar/2001
16	Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil Para a Taxa de Variação do IPCA Sergio Afonso Lago Alves	Mar/2001
	Evaluation of the Central Bank of Brazil Structural Model's Inflation Forecasts in an Inflation Targeting Framework Sergio Afonso Lago Alves	Jul/2001
17	Estimando o Produto Potencial Brasileiro: Uma Abordagem de Função de Produção Tito Nícias Teixeira da Silva Filho	Abr/2001
	Estimating Brazilian Potential Output: A Production Function Approach Tito Nícias Teixeira da Silva Filho	Ago/2002
18	A Simple Model for Inflation Targeting in Brazil Paulo Springer de Freitas e Marcelo Kfoury Muinhos	Abr/2001
19	Uncovered Interest Parity with Fundamentals: A Brazilian Exchange Rate Forecast Model Marcelo Kfoury Muinhos, Paulo Springer de Freitas e Fabio Araújo	Maio/2001
20	Credit Channel without the LM Curve Victorio Y. T. Chu e Márcio I. Nakane	Maio/2001
21	Os Impactos Econômicos da CPMF: Teoria e Evidência Pedro H. Albuquerque	Jun/2001
22	Decentralized Portfolio Management Paulo Coutinho e Benjamin Miranda Tabak	Jun/2001
23	Os Efeitos da CPMF sobre a Intermediação Financeira Sérgio Mikio Koyama e Márcio I. Nakane	Jul/2001
24	Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn e	Ago/2001
	Alexandre Antonio Tombini	
25	Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00 Pedro Fachada	Ago/2001
26	Inflation Targeting in an Open Financially Integrated Emerging Economy: the case of Brazil Marcelo Kfoury Muinhos	Ago/2001

27	Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais	Set/2001
	Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	
28	Regras Monetárias e Dinâmica Macroeconômica no Brasil: Uma Abordagem de Expectativas Racionais Marco Antonio Bonomo e Ricardo D. Brito	Nov/2001
29	Using a Money Demand Model to Evaluate Monetary Policies in Brazil Pedro H. Albuquerque e Solange Gouvêa	Nov/2001
30	Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates Benjamin Miranda Tabak e Sandro Canesso de Andrade	Nov/2001
31	Algumas Considerações Sobre a Sazonalidade no IPCA Francisco Marcos R. Figueiredo e Roberta Blass Staub	Nov/2001
32	Crises Cambiais e Ataques Especulativos no Brasil Mauro Costa Miranda	Nov/2001
33	Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation André Minella	Nov/2001
34	Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises Arminio Fraga e Daniel Luiz Gleizer	Nov/2001
35	Uma Definição Operacional de Estabilidade de Preços Tito Nícias Teixeira da Silva Filho	Dez/2001
36	Can Emerging Markets Float? Should They Inflation Target? Barry Eichengreen	Fev/2002
37	Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations Luiz Fernando Figueiredo, Pedro Fachada e Sérgio Goldenstein	Mar/2002
38	Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro Frederico Pechir Gomes	Mar/2002
39	Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio Paulo Castor de Castro	Mar/2002
40	Speculative Attacks on Debts, Dollarization and Optimum Currency Areas Aloisio Araujo e Márcia Leon	Abr/2002
41	Mudanças de Regime no Câmbio Brasileiro Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho	Jun/2002
42	Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella	Jun/2002

43	The Effects of the Brazilian ADRs Program on Domestic Market Efficiency Benjamin Miranda Tabak e Eduardo José Araújo Lima	Jun/2002
44	Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén	Jun/2002
45	Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence André Minella	Ago/2002
46	The Determinants of Bank Interest Spread in Brazil Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer e Márcio I. Nakane	Ago/2002
47	Indicadores Derivados de Agregados Monetários Fernando de Aquino Fonseca Neto e José Albuquerque Júnior	Set/2002
48	Should Government Smooth Exchange Rate Risk? Ilan Goldfajn e Marcos Antonio Silveira	Set/2002
49	Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade Orlando Carneiro de Matos	Set/2002
50	Macroeconomic Coor dination and Inflation Targeting in a Two- Country Model Eui Jung Chang, Marcelo Kfoury Muinhos e Joanílio Rodolpho Teixeira	Set/2002
51	Credit Channel with Sovereign Credit Risk: an Empirical Test Victorio Yi Tson Chu	Set/2002
52	Generalized Hyperbolic Distributions and Brazilian Data José Fajardo e Aquiles Farias	Set/2002
53	Inflation Targeting in Brazil: Lessons and Challenges André Minella, Paulo Springer de Freitas, Ilan Goldfajn e Marcelo Kfoury Muinhos	Nov/2002
54	Stock Returns and Volatility Benjamin Miranda Tabak e Solange Maria Guerra	Nov/2002
55	Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén	Nov/2002
56	Causality and Cointegration in Stock Markets: The Case of Latin America Benjamin Miranda Tabak e Eduardo José Araújo Lima	Dez/2002
57	As Leis de Falência: uma Abordagem Econômica Aloisio Araujo	Dez/2002
58	The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows The Brazilian Stock Market Case Benjamin Miranda Tabak	Dez/2002
59	Os Preços Administrados e a Inflação no Brasil Francisco Marcos R. Figueiredo e Thaís Porto Ferreira	Dez/2002

60	Delegated Portfolio Management Paulo Coutinho e Benjamin Miranda Tabak	Dez/2002
61	O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa João Maurício de Souza Moreira e Eduardo Facó Lemgruber	Dez/2002
62	Taxa de Juros e Concentração Bancária no Brasil Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama	Fev/2003