brought to you by **CORE**

ISSN 1518-3548

Working Paper Series

Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates

> Benjamin Miranda Tabak February, 2003

ISSN 1518-3548 CGC 00.038.166/0001-05

Working Paper Series

Edited by:

Research Department (Depep)

(E-mail: workingpaper@bcb.gov.br)

Reproduction permitted only if source is stated as follows: Working Paper Series n. 70

Authorized by Ilan Goldfajn (Deputy Governor for Economic Policy).

General Control of Subscription:

Banco Central do Brasil Demap/Disud/Subip SBS – Quadra 3 – Bloco B – Edifício-Sede – 2º subsolo 70074-900 Brasília – DF – Brazil Phone: (5561) 414-1392 Fax: (5561) 414-3165

The views expressed in this work are those of the authors and do not reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, citação da fonte é requerida mesmo quando reproduzido parcialmente.

Banco Central do Brasil Information Bureau

Address:	Secre/Surel/Dinfo
	SBS – Quadra 3 – Bloco B
	Edifício-Sede, 2º subsolo
	70074-900 Brasília – DF
Phones:	(5561) 414 () 2401, 2402, 2403, 2404, 2405, 2406
DDG:	0800 992345
FAX:	(5561) 321-9453
Internet:	http://www.bcb.gov.br
E-mails:	cap.secre@bcb.gov.br
	dinfo.secre@bcb.gov.br

Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates^{*}

Benjamin Miranda Tabak^{**}

Abstract

This paper examines the information content of COPOM decisions to change or to leave unchanged monetary policy by estimating the responses of the term structure to changes in the target for interest rates on COPOM meeting days. Within an event-study approach the evidence suggests that market participants anticipate, at least partially, monetary policy actions. Furthermore, it is found that the introduction of the floating exchange and inflation targeting regime has had a dampening effect on interest rate surprises along the term structure.

Keywords: information content, announcements, interest rates, monetary policy. JEL Classification: E4, G1

^{*} The author thanks an anonymous referee for very helpful comments. All errors are the author's responsibility. The opinions expressed here are those of the author and do not necessarily reflect those of the Central Bank or its authorities.

^{*} Research Department. Central Bank of Brazil. E-mail address: benjamin.tabak@bcb.gov.br

1. Introduction

In this paper the influence of monetary policy on the term structure of interest rates is examined by estimating the effect of changes in the Brazilian Monetary Policy Committee's (COPOM) short-term interest target rate.

There is a voluminous empirical literature examining this issue for the Fed funds rate such as Balduzzi et alli (1997, 1998), Bernanke and Blinder (1992), Cook and Hahn (1989), Reinhart and Simmin (1997) and Rolley and Sellon (1995, 1998a, 1998b). Furthermore, Buttiglione et alli (1996), Dale (1993), Haldane and Read (2000) and Hardy (1996) analyze the market reaction to changes in official interest rates for different countries such as the UK and Germany.

We are not aware of previous studies that have focused on the effects of changes in COPOM's target rate on the term structure of interest rates for the Brazilian market. Yet, the study of the response of market interest rates to changes in target official rates may give additional insights in the transmission channels of monetary policy, as it should be able to change the entire spectrum of short and long-term interest rates.

Cook and Hahn (1989) were pioneers in this literature. They found evidence of strong response of short-term market interest rates and small response of long-term to changes in the Fed funds rate in the 1970s.

Rolley and Sellon (1995) using a different sampling approach found evidence suggesting that long-term rates anticipate policy changes, well in advance of monetary policy actions, which could explain the results found in Cook and Hahn (1989).

Rolley and Sellon (1998a) estimate statistically significant responses of long-term interest rates. Besides, Roley and Sellon (1998b) examine how Treasury security yields, stock prices, and federal funds futures rates respond on Federal Open Market Committee (FOMC) meeting dates when expected policy actions do not occur. They found evidence supporting the existence of no announcement effects.

Others studies have focused on the impact of monetary policy surprises on other markets. An interesting example is Thorbecke and Alami (1994) that found evidence of significant effects on stock prices for changes in the federal funds target changes.

4

An interesting research paper is that of Haldane and Read (2000), which studies the response of the yield curve to monetary policy surprises for the United Kingdom, United States, Germany and Italy. They found evidence that the introduction of the inflation targeting regime has had a significantly dampening effect on yield curve surprises at the short end.

This paper seeks to determine whether there are significant surprises in monetary policy by studying the relationship between changes in the official target rate and in market interest rates. Moreover, it tests whether the introduction of the floating exchange and inflation targeting regime has had any impact on these interest rate surprises along the term structure of Brazilian interest rates.

The Brazilian economy has undergone significant changes in the 1990s. The first important structural break has been the Real stabilization plan that had success in defeating a two digit monthly inflation in Brazil in the mid 1990s. In early 1999 monetary authorities has adopted an inflation targeting (IT) framework for monetary policy and has abandoned the fixed exchange rate policy. The main goal of this paper is to address the implications of this change in monetary policy on domestic interest rates surprises.

Empirical evidence suggests that the adoption of the inflation targeting (IT) framework with a floating exchange rate has had a dampening effect on interest rate surprises along the term structure, which could be explained by a greater transparency of the conduct of monetary policy after the adoption of the IT.

The paper is structured as follows. In Section 2 we present the methodology that will be used in this paper. Section 3 shows the empirical responses of the Brazilian term structure of interest rates to changes in the COPOM's target rate while in Section 4 evidence on response of the spreads of the term structure is presented. Section 5 concludes the paper.

2. Data and Methodology

In this section we explore the methodology and the data employed in this study as well. We show explicitly how the term structure of interest rates was built from different financial instruments. Furthermore, we delineate the methodology that will be followed in the remainder of the paper.

2.1. The Data

The main data of the paper consist of spot interest rates for maturities 1, 2 3, 6 and 12 months.

The Term structure is obtained through the interest rates embedded in the CDI over, the DI futures contracts (from the first to the third month contracts) and DI x Pre swap rates for 6, 12 and 24 months maturities. The spot rates are built by accumulating the implicit term rates between maturities of the instruments cited above, assuming that the term rate between maturities is constant¹.

The DI x Pre swaps maturing on 6, 12 and 24 months' time are contracts in which a part pays a fixed rate over an agreed principal, and receives a floating rate over the same principal, while the reverse occurs with his or her counterpart. There are no intermediate cash flows; the contracts are only settled on maturity.

The floating rate in swap contracts is the overnight CDI rate, which tracks very closely the average rate in the market for overnight reserves at the central bank². The parties trade a fixed interest rate that is used in our calculations.

The implicit interest rate for maturity within T days is given by

$$R_{t,T} = \left\{ \left[\left(1 + \frac{R_0}{100}\right)^{T_0} \times \prod_{j=0}^{4} \left(1 + \frac{R_{j,j+1}}{100}\right)^{\max\left[0;\min\left(T - T_j;T_{j+1} - T_j\right)\right]} \times \left(1 + \frac{R_{5,6}}{100}\right)^{\max\left[0;T - T_6\right]} \right]^{\frac{1}{T}} - 1 \right\} \times 100$$

¹ The main idea is that fixed income instruments have their nature changed on a day-by-day basis as each day they become securities with smaller term to maturity. However, with the definition of a limited number of terms, we have the so-called vertexes, which can be seen as virtual securities with the same maturity term.

² These contracts have been traded over-the-counter in Brazil since the early 90's, and must be registered either on BM&F (a futures exchange) or on CETIP (a custodian).

where

R₀ is the CDI over (one day overnight interest rate)

R_{0,1} is the implicit term rate by the CDI over and the one-month DI future

R_{1,2} is the implicit term rate by the one and two-months DI future

R_{2,3} is the implicit term rate by the two and three-months DI future

 $R_{3,4}$ is the implicit term rate by the three-months DI future and the 6-months SWAP DI x Pre

R_{4,5} is the implicit term rate by the 6 and 12-months SWAP DI x Pre

R_{5,6} is the implicit term rate by the 12 and 24-months SWAP DI x Pre

 T_0 to T_6 represent, in working days, the maturity of each financial instrument (T_0 stands for the one-day CDI interest rate).

2.2. The Expectation Hypothesis

The Expectation Hypothesis can explain the influence of changes in official interest rate target on market interest rates. According to the Expectation Hypothesis of the term structure the long rate on a bond is related to the short-term rate and expected future short rates. The relation between one and two-period rates is given by:

$$R_t = \frac{1}{2} \left(r_t + E_t r_{t+1} \right) + \varepsilon_t \tag{1}$$

where R_t is the two-period rate and r_t is the one-period rate, E_t is the expectation operator conditional on available information at instant t., and ε_t is a term premium. In general if we have a one-period rate and a long n-period rate then:

$$R_{t} = \frac{1}{n} \left(\sum_{i=0}^{n} E_{t} r_{t+i} \right) + \varepsilon_{t}$$
(2)

Thus the Expectation Hypothesis states that long-term rates are an average of current short-term rates and expected future short-term rates plus a risk premium term.

Monetary policy affects long-term rates as it influences current and expected short-term rates. Additionally, the response of long-term rates in changes in COPOM's target rate should depend on the expected persistence of changes in the target.

The Expectation theory of the term structure in general is tested assuming additionally rational expectations. In that case

$$E_t r_{t+1} = r_{t+1} + \eta_{t+1} \tag{3}$$

where η_{t+1} is a mean zero, iid white noise error.

We can rearrange equation (2) as^3

$$\frac{1}{n}\left(\sum_{i=0}^{n} E_{t}r_{t+i}\right) = \frac{1}{n}\left(\sum_{i=0}^{n} \left(r_{t+i} + \eta_{t+i}\right)\right) = \frac{1}{n}\left(\sum_{i=0}^{n} r_{t+i}\right) = R_{t} - \varepsilon_{t} - \varpi_{t} \quad (4)$$

and subtracting r_t from both sides gives

$$\frac{1}{n} \left(\sum_{i=0}^{n} E_{t} r_{t+i} \right) - r_{t} = \alpha + \beta \left(R_{t} - r_{t} \right) - \varpi_{t}$$
(5)

where we have used $\alpha = -\varepsilon_t$ a constant term premium.

Equation (6) can be estimated and we should expect, if the Expectation Hypothesis holds, that the slope should be one. Furthermore, if there is a risk premium for being in longer term bonds then the intercept can be statistically significant, however it must be time-invariant.

³ Where
$$\varpi_t = \frac{1}{n} \left(\sum_{i=0}^n \eta_{t+i} \right).$$

The purpose of this paper is not to perform direct test of the Expectation Hypothesis but to test whether market interest rates for different maturities have significant responses to changes in the target rate⁴. Even if the Expectation Hypothesis holds it may be that long-term rates do not respond as agents recognize that monetary policy action is not likely to persist for prolonged periods of time in the same direction.

2.3. Testing for Interest Rates Surprises

From the Expectation Hypothesis we have that long term interest rates can be seen as compounded short term expected interest rates. In general long term interest rates affect aggregate demand decisions. However, monetary authorities decide the target for short term interest rates and these decisions should affect long term interest rates by changing expectations for the path of future short term interest rates.

The main goal of this paper is to test what are the effects of changes in the short term interest rates, specifically, study the effects of changing the target for the short term interest rate, which is used as an instrument to achieve price stability and lower inflation expectations.

In this paper we follow along the line of Cook and Hahn (1989), which examined the one day response of bond rates to changes in the target fed funds rates using the following regression

$$\Delta R_t = \alpha + \beta \Delta T \arg et_t + \varepsilon_t \tag{6}$$

where ΔR_t stands for changes in market interest rates and $\Delta Target_t$ for changes in the Fed funds target rate. The parameter β measures the mean interest rate surprise for any given maturity. If official target rate changes were fully anticipated then this coefficient should be equal to zero.

⁴ Tabak and Andrade (2001) have shown that the standard approach tend to lead to the acceptance of the EH plus Rational Expectation for the 2, 3 and 6 months interest rates but not for the 12 month interest rates while using an "error-orthogonality" approach provided a decisive rejection of the EH plus Rational Expectations for all maturities.

In this paper we test whether the term structure of interest rates respond to changes in target rates, and to what extent. Furthermore, we test if the introduction of the inflation targeting regime has had any impact on the way interest rate surprises affect the term structure.

Additionally, an interesting issue that is explored in this paper is whether changes in target rates have significant responses in the term structure spreads. We test

$$\Delta(R_t - r_t) = \alpha + \beta \Delta \text{Target}_t \tag{7}$$

In the next sections we perform these tests and give some interpretations of the results that are found.

3. Measuring the response of the term structure to Monetary Policy

We estimate the response of interest rates to changes in the official target rate with the regression

$$\Delta r_{i,t} = \alpha + \beta \Delta \text{Target}_{t} + \varepsilon_{t}$$
(8)

where $r_{i,t}$ stands for the interest rate on maturity i at instant t.

3.1 Active Monetary Policy

The one-day response of interest rates to changes in the target is shown in table 1. The sample contains 31 changes in the target from June 26 1996 through February 14 2001. The meetings where the COPOM decided not to change the target were excluded from the analysis. Standard errors are robust to heteroscedasticity and autocorrelation as they were corrected using the Newey and West (1987) procedure⁵.

The α and β coefficients for all maturities up to 12 months are presented in the second and third columns of table1. The response of interest rates are not significant in all

⁵ This correction is necessary as the Durbin-Watson (DW) statistics indicate that there may be autocorrelation in the residuals of these regressions.

cases, which can be easily seen by comparing estimated coefficients with their standard errors.

Maturity	Intercept	Response	R^2	SE	DW
1 month	0.2870 (0.2213)	0.2213 (0.1216)	23.20%	1.6518	2.2986
2 months	0.1084 (0.1630)	0.0712 (0.0813)	11.87%	1.2368	2.2571
3 months	0.0542 (0.1541)	0.0445 (0.0764)	5.55%	1.1724	2.3389
6 months	0.0253 (0.1656)	0.0058 (0.0739)	0.09%	1.2392	2.3701
12 months	0.0050 (0.1610)	-0.0203 (0.0639)	1.22%	1.1670	2.3238

Table 1: One-day response of interest rates to changes in the Target

Newey-West (1987) standard errors are given in parentheses

The sample contains 31 changes in the target from June 26 1996 through February 14 2001.

This result is in line with the findings of Cook and Hahn (1989) for the US bond market, which found evidence that for the 1980s market participants were able to anticipate monetary policy actions (contrasting with the 1970s where interest rate surprises where more pronounced).

3.2. Inaction and Action in Monetary Policy

In this sub-section we test whether the results obtained previously remain unaltered by using a larger sample with 54 observations containing 31 changes and 23 no changes in the target from June 26 1996 through February 14 2001.

Results are shown in table 2 and are similar as those found in table 1. The predictive power of the regressions increased slightly for the one-month response but decreased for

other maturities. Standard errors are huge if compared with estimated coefficients, which leads to the conclusion that both the intercept and slope are not statistically different from zero.

Maturity	Intercept	Response	R ²	SE	DW
1 month	0.1842 (0.1459)	0.1524 (0.1204)	25.25%	1.2488	2.1975
2 months	0.0275 (0.1017)	0.0710 (0.0806)	9.51%	1.0437	2.6019
3 months	-0.0164 (0.1074)	0.0444 (0.0757)	3.56%	1.1011	2.6036
6 months	-0.0168 (0.0997)	0.0058 (0.0730)	0.06%	1.0693	2.6842
12 months	-0.0251 (0.0930)	-0.0204 (0.0629)	0.85%	1.0456	2.6842

Table 2: One-day response of interest rates to changes in the Target

* Significant at the 99% confidence level

** Significant at the 95% confidence level

Newey-West (1987) standard errors are given in parentheses

The sample contains 54 months with changes and no changes in the target from June 26 1996 through February 14 2001.

The results so far appear to indicate that monetary policy does not affect the term structure of interest rates in Brazil. This leads to the conclusion that COPOM actions have been fully anticipated which is a rather strong assertion.

This could be further examined by an analysis of the relationship between changes in the term structure and futures changes in the target. The results found previously could be due to the fact that interest rates should respond to surprises in monetary policy but not to anticipated actions.

Table 3 presents results for regressing the changes in the term structure to future changes in the target rate. As it can be seen, regressions for changes in market interest rates two days before COPOM's meeting are not significant but if we test for an

anticipation of five days then for all maturities we have significant responses, which leads to the conclusion that COPOM's decisions are indeed anticipated by market participants.

However, the slope is significantly different from one that could mean that although changes in the target rate are being anticipated they may not being fully anticipated. Wald tests performed on these coefficients reject the null of a response equal to one for all maturities.

	Two days before	9	Five days before	
Maturity	Intercept	Response	Intercept	Response
1 month	0.0495	0.1159	0.0394	0.2217***
	(0.1709)	(0.1061)	(0.2352)	(0.1314)
2 months	0.0795	0.0853	0.0619	0.2269***
	(0.2009)	(0.1125)	(0.2033)	(0.1267)
3 months	0.0488	0.0671	0.1047	0.2310***
	(0.1938)	(0.1069)	(0.2129)	(0.1257)
6 months	0.0782	0.0934	0.1245	0.2612**
	(0.1228)	(0.0745)	(0.2219)	(0.1142)
12 months	0.0705	0.0878	0.0629	0.2502*
	(0.1099)	(0.0566)	(0.1882)	(0.0914)

Table 3: Movements in interest rates for different maturities before COPOM meetings

* Significant at the 99% confidence level

** Significant at the 95% confidence level

Newey-West (1987) standard errors are given in parentheses

The sample contains 54 months with changes and no changes in the target from June 26 1996 through February 14 2001.

3.3. The introduction of the Inflation Targeting Regime and Floating Exchange Regime

A problem with the tests performed so far is that monetary policy has had a significant change in 1999, with the introduction of both a floating exchange (after many years with a crawling-peg exchange rate regime) and an inflation targeting regime.

We add a dummy variable for the change in the exchange rate regime that gives a zero value for the period before January 1999 and one thereafter. The regression that we estimate is given by

$$\Delta R_t = \alpha + \beta_1 \Delta T \arg et_t + \beta_2 Dummy \quad \Delta r_t + \varepsilon_t$$
(9)

In this case β_2 measures the effect of the introduction of the floating exchange regime and the inflation targeting regime. In table 4a we show the results.

Maturity	Intercept	Response	IT Response	R ²	SE	DW
1 month	0.1033 (0.1166)	0.3462* (0.1193)	-0.3467* (0.1196)	55.44 %	0.9550	1.7668
2 months	-0.0350 (0.1035)	0.2210* (0.0441)	-0.2684* (0.0458)	40.37 %	0.8391	2.4030
3 months	-0.0776 (0.1150)	0.1909* (0.0309)	-0.2621* (0.0334)	31.20 %	0.9211	2.4075
6 months	-0.0766 (0.1162)	0.1490* (0.0236)	-0.2562* (0.0287)	29.13 %	0.8919	2.3794
12 months	-0.0763 (0.1091)	0.1020* (0.0236)	-0.2192* (0.0307)	22.03 %	0.9185	2.4470

Table 4a: One-day response of interest rates to changes in the Target

* Significant at the 99% confidence level

** Significant at the 95% confidence level

Newey-West (1987) standard errors are given in parentheses

The sample contains 54 months with changes and no changes in the target from June 26 1996 through February 14 2001.

The results shown in table 4a are in line with the findings of Haldane and Read (2000). The introduction of the floating exchange rate and inflation target regime has had a dampening effect on interest rate surprises in Brazil, as the coefficient for the dummy variable is negative for all maturities. Yet, the explanatory power had a huge increase.

Table 4b. Wald Tests (H ₀ : $\beta_1 + \beta_2 = 0$)					
Maturity	χ^2 -Statistic	p-value			
1 month	0.0039	0.9499			
2 months	24.18	0.0000			
3 months	47.07	0.0000			
6 months	54.09	0.0000			
12 months	41.57	0.0000			

We also performed Wald tests for the joint restriction on both coefficients β_1 and $\beta_2=0$, if there is a significant effect from the IT framework then the sum of these coefficients should be statistically distinguishable from zero. As we can see from table 4b this seems to be the case for all maturities except for the one-month interest rate⁶.

We can conclude that the regressions made before were misspecified. In average the interest rate surprise is significant for the whole sample. Additionally, the response of interest rates decreases as maturity lengthens, as one should expect.

This dampening effect that was found in this paper could be due to two main reasons. The first one relates to the greater transparency that is associated to the IT framework. Another reason is that under a fixed exchange rate regime all decisions from COPOM's meeting should be reflected in interest rates as the impact on the exchange rate was blocked, while with a floating exchange rate regime the exchange rate can absorb part of surprises and thus the impact on interest rates could be reduced.

4. Measuring the response of the term structure spreads to Monetary Policy

We also checked how the slope of the term structure responded to changes in the target. We estimated the following regression

$$\Delta \left(R_{i,t} - r_t \right) = \alpha + \beta \Delta \text{Target}_{t}$$
(10)

where R stands for long-run rates and r for short-term rates.

⁶ We have also used a dummy to capture the effects of meetings that have decided to change interest rates from meetings in which the target was not changed. These dummies were insignificant for all maturities and results remained qualitatively the same.

Table 5 shows the one-day responses of the slope of the yield curve responded to changes in the target, where 2m-1m is the spread between two and one-month rates, using only effective changes in the target.

		$\Delta(n_t, r_t) = 0$	ν · pΔ1 uigot _t		
Spread	Intercept	Response	\mathbb{R}^2	SE	DW
2m – 1m	-0.1786 (0.1177)	-0.0814*** (0.0460)	32.63%	0.7460	2.0169
3m-1m	-0.2328*** (0.1354)	-0.1080*** (0.0539)	35.93%	0.9200	2.0634
6m –1 m	-0.2617 (0.1668)	-0.1467** (0.0594)	41.75%	1.1050	1.9680
12m – 1m	-0.2820 (0.2123)	-0.1730** (0.0707)	43.43%	1.2590	1.8114

Table 5: One-day response of the term structure Spread to changes in the Target $\Delta(R_t - r_t) = \alpha + \beta \Delta Target$.

* Significant at the 99% confidence level

** Significant at the 95% confidence level

Newey-West (1987) standard errors are given in parentheses

The sample contains 31 changes in the target from June 26 1996 through February 14 2001.

Both the response of the spread and the explanatory power increase as maturity lengthens. The expected signs of coefficients are correct and interpretation could be that changes in the target rate may not imply in further changes in the future, in which case long-term rates would rise as well.

In table 6 we show evidence using the entire sample, including no changes in the target. A fact that's worth mentioning is that although explanatory power has decreased a little, response to target rate changes are almost the same for all cases⁷.

 $^{^{7}}$ We have also used a dummy for the IT period and it was not significant for all maturities. In this case the target has affect only the spread between the 12 and 6 months and the one month interest rate. However, Wald tests for the restriction that the sum of the coefficients on the target and the dummy is equal to zero have been rejected for all cases.

Spread	Intercept	Response	R2	SE	DW
2m – 1m	-0.1566** (0.0792)	-0.0814*** (0.0455)	23.50%	0.6991	2.1055
3m –1m	-0.2007*** (0.1161)	-0.1080** (0.0532)	23.73%	0.9217	1.9150
6m –1 m	-0.2011 (0.1229)	-0.1466* (0.0589)	34.89%	0.9536	1.9211
12m – 1m	-0.2093 (0.1336)	-0.1729** (0.0704)	36.61%	1.0832	1.8977

Table 6. One-day response of the term structure spread to changes in the target. $\Delta(R_t - r_t) = \alpha + \beta \Delta \text{Target}_t$

* Significant at the 99% confidence level

** Significant at the 95% confidence level *** Significant at the 90% confidence level

Newey-West (1987) standard errors are given in parentheses

The sample contains 54 months with changes and no changes in the target from June 26 1996 through February 14 2001.

A final test is made using five-day response to changes in the target. Results show that the response is higher which is consistent with results found in the previous section. There is some degree of anticipation of monetary policy actions by market participants.

Spread	Intercept	Response	R2	SE	DW
2m – 1m	-0.1785** (0.0857)	-0.1045* (0.0263)	35.13%	0.6763	1.7929
3m –1m	-0.3845*** (0.1969)	-0.1626* (0.0439)	25.66%	1.3178	1.5017
6m –1 m	-0.6217** (0.2998)	-0.2588* (0.0645)	27.02%	2.0248	1.6079
12m – 1m	-0.6187*** (0.3085)	-0.2904* (0.0723)	28.91%	2.1678	1.6482

Table 7 Five-days response of the term structure Spread to changes in the Target. $\Delta(R_t - r_t) = \alpha + \beta \Delta \text{Target}_t$

* Significant at the 99% confidence level

** Significant at the 95% confidence level

*** Significant at the 90% confidence level

Newey-West (1987) standard errors are given in parentheses

The sample contains 54 months with changes and no changes in the target from June 26 1996 through February 14 2001.

Evidence so far shows that changes in the target rate may be predicted and are incorporated in market interest rates before COPOM's meetings.

5. Conclusions

The results found in this paper appear to indicate that the term structure do not respond to monetary policy actions, measured by changes in official target rate changes. These results are robust using two distinct samples, one which includes only effective changes and another which includes also no changes in the target rate.

However, assuming that the target rate should indeed influence interest rate for different maturities we performed tests checking if expected target changes would influence interest rates. Results were conclusive for different sampling approaches. There is some degree of anticipation in monetary policy action by market participants.

Two types of additional tests were done. In the first place, we tested if spreads of the interest rates responded to changes in the target rate and found that they do, although not on a one-to-one basis.

Some extensions are suggested for further research. The first would be to perform these tests with a higher frequency and check whether the term structure respond differently in different positions in the Business Cycle. Another extension would be to use interest rates futures contracts to extract market expectations on target rate changes and perform the regressions using anticipated and no anticipated monetary policy actions.

Finally, an alternative methodology could be to decompose official rates changes into their anticipated and no anticipated components, and then estimating the response of the term structure to unanticipated policy changes.

References

- Balduzzi, Pierluigi, Guiseppe Bertola, and Silverio Foresi, 1997. "A Model of Target Changes and the Term Structure of Interest Rates," Journal of Monetary Economics, 39: 223-49.
- Balduzzi, Pierluigi, Guiseppe Bertola, Silverio Foresi, and Leora Klapper, 1998. "Interest Rate Targeting and the Dynamics of Short-term Rates," Journal of Money, Credit, and Banking, 30: 26-50.
- Bernanke, Ben S., and Alan S. Blinder, 1992. "The Federal Funds Rate and the Channels of Monetary Transmission," American Economic Review, 82: 901-21.
- Buttiglione, L, P Del Giovane and Tristani, O, 1996. "Monetary Policy Actions and the Term Structure of Interest Rates: A Cross-Country Analysis", *mime*o, Banca d'Italia.
- Cook, T and Hahn, T, 1989. "The Effect of Changes in the Federal Funds Rate Target on Market Interest Rates in the 1970s", *Journal of Monetary Economics*, 24, 331-51.
- Dale, S, 1993. "The Effect of Changes in Official UK Rates on Market Interest Rates Since 1987', *The Manchester School*, Vol.LXI, 76-94.
- Haldane, A. G. and Read, V, 2000. "Monetary Policy Surprises and the Yield Curve," Bank of England Working Paper.
- Hardy, D. C, 1996. "Market Reaction to Changes in German Official Interest Rates', Deutsche Bundesbank Discussion Paper No.4/96
- Newey, Whitney and Kenneth West, 1987. "A Simple Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, 55: 703–708.
- Reinhart, Vincent, and Timothy Simin, 1997. "The Market Reaction to Federal Reserve Policy Action from 1989 to 1992," Journal of Economics and Business, 49: 149-68.
- Roley, V. Vance, and Gordon H. Sellon, Jr., 1995. "Monetary Policy Actions and Long-Term Interest Rates," Federal Reserve Bank of Kansas City, Economic Review, 80:73-89.
- Roley, V. Vance, and Gordon H. Sellon, Jr., 1998a. "The Response of Interest Rates to Anticipated and Unanticipated Monetary Policy Actions," working paper, University of Washington.

- Roley, V. Vance, and Gordon H. Sellon, Jr., 1998b. "Market Reaction to Monetary Policy Nonannouncements," working paper, Federal Reserve Bank of Kansas City.
- Tabak, B.M., and Andrade, S.C., 2001. Testing the Expectations Hypothesis in the Brazilian Term Structure of interest rates. Anais do Primeiro Encontro Brasileiro de Finanças, São Paulo, 23-24 de Julho.
- Thorbecke, Willem, and Tarik Alami, 1994. "The Effect of Changes in the Federal Funds Rate on Stock Prices in the 1970s," Journal of Economics and Business, 46: 13-20.

Banco Central do Brasil

Trabalhos para Discussão

Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series

Working Papers in PDF format can be downloaded from: http://www.bc.gov.br

1	Implementing Inflation Targeting in Brazil Joel Bogdanski, Alexandre Antonio Tombini e Sérgio Ribeiro da Costa Werlang	Jul/2000
2	Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil Eduardo Lundberg	Jul/2000
	Monetary Policy and Banking Supervision Functions on the Central Bank <i>Eduardo Lundberg</i>	Jul/2000
3	Private Sector Participation: A Theoretical Justification of the Brazilian Position <i>Sérgio Ribeiro da Costa Werlang</i>	Jul/2000
4	An Information Theory Approach to the Aggregation of Log-Linear Models <i>Pedro H. Albuquerque</i>	Jul/2000
5	The Pass-through from Depreciation to Inflation: A Panel Study Ilan Goldfajn e Sérgio Ribeiro da Costa Werlang	Jul/2000
6	Optimal Interest Rate Rules in Inflation Targeting Frameworks José Alvaro Rodrigues Neto, Fabio Araújo e Marta Baltar J. Moreira	Jul/2000
7	Leading Indicators of Inflation for Brazil <i>Marcelle Chauvet</i>	Set/2000
8	The Correlation Matrix of the Brazilian Central Bank's Standard Model for Interest Rate Market Risk José Alvaro Rodrigues Neto	Set/2000
9	Estimating Exchange Market Pressure and Intervention Activity <i>Emanuel-Werner Kohlscheen</i>	Nov/2000
10	Análise do Financiamento Externo a Uma Pequena Economia Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	Mar/2001
11	A Note on the Efficient Estimation of Inflation in Brazil <i>Michael F. Bryan e Stephen G. Cecchetti</i>	Mar/2001
12	A Test of Competition in Brazilian Banking Márcio I. Nakane	Mar/2001

13	Modelos de Previsão de Insolvência Bancária no Brasil Marcio Magalhães Janot	Mar/2001
14	Evaluating Core Inflation Measures for Brazil Francisco Marcos Rodrigues Figueiredo	Mar/2001
15	Is It Worth Tracking Dollar/Real Implied Volatility? Sandro Canesso de Andrade e Benjamin Miranda Tabak	Mar/2001
16	Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil Para a Taxa de Variação do IPCA Sergio Afonso Lago Alves	Mar/2001
	Evaluation of the Central Bank of Brazil Structural Model's Inflation Forecasts in an Inflation Targeting Framework <i>Sergio Afonso Lago Alves</i>	Jul/2001
17	Estimando o Produto Potencial Brasileiro: Uma Abordagem de Função de Produção <i>Tito Nícias Teixeira da Silva Filho</i>	Abr/2001
	Estimating Brazilian Potential Output: A Production Function Approach <i>Tito Nícias Teixeira da Silva Filho</i>	Ago/2002
18	A Simple Model for Inflation Targeting in Brazil Paulo Springer de Freitas e Marcelo Kfoury Muinhos	Abr/2001
19	Uncovered Interest Parity with Fundamentals: A Brazilian Exchange Rate Forecast Model <i>Marcelo Kfoury Muinhos, Paulo Springer de Freitas e Fabio Araújo</i>	Maio/2001
20	Credit Channel without the LM Curve Victorio Y. T. Chu e Márcio I. Nakane	Maio/2001
21	Os Impactos Econômicos da CPMF: Teoria e Evidência <i>Pedro H. Albuquerque</i>	Jun/2001
22	Decentralized Portfolio Management Paulo Coutinho e Benjamin Miranda Tabak	Jun/2001
23	Os Efeitos da CPMF sobre a Intermediação Financeira Sérgio Mikio Koyama e Márcio I. Nakane	Jul/2001
24	Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn e Alexandre Antonio Tombini	Ago/2001
25	Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00 Pedro Fachada	Ago/2001
26	Inflation Targeting in an Open Financially Integrated Emerging Economy: the case of Brazil Marcelo Kfoury Muinhos	Ago/2001

27	Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	Set/2001
28	Regras Monetárias e Dinâmica Macroeconômica no Brasil: Uma Abordagem de Expectativas Racionais <i>Marco Antonio Bonomo e Ricardo D. Brito</i>	Nov/2001
29	Using a Money Demand Model to Evaluate Monetary Policies in Brazil Pedro H. Albuquerque e Solange Gouvêa	Nov/2001
30	Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates Benjamin Miranda Tabak e Sandro Canesso de Andrade	Nov/2001
31	Algumas Considerações Sobre a Sazonalidade no IPCA Francisco Marcos R. Figueiredo e Roberta Blass Staub	Nov/2001
32	Crises Cambiais e Ataques Especulativos no Brasil <i>Mauro Costa Miranda</i>	Nov/2001
33	Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation André Minella	Nov/2001
34	Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises Arminio Fraga e Daniel Luiz Gleizer	Nov/2001
35	Uma Definição Operacional de Estabilidade de Preços Tito Nícias Teixeira da Silva Filho	Dez/2001
36	Can Emerging Markets Float? Should They Inflation Target? <i>Barry Eichengreen</i>	Fev/2002
37	Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations Luiz Fernando Figueiredo, Pedro Fachada e Sérgio Goldenstein	Mar/2002
38	Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro Frederico Pechir Gomes	Mar/2002
39	Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio <i>Paulo Castor de Castro</i>	Mar/2002
40	Speculative Attacks on Debts, Dollarization and Optimum Currency Areas Aloisio Araujo e Márcia Leon	Abr/2002
41	Mudanças de Regime no Câmbio Brasileiro Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho	Jun/2002
42	Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella	Jun/2002

43	The Effects of the Brazilian ADRs Program on Domestic Market Efficiency Benjamin Miranda Tabak e Eduardo José Araújo Lima	Jun/2002
44	Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil <i>Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén</i>	Jun/2002
45	Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence <i>André Minella</i>	Ago/2002
46	The Determinants of Bank Interest Spread in Brazil Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer e Márcio I. Nakane	Ago/2002
47	Indicadores Derivados de Agregados Monetários Fernando de Aquino Fonseca Neto e José Albuquerque Júnior	Set/2002
48	Should Government Smooth Exchange Rate Risk? Ilan Goldfajn e Marcos Antonio Silveira	Set/2002
49	Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade <i>Orlando Carneiro de Matos</i>	Set/2002
50	Macroeconomic Coordination and Inflation Targeting in a Two- Country Model <i>Eui Jung Chang, Marcelo Kfoury Muinhos e Joanílio Rodolpho Teixeira</i>	Set/2002
51	Credit Channel with Sovereign Credit Risk: an Empirical Test <i>Victorio Yi Tson Chu</i>	Set/2002
52	Generalized Hyperbolic Distributions and Brazilian Data José Fajardo e Aquiles Farias	Set/2002
53	Inflation Targeting in Brazil: Lessons and Challenges André Minella, Paulo Springer de Freitas, Ilan Goldfajn e Marcelo Kfoury Muinhos	Nov/2002
54	Stock Returns and Volatility Benjamin Miranda Tabak e Solange Maria Guerra	Nov/2002
55	Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén	Nov/2002
56	Causality and Cointegration in Stock Markets: The Case of Latin America Benjamin Miranda Tabak e Eduardo José Araújo Lima	Dez/2002
57	As Leis de Falência: uma Abordagem Econômica Aloisio Araujo	Dez/2002
58	The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows The Brazilian Stock Market Case Benjamin Miranda Tabak	Dez/2002
59	Os Preços Administrados e a Inflação no Brasil Francisco Marcos R. Figueiredo e Thaís Porto Ferreira	Dez/2002

60	Delegated Portfolio Management Paulo Coutinho e Benjamin Miranda Tabak	Dez/2002
61	O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa João Maurício de Souza Moreira e Eduardo Facó Lemgruber	Dez/2002
62	Taxa de Juros e Concentração Bancária no Brasil Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama	Fev/2003
63	Optimal Monetary Rules: The Case of Brazil Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza e Benjamin Miranda Tabak	Fev/2003
64	Medium-Size Macroeconomic Model for the Brazilian Economy Marcelo Kfoury Muinhos e Sergio Afonso Lago Alves	Fev/2003
65	On the Information Content of Oil Future Prices <i>Benjamin Miranda Tabak</i>	Fev/2003
66	A Taxa de Juros de Equilíbrio: Uma abordagem múltipla Pedro Calhman de Miranda e Marcelo Kfoury Muinhos	Fev/2003
67	Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente	Fev/2003
68	Real Balances in the Utility Function: Evidence for Brazil Leonardo Soriano de Alencar e Márcio I. Nakane	Fev/2003
69	r-filters: a Hodrick-Prescott Filter Generalization Fabio Araújo, Marta Baltar Moreira Areosa e José Alvaro Rodrigues Neto	Fev/2003