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r-filters: a Hodrick-Prescott Filter Generalization 
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Abstract 

A two-parameter family of filters is proposed in which the HP filter is 
considered as the lowest order member. While the HP filter converges to 
linear time trend as the smoothing factor grows, the higher order members 
of the proposed family converge to higher order polynomial time trends. 
The filter order – the new parameter introduced – allows to set the filter 
selectivity. Furthermore, two different methods to implement these filters 
are presented.  
 
Keywords: Economic cycles, Low-pass filter, Fourier transform 
JEL Classification: E32, C22, C52 

                                                           
∗ Central Bank of Brazil.  E-mail address: workingpaper@bcb.gov.br 
** The authors are grateful to Rossana Bastos Pinto and CAPES for their support. 



 4 

1. Introduction 

The filter proposed by Hodrick and Prescott [1], the so-called HP filter, has been very 

useful in economic times series analysis. The main idea is to decompose a time series 

into its high and low frequency components. In this sense, it is widely applied to those 

series generated by the sum of two unobservable parcels with different spectral 

components. 

There are in the literature some theoretical articles and many applications for such filter; 

being potential GDP estimation the most widely discussed application. Actually, this 

application involves the largest amount of empirical works using HP. Even when a 

production function is considered, this technique is useful as seen in Apel et al [9]. 

Additionally, Röger and Ongena [11] compared some potential GDP estimation 

methods – such as linear time trend, production function and HP filtering – and 

concluded that the HP combined with ARIMA1 projection results in the most coherent 

output gap. HP filtering has also been used in many other applications.  

A more theoretical approach can be found in a few papers. Hodrick and Prescott [1], 

besides proposing the filter, mention some properties of the filtered series, although 

their main focus was on empirical analyses. Complementing this work, King and Rebelo 

[4] used time and frequency domain analysis to establish the main HP filter properties. 

Cogley and Nason [3] argues that the HP filter is incompatible with a business cycle 

analysis because it artificially introduces cycles in the time series under analysis. 

Furthermore, the generated economic cycles are complex since the HP filter is not a 

time invariant procedure. On the other hand, Razzak [7], based on an empirical study, 

argues that the filter corresponding to the border of the HP procedure is consistent with 

policy formulation, in spite of the fact that a spectral analysis indicates undesirable 

properties, such as phase distortion and poor frequency selectivity.  This indicates that 

there is some divergence about the HP filter usage. 

It is important to highlight that any signal extraction procedure will distort its resulting 

components. Jürgen [6] argues that even for the optimal linear extraction with known 

data generation processes (DGP) the distortion cannot be avoided. He also suggests, 

                                                           
1 The ARIMA projection is used in order to reduce the border distortion. 
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along with Giorno et al [10], that optimal λ value depends on the DGP. In this work, 

any hypothesis about the DGP will not be proposed: the main focus is on the 

implications of the λ choice. 

In this paper, the initial idea was not only to extend the analysis presented in [4] using a 

linear algebra method but also to give a geometric interpretation. Such an analysis, 

however, results in an HP generalization, where higher order filters are found as other 

members of the HP filter family and so forth called r-filters. In addition to its possible 

time series applications, the r-filter analysis, using spectral and linear algebra 

techniques, allows a deeper understanding of the HP problem. Other generalization 

procedures are proposed in the literature. For instance, Reeves et al [5] proposes a 

generalization with some assumptions about the data generation process. This proposed 

filter is optimal as a fourth order filter and depends on a specific application (DGP). On 

the other hand, r-filters keep the flexibility found in the HP, given by the choice of 

smoothing degree (λ), and adding one more parameter related to filter selectivity (r). 

Baxter and King [8] propose the use of a band-pass filter, instead of low pass filters, for 

business cycles studies. Their main idea for the filter design2 is to take the impulse 

response of an ideal band-pass filter and restrict it to limited domain in order to make it 

feasible, since there are only finite samples in practical use. This procedure is equivalent 

to truncating the Laurent expansion of the frequency response, so the approximation is 

better3 as more terms of the expansion are considered. Furthermore, as the resulting 

impulse response is a two-sided sequence, this filter cannot be applied at the series 

border. Following this idea, r-filters can be used to design band-pass filters since higher 

frequency selectivity can be reached without losing the results at the series border. In 

fact, only minor distortion is introduced to the results. 

In Section 2 the r-filter family is proposed. Its spectral properties are studied; the 

geometric interpretation given to the HP is extended to the whole family such as its 

relation with least squares adjustment. In Section 3, an application is presented in order 

to compare different filters. The conclusions are stated in Section 4. The proofs of 

results are presented in the appendices. 

                                                           
2 An optimization process is used to design the filter. 
3 Better means higher frequency selectivity. 
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2. A more general family of filters: r-filters 

In this section a family of filters called r-filters is proposed, derived from a generalized 

minimization problem as stated in the following equation4.  
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Before solving this problem, it is important to offer some insights into it. Firstly, certain 

notations should be introduced. In this paper, any economic time series will be 

expressed as a sequence of real numbers, where each observation is an element of the 

sequence. The series to be filtered will be called the input sequence, represented by 

{ }ix . Analogously, the filtered series will be the output sequence, represented by { }iy . 

Alternatively, a point (or a vector) may represent these sequences. 

The loss function rF ,λ  (Equation 1) expresses a trade-off between the output sequence 

element alignment according to (r-1)st degree polynomial (F2 in Equation 1) and their fit 

to the input sequence (F1 in Equation 1). λ is the smoothing parameter that represents 

this trade-off. In extreme cases, when +∞→λ  the resulting output sequence converges 

to a polynomial. On the other hand, when 0→λ  it converges to }{ tx . In fact, it will be 

shown that, when +∞=λ , the resultant sequence is the same as the one that would be 

obtained if Least Square Polynomial Adjustment (LSPA) were applied.  

It is important to observe that the HP filter corresponds to the case 2=r . As a particular 

case, the result mentioned above also holds. Thus, when +∞=λ , the output sequence 

converges to a first order polynomial that is the same obtained when the Least Square 

Linear Adjustment (LSLA) is applied. This result is well known in the literature. 

 

 

                                                           
4 i

n y∆  is the nth difference centered in iy  and it is given by (L-1)n. L-n/2 where L represents the lag 

operator .For instance, 2112
4 464 −−++ +−+−=∆ iiiiii yyyyyy . 
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2.1. Spectral properties of r-filters 

In order to derive the main spectral properties of r-filters, a problem simpler than the 

one expressed in equation 1 is considered. It is supposed that the input sequence and, 

consequently, the output sequence have infinite length. Incorporating this hypothesis, 

the previous problem is modified to give: 
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A difference equation 2r
k k ky y xλ+ ∆ =  is obtained from the first order condition5, 

where 2r
iy∆  symbolizes the 2rth difference centered in yi. So, 

2 1( ) ( 1) ( )r r rP L L L Lλ
− = − + ⋅   is the characteristic polynomial of the resulting 

difference equation6. Using the Fourier transform, it can be seen that the frequency 

response of this filter family is given by: 

λ
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This function gives real values for every ℜ∈ω , meaning that this is a zero-phased filter 

for every pair (r, λ). Unfortunately, |Hr,λ(ω)| has two undesirable features for odd values 

of r. This function has an infinite peak at frequency rp λω
2

11−= , besides not being 

necessarily convex even in the finite case. In this way, only filters defined for even 

values of r will be considered from here on, thus the HP is the first member of this 

family. 

It is important to remember that 
2 sT

T

πω = where Ts is the sampling period and T is the 

period of the cycle to be filtered, both in the same time unit. Thus, to filter an eight-year 

cycle on a quarterly data series, for instance, Ts and T would respectively be equal to ¼ 

and 8, making 16
πω = . 

                                                           
5 This condition is necessary to ensure that the solution is a global minimum.  
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2.2. Equivalence between filters of different orders 

In order to establish the equivalence between different filters, an equivalence parameter 

must be defined. Borrowing terminology from electrical engineering, a natural 

parameter could be the cut-off frequency, defined as the point at which the frequency 

response magnitude is 2
2 . However, r-filters have an odd feature described in 

Equation 4. This equation states that the only inflection point for ),0( πω ∈  occurs at 

the frequency in which 5.0)(, =ωλrH , for every pair (r, λ). So, as the frequency 

response is monotone over this interval, filters are more selective at this frequency. 

Based on this fact, a “modified” cut-off frequency, defined as the point where 

5.0)(, =ωλrH , will be used throughout the paper as an equivalence parameter.  

2
1
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∂
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Looking for an equivalence expression, it can be noted that for a given cut-off 

frequency, ),0(0 πω ∈ , there are an infinite number of pairs (r, λ) that satisfy Equation 

5.  
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Equation 6 shows the relation of any two solutions, (r1, λ1) and (r2, λ2), for Equation 5 

given ω0.  

1 2
2 1
r rλ λ=           (6) 

 

 

 

 

                                                                                                                                                                          
6  It is important to note that if P(L) = 0 then P( L

1 ) = 0 
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Figure 1 shows various equivalent filters with different values of r. 
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Figure 1: r-filter frequency responses for r = 2, 4, 6, 8, 10 and 12  

So, for a given cut-off frequency filters defined by )(
11, crH ωλ  and )(

22 , crH ωλ  will be 

understood as equivalent if Equation 6 holds. Furthermore, if two filters are equivalent 

and r2 > r1 , )(
22 , crH ωλ  is more selective7 than )(

11, crH ωλ . As the filter order is defined by 

r, a direct relation between order and selectivity can be established. A similar result has 

already been observed in [4] when the exponential smoothing filter (ES) is compared to 

the HP filter. It is stated that the HP filter looks more like an ideal filter, i.e., it is more 

selective than the ES filter.  

Equation 6 provides an easy way to calculate equivalent filters. For instance, all filters 

on the same column of the following table are equivalent. 

r = 2, λ = 100 r = 2, λ = 1600 r = 2, λ = 14400 

r = 4, λ = 1002 r = 4, λ = 16002 r = 4, λ = 144002 

r = 6, λ = 1003 r = 6, λ = 16003 r = 6, λ = 144003 

r = 8, λ = 1004 r = 8, λ = 16004 r = 8, λ = 144004 

 

                                                           
7 In the present case, i.e., a low-pass filter, selectivity denotes the capability of separating low from high 
frequencies. As the filter becomes more selective, cycles whose frequency is above the cut-off frequency 
are strongly attenuated. Geometrically, the filter frequency response approximates a step function. 

ω 

Hr,λ(ω) 

r increases 
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All these properties could be derived due to the infinite length sample hypothesis. 

Unfortunately, sample is always finite. So the results found so far are only 

approximations of the behavior of the central observations when the sample size (N) is 

large enough. 

2.3. The r-filters calculation  

In order to highlight the dynamical characteristics of r-filters, only the infinite length 

sample case has been analyzed in previous sub-sections. This sub-section focuses on the 

calculation of r-filters given a finite length sample. Thus, the original problem 

(Equation 1) should be solved.  

It will be proved in Appendix B that first order conditions are sufficient to find the 

solution and generate a linear system of N equations and N variables, described by: 

( ) ( ) xrBIxTy r
1

, )(. −+== λλ          (7) 

where x and y are vectors in the Nℜ , which respectively represent, as previously 

defined, an input sequence and an output sequence, both with N observations. I and B(r) 

respectively correspond to the identity matrix and a symmetric square matrix, both of 

order N, obtained from the first order condition. While I is derived from the first parcel 

of the loss function (F1 in Equation 1), B(r) comes from the second parcel (F2 in 

Equation 1). This filtering process is equivalent to a linear transformation. Moreover, 

this transformation is ℜN  isomorphism. 

Building B(r) without evaluating the derivative is one of the most important steps of the 

filtering algorithm8. The general term of the B(r) matrix, )(
,
r
jib , is given by:  

( )∑
Γ∈

+−+−−−=
k

kj

r

ki

r
jir

ji

rr

CCb 221)(
,         (8) 

where  ( ) ( ) ( ){ }2 2 2 2 2 2, , , max 1 , , min , ,r r r r r rN r i j k i j k N i jΓ = ∈ Ζ + − − ≤ ≤ − + +  

                                                           
8 Matrix B(r) is derived in Appendix A, proving Equation 6. 
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Fortunately, B(r) presents a particular structure that allows the non use of Equation 8 in 

the calculation of all its N2 elements, reducing the necessary computation. Figure 2 

illustrates the B(r) matrix structure.  
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Figure 2: B(r) matrix structure 

where h(r) is a vector whose elements are Newton’s binomial coefficients of order 2r 

with alternate signals and matrix BF is equal to a vertical reflection of BI
9 . Since r (filter 

order) is usually much smaller than N (sample size)10, the number of elements in matrix 

BI (or BF) to be calculated is much smaller than the total number of B(r) elements. For 

example, considering a fourth-order filter (r = 4) applied to a sample with 40 

observations11, matrix BI has 26 non-null elements, while matrix B(r) has 1600 

elements. 

There are two other methods to construct B(r) matrix. The simplest one consists of 

decomposing matrix B(r) as the product of three matrices with simple structures, as 

shown in Appendix A.  

2.4. r-filters as a generalization of the least square polynomial adjustment 

This sub-section aims at analyzing12 the fact that r-filters can be interpreted as a 

generalization of the least square polynomial adjustment (LSPA) using an (r-1)st degree 

                                                           
9 This statement is proven in Appendix A (property A.2) 
10 In fact, this is a necessary condition for using the r-filters. Otherwise, there would not be enough data 
to apply this kind of filtering. 
11 Actually this sample size is small for econometric uses. 
12 A rigorous proof is available in Appendix C 
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polynomial13. An important technical step to meet this purpose consists of building a 

surface in Nℜ , henceforth called rM , that encompasses all (r-1)st degree polynomials. 

{ }ℜ∈−+++= rr
r aaaraaaM ,,,1.1.0. 2121 KK  where { }0,1, , 1r −K represents a set of 

linearly independent vectors given by the formula: 

( )kkk Nk ,,2,1 K= , 1,,1,0 −=∀ rk K  

In order to provide some insight into rM , an example should be presented. In case r = 

2, 2M  is the sub-vector space of dimension 2 in Nℜ  and it is given by: 

2M { }ℜ∈+= 2121 ,1.0. aaaa ( ){ }ℜ∈++++= 2121212121 ,,,3,2, aaNaaaaaaaa L . 

It should be noted that each pair (a1, a2) defines a point in NM ℜ⊂2 . This point 

corresponds to a finite time series whose observations lie in a straight line as shown in 

Figure 3. In this particular case, a1 and a2 would respectively be the intercept and 

angular coefficient of this straight line. 

 

 

 

 

Figure 3: A point in surface M2 

Similar to the previous case, rM  is a hyper-plane of dimension r in Nℜ , spanned by 

vectors 0 ,1,…, 1−r , that encompasses all points whose coordinates are aligned 

according to an (r-1)st degree polynomial. Therefore, coordinates of a point 

),,,( 21 raaa K  in rM  in the base { }0, 1, , 1rΨ = −L  be can interpreted as 

coefficients of an (r-1)st degree polynomial. Analogously to Figure 3, Figure 4 shows 

the general case. 

                                                           
13 In fact, any coefficient of the adjusted polynomial can be zero, even the highest order coefficient. 
Therefore, the adjusted polynomial degree might be smaller than r-1. 
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Figure 4: a time series that lies on a polynomial 
 

Now, let ),...,,( **
2

*
1

*
Nxxxx =  representing the sequence obtained by applying LSPA to 

x.  It can be understood as the point in Nℜ that corresponds to the orthogonal projection 

of x on hyper-plane M r, as shown in Figure 5.a. Furthermore, if y is the result when Tλ,r 

(Equation 7) is evaluated at x, then y belongs to space { }rNrN UuuxUx −− ∈+=+  | ** , 

where rNU −  is the orthogonal complement of M r.  

 

 

 

 

 

 

 

Figure 5: The orthogonal projection given by HP 
(a) focus on plane rM  (b) focus on rNUx −+*  space 

 

In Figure 5.a, N dimension Euclidean space and plane M r are shown. A point x is 

projected on *x  using LSPA, which also corresponds to applying the  

r-filter with +∞=λ . Points y and z are in space rNUx −+* , that is orthogonal to M r. 

Moreover, as λ  grows )(, xT rλ  gets closer to *x . In fact, by varying λ, it is possible to 
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define a continuous path starting at x and ending at *x . Again, space rNUx −+* , 

represented by a straight segment in Figure 5.a, is in fact a space of dimension N-r. This 

is clearer in Figure 5.b, in which hyper-plane M r is represented as a line. 

 

3. An example: the estimation of potential GDP14 

This section aims at studying the effects of replacing the HP filter by a higher order r-

filter. One of the most important HP filtering applications on Economics – the potential 

output estimation – was chosen to illustrate these effects. 

Three series are derived from Brazilian GDP quarterly data. The first two series use the 

same smoothing factor (λ = 1600) but different kinds of filtering. The HP filter (r = 2) is 

replaced by a higher order r-filter (r = 4) in the second series. The third series was built 

to show the equivalence15 between filters of different orders. All of them could be 

considered as potential output series. 

It is important to highlight, however, that there is no intention to discuss which result 

can be more easily interpreted in light of the economic facts. It is not on within the 

scope of this paper to analyze recent Brazilian economic history but only to give some 

insight into the properties of filters.  

 

                                                           
14 Appendix D provides further examples. 
15 As defined on section 3.1 
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It can be noted from the comparison of the results that oscillations can be easily 

identified in the second series (r = 4, λ = 1600), while the first series (r=2, λ = 1600) is 

almost linear. This insight is quite intuitive since the first and second series can be 

respectively interpreted as deviations of first and third order polynomials. 

The third series (r = 4, λ = 2560000) is equivalent to the first one (r = 2, λ = 1600). This 

fact can be observed from the figure since the third series fits the first one almost 

perfectly. 

 

4. Conclusion 

r-filters are completely characterized by two parameters: r, the filter order, and λ, the 

smoothing factor. In case r = 2, it corresponds to the traditional HP filter. The r-filters 

most important characteristics encompass: being a zero-phased filter and DGP 

independent (analogous to the HP filter), the residuals are stationary even when the 

DGP presents an (r-1)st polynomial deterministic trend or is (r –1) order integrated16 and 

the flexibility of choosing the filter selectivity. 

                                                           
16 Appendix D shows evidence of this fact. 
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The requirement of specifying a second parameter (r) increases the complexity of 

selecting the adequate filter for an application. Despite the fact that it is always possible 

to find an equivalent HP filter, it is important to bear in mind that equivalence, as 

defined in section 2.2, does not imply the same spectral properties, but only the same 

cut-off frequency. The benefit brought by the introduction of this new parameter is 

illustrated in Figure 1 where many frequency responses for equivalent filters are plotted. 

On comparing them, it is clear that selectivity increases with the filter order. It is 

important to highlight that selectivity is a great asset and, for many applications, such as 

filter composition, can be highly desired. 

As discussed in [7], [9] and [11] the border effect is one of the most important criticisms 

that have been made with respect to the HP filter. It has already been identified that 

when a new observation is added to the sample, the output sequence changes mainly 

with respect to its final elements. This behavior has two explanations: the inclusion of a 

new observation changes the entire output sequence (two sided impulse response) and 

the characteristic polynomial of the filter changes for the last two observations. The r-

filters inherit this problem, worsened by the increase in their order, since the 

characteristic polynomial of the filter changes for the last r observations.  

There is a clear trade-off between increasing selectivity and reducing the border effect. 

Consequently, the optimal choice of these parameters, r and λ, will depend on the 

application. For descriptive studies with extensive17 data set available, it is worth while 

using high values of r. Reciprocally, when the data set is small or when the main 

objective of the study is inference, the value of  r should be lowered. 

A possible extension of this work would comprise verifying if the characteristic 

polynomial of a filter on the last r observation could be modified to minimize the border 

effect. The interest in this approach rises from the fact that it does not require any 

hypothesis about the data generation process. 

                                                           
17 The use of the expressions “extensive”, “high” and “small” is informal and their values depend on the  
application and on the data set itself. 
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Appendix A – How to Construct the Matrix )(rB  

In this appendix two methods to build matrix B(r)18 will be presented. 

1st method: Calculating an element of the matrix B(r) 

Initially, it should be recalled that the relation ( ) ( ) xrBIxTy r
1

, )(. −+== λλ  (Equation 7) 

was derived from the evaluation of the First Order Condition of the problem defined on 

equation A.1 (already expressed in Equation 1). In particular, B(r) comes from the 

parcel F2. 

( )
1

2

2

1 2

,
{ }

22
,

1 1

Min

( )

N
j j

r

r

r
y

NN
r

r i i i
i i

F F

F

F y x y

λ

λ λ

=

−

= = +

= − + ∆∑ ∑
1442443 14243

       (A.1) 

Thus, before calculating B(r), it is important to observe that the rth difference centered in 

yk and its derivative are given by: 

2 2
2 2

2

2
2( 1) ,   if k-i( 1)

0,   otherwise

r
r

r r

r

r
k ir k i rl lr k r

k r k l
l i

y Cy C y
y

+ − + −
+ +

+
=−

∂∆  − ≤∆ = − ⇒ = ∂ 
∑   (A.2) 

The results shown in the previous equation are now used to calculate B(r): 

( ) ( ) ( )

( )( )
( )

( )
( )

2 2

2 2

2 2

2 2 2 2

2 2

2

1 1

min ,

( , )max 1 ,

2

2 1 2. 1 .

r r

r r

r r

r r r r

r r

N N
r r r

k k k
k ki i

N i
k i k i lk i k i lr

k r r r k l
k lk i

y y y
y y

y C C C y

− −

= + = +

− +
+ − − ++ − + − +

+
∈Λ= + −

 ∂ ∂∆ = ∆ ∆ =  ∂ ∂ 

= ∆ − = −

∑ ∑

∑ ∑
  (A.3) 

 where   ( ) ( ) ( )












≤
+−≤≤−+

=Λ
2

2222 ,min,1max
,

r

rrrr

l

iNki
lk  

 

                                                           
18 A third method uses the convolution of sequences to calculate a whole line of the matrix B(r). This 

third method is not presented in this paper because it does not shed new light on the problem. 
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Let lkj += , so each term of the matrix B(r) is given by19: 

( )∑
Γ∈

+−+−−−=
k

kj

r

ki

r
jir

ji

rr

CCb 221)(
,         (A.4) 

where ( ) ( ){ }222222 ,,min,,1max rrrrrr jiNkjik ++−≤≤−−+=Γ  

Now two important properties are stated and proved. 

Property A.1 

B(r) is symmetric, that is, Njibb r
ij

r
ji ,,1,,)(

,
)(

, K=∀= . 

The proof is obvious, since i and j are easily interchangeable. 

 

Property A.2 

jirNbb r
jNiN

r
ji ,,,,)(

1,1
)(

, ∀= +−+− . 

Proof: 

In order to prove this result, it is necessary to observe that: 

( )∑
Γ∈

+−+−+−+−−
+−+− −=

'

11)(
1,1

221
k

kjN

r

kiN

r
jir

jNiN

rr

CCb , where: 

( ) ( ){ }222222 1,1,min1,1,1max' rrrrrr jNiNNkjNiNk ++−++−−≤≤−+−−+−+=Γ . 

Depending on the limits of the summation, )(
1,1

r
jNiNb +−+−  will include different parcels. 

Therefore, 9 cases were identified: 

1) 221 rr Nk −≤≤+  6) 22 11 rr jNkiN ++−≤≤−+−  

2) 22 11 rr iNk ++−≤≤+  7) 221 rr NkjN −≤≤−+−  

3) 22 11 rr jNk ++−≤≤+  8) 22 11 rr iNkjN ++−≤≤−+−  

4) 221 rr NkiN −≤≤−+−  9) 22 11 rr jNkjN ++−≤≤−+−  

5) 22 11 rr iNkiN ++−≤≤−+−   

 

However, just 6 of these cases should be analyzed, since cases 1, 5 and 9 cannot occur.  

For case 2, the expression )(
1,1

r
jNiNb +−+−  can be written as: 

                                                           
19  The factor 2 that appears in Equation A.3 is simplified regarding the First Order Condition gives 
2( ) 2 ( ). 0y x B r yλ− + = .  
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( ) ( )∑∑
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ji bCC
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rr
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−

−=

+−+−−  

The same kind of argument can be used to prove all other cases, thus providing 

conclusive proof to Property A.2. 

2o method: Decomposing matrix B(r) 

Matrix )(rB  can be decomposed as )().().()( rArDrArB t= , where: 

0

1 1

1 1 0

( 1) 0

( )
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i i
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r
NxN r
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0
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0 0
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
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So, using these definitions: 
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ji CC )(

,
r
jib=  

where the last step uses a change of coordinates given by 2 2
r rk l l k= + ⇔ = −  

 

Property A.3 

( )( )rank B r N r= −  

Proof: 

This property can be easily proven considering decomposition ( ) ( ). ( ). ( )tB r A r D r A r= . 
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Appendix B –  Fλ,r  is a Convex Function 

The main purpose of this appendix is to show that Fλ,r (Equation 1) is a convex function 

of y for any fixed x, which is a sufficient condition for the zero of the derivative to be a 

global minimum. In order to do so, it is enough to prove that its Hessian matrix is 

positive definite. 

( )
2

2

1 2

22
,

1 1

( )
r

r

NN
r

r i i i
i i

F F

F y x yλ λ
−

= = +
= − + ∆∑ ∑
14243 14243

 

It can be seen that the Hessian matrix of the loss function20 Fλ,r  can be decomposed as 

the sum of  Hessian matrices of F1 and F2. It will be shown that the Hessian matrix of F1 

and F2 are respectively positive and positive semidefinite. Consequently, the Fλ,r 

Hessian matrix is positive definite. 

It is easy to verify that the Hessian of F1 is positive definite and it is given by: 

1 1 1

1 1 1 2 1

1

1 1 1

1 2

1 0 0

0 1
( ) 2.

0

0 0 1

N

N N N N

F F F

y y y y y y

Hess F

F F F

y y y y y y

∂ ∂ ∂ 
  ∂ ∂ ∂ ∂ ∂ ∂   
 = = 
  ∂ ∂ ∂      ∂ ∂ ∂ ∂ ∂ ∂ 

L L

O M
M M O M

M O O

L L

 

It is now necessary to calculate the Hessian matrix of F2. As B(r) is the Jacobean matrix 

of F2, the Hessian matrix will just be its Jacobean matrix. However, B(r) represents a 

linear transformation and its Jacobean matrix will also be the matrix itself. This fact 

leads to the conclusion that it is necessary to prove that B(r) is a positive semidefinite.  

In order to verify this, the decomposition exhibited in Appendix A, 

)().().()( rArDrArB t= , should be used. Firstly, it is important to highlight that 

( ) : N NA r ℜ → ℜ is an isomorphism. This is easily shown by the fact that, as A is a lower 

                                                           
20 According to Equation 8, Fλ,r is defined in NN ℜ×ℜ . The function whose Hessian matrix is being 

calculated is a restriction of this function. Thus, its domain is Nℜ . By abuse of notation they are both 
denoted Fλ,r.  
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triangular matrix, its determinant is given by product of the elements that lie on the 

main diagonal. Thus, ( )det ( ) 1A r = .  

 

Theorem B.1 

)(rB  is positive semidefinite. 

Proof: 

Let Nx ℜ∈ . Since NNrA ℜ→ℜ:)(  is isomorphism then there is a unique Ny ℜ∈  such 

that xrAy ).(= . Therefore, 0).(.).().().(.).(.
1

2 ≥=== ∑
−

=

rN

k
k

tttt yyrDyxrArDrAxxrBx , 
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Appendix C – Proof of the Convergence 

In section 2.4, it was stated that applying an r-filter with +∞=λ  is equivalent to 

obtaining the Least Squares Polynomial Adjustment (LSPA).  In this appendix, a proof 

for this statement is presented by constructing : N NP ℜ → ℜ , the orthogonal projection 

of point x over hyper-plane rM , showing that , : N N
rTλ ℜ → ℜ converges to P21. 

Calculating the orthogonal projection of point x over rM  

Let 1 2( , , )Nx x x x= K represent an input series. Point x* will represent the orthogonal 

projection of x on hyper-plane Mr if 0),( * =− jxx , 1,,1,0 −=∀ rj K , where ⋅⋅,  

represents the canonical inner product and j ∈ Ψ , the Mr base.  Or in matrix notation:  

'

1
'

2
1

'
x1

x
x1

,  0 00, 0 0,  1 0,  1

,  11,  0 1,  1 1,  1 1

1,  0 1, 1 1,  1 ,  1 1
T

Nx

r r
r r

ra
Q R rxN

xr a

xar
x

ar r r r x r r

    −              −    ⋅ = = ⋅                   − − − −  − −     

L

L

MM M O M MM

L 142431444444442444444443 14243

 

where ( )Naa ,,1 K  are the coordinates of *x  in the base Ψ . 

It is important to observe that this system has a unique solution since its determinant 22 

will equal zero if and only if )1(,1,,2,2,1,1,0 −−−−−= rrN L . Remembering that 

N represents the sample size, it must be a positive number. Additionally, it is also 

required that it be greater than 2r, given that applying a filter with an order greater than 

half of the sample size does not make sense.  

Expressing *
1 2.0 .1 . 1 .rx a a a r R a= + + + − =K  and 1. .Ta Q R x−= , then ( )xRQRx T.. 1* −= . 

Let NNTRQRP ℜ→ℜ= − :.. 1 . Since P  is the orthogonal projection over rM  then it is 

easy to observe that: 

                                                           
21 rM and ,rTλ were previously defined in  sub-section 2.4 and sub-section 2.3.  

22 ∏
−

=

−− +−=
1

1

)()(..  det
r

j

jrjrr jNjNNk  
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Lemma C.1 

x  is a fixed point of  NNP ℜ→ℜ:  if and only if rMx ∈ . 

 

Lemma C.2 

TRQRP .. 1−=  is symmetric and so diagonalizable. Furthermore P  has rank r  and 

exactly r  eigenvalues one and rN −  eigenvalues zero. 

Proof: 

Firstly, it is important to verify that PP =2 . Let Nx ℜ∈  and xPx .* =  respectively 

represent an input sequence with N observations and its orthogonal projection over rM . 

Thus: ( ) xPxxPPxPxP ... **2 ====  

Now consider Nv ℜ∈  and 0ξ ≥  such that . .P v vξ= . Then: 

( ) ( )2 2. . . . . . ( ) . . .P v P v v P Pv v P v v P v v v vξ ξ ξ ξ ξ ξ ξ ξ= = ⇒ = ⇒ = ⇒ = ⇒ =  

Since by definition of eigenvector, v  is not the zero vector then 0ξ =  or 1ξ = . If 1ξ =  

the vvP =. . Applying Lemma C.1, its possible to conclude that rMv ∈ . So, there are 

exactly r  eigenvalues equals to one. On the other hand 0. =vP  if and only if v  is in the 

orthogonal complement of rM , which has dimension rN − . So, there are exactly 

rN −  eigenvalues zero. This concludes proof of the lemma. 

 

Characteristics of ,rTλ  

 

Lemma C.3 

Point Nx ℜ∈  is a fixed point of  NN
r rT ℜ→ℜ:)(,λ  if and only if rMx ∈  

Proof:  

( ) ( )1
. . . . 0 rT x x I B x x I B x x B x x Mλ λ−= ⇔ + = ⇔ + = ⇔ = ⇔ ∈  

The last step uses the fact that ( )ker ( ) rB r M= 23. 

 

                                                           
23 The fact that ( )ker ( )rM B r⊂ is easily proven considering that B(r) is a linear transformation and B(r).p 

= 0 for all p that belongs to Mr base. Using the fact that rank(B(r)) = N – r (Property A.3), it is easy to see 
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Theorem C.4 

Let x  be any point in Nℜ . Then the isomorphism NN
rT ℜ→ℜ:,λ  applies x  over y , 

in such a way that, for any 0>λ , rMzzyx ∈∀=− ,0),( .  

Proof: 

zxrTzxzyx ,).(,),( λ−=− 0,,).(,, =−=−= zxzxzrTxzx λ , where the last 

step comes from the fact that NN
r rT ℜ→ℜ:)(,λ  fixes rM , and the step before the last 

is because NN
rT ℜ→ℜ:,λ  is a symmetric operator. 

 

Lemma C.5 

)(.1
, rBIT r λλ +=−  is positive definite. Moreover, for every 0>λ  the matrix B.λ  has 

exactly rN −  eigenvalues strictly greater than zero and r  eigenvalues equal to zero. 

Proof: 

)(1
, rBIT r λλ +=−  is a sum of two symmetric matrices (Property A.1), one which is 

positive definite and the other, positive semidefinite (Theorem B1).  Thus, 1
,rTλ

−  is 

positive definite, leading to the conclusion that , : N N
rTλ ℜ → ℜ  also is. 

Using the fact that )(rB  is symmetric and all of its coefficients are real numbers, it is 

possible to conclude that it is diagonalizable and all its eigenvalues are also real 

numbers. Moreover, as it is positive semidefinite and its rank is equal to N – r (Property 

A.3), it has exactly r eigenvalues equal to zero and rN −  eigenvalues greater than zero. 

This property also holds for . ( )B rλ , since 0λ > . 

 

Lemma C.6 

The change of base that diagonalizes ,rTλ  and ( )B r  is the same, that is, there is an 

inversible and orthogonal matrix N  such that 1( ) . .B r N S N−=  and NNT ..1 Λ= − . 

Proof: 

Let TNN =−1  be such that 1( ) . .B r N S N−= . Then: 

( )1 1 1
, . .rT I B I N S N N I S Nλ λ λ λ− − −= + = + = + . 

So 1 1 1
,rT N Nλ

− − −= Λ , where Λ  is a diagonal matrix. So  SI .1 λ+=Λ−  

                                                                                                                                                                          
that dim(ker(B(r))) = r = dim(Mr). This shows that Mr = ker(B(r)). The whole proof is available with the 



 28 

1

0

0

0

0

N rS

σ

σ −

 
 
 
 

=  
 
 
 
  

O

O

;  

1

21

1

0

1

1

0

1

λσ

λσ−

+ 
 
 
 +

Λ =  
 
 
 
  

O

O

 

 

Convergence of 1
,rTλ

−  on P 

It is important to observe that 1
,rTλ

−  has all eigenvalues equal or greater than one. As 

+∞→λ , rN −  of them goes to infinite while r  of them remains equal to one. 

Considering that 1
, . .rT N Nλ

−= Λ , it is clear that, as +∞→λ , exactly rN −  eigenvalues 

goes to zero and r  of them are equal to one. Therefore, it can be concluded 

that lim
λ→∞

Λ and P  have the same eigenvalues.  

 

To finalize it is enough to show the following result that says that the directions in rM  

are those corresponding to eigenvectors of both P  and ,rTλ  associated to eigenvalue one 

and that the orthogonal complement of rM  is the space generated by the eigenvectors 

of P  corresponding to an eigenvalue zero or generated by eigenvectors of ,rTλ  

associated to eigenvalues σ  such that 10 << σ . 

 

Theorem C.7 

a) v  is an eigenvector of  P  corresponding to an eigenvalue one if and only if it is an 

eigenvector of ,rTλ  corresponding to an eigenvalue one. 

b) Moreover v  is an eigenvector of  P  corresponding to an eigenvalue zero, that is 

0Pv =  or equivalently ( )kerv P∈ , if and only if v  belongs to the orthogonal 

complement of  rM . 

c) If this happens then v  is a linear combination of eigenvectors of ,rTλ  associated to 

eigenvalues iσ  such that 10 << iσ . 

d) Furthermore , .rT v vλ < . 

                                                                                                                                                                          
authors. 



 29 

Proof: 

a) Let r be fixed. So vvP =.  if and only if rMv ∈  if and only if , . , 0rT v vλ λ= ∀ > . The 

first part is given by lemma E.1 and the second by lemma E.2. 

b) Now, 0. =vP  if and only if v belongs to the orthogonal complement of  rM  because 

P  is the orthogonal projection over rM . 

The only if part follows easily because P  is the orthogonal projection over rM . 

c) Let v  be in the orthogonal complement of rM . Then: 

1

N r

i i
i

v a v
−

=
=∑  and jivv ji ≠∀=〉〈 ,0, , ,  ia i∈ ∀ . This coordinates ia  can be taken all 

non-negative (if not just change the direction of iv ), so that i ia a= . 

where { } rN

iiv −
=1  is a set of orthonormal eigenvectors of ,rTλ  because ,rTλ  is a symmetric 

operator and by the spectral theorem it has an orthonormal basis of eigenvectors.  

It was earlier explained that for every eigenvalue σ  of ,rTλ  the relation 0 1σ< ≤  holds. 

 

All the eigenvectors of ,rTλ  associated to eigenvalues one are in rM , so all the others 

must be in the orthogonal complement of rM .  

So , ,
1 1 1

. .
N r N r N r

r i i i r i i i i
i i i

T v T a v a T v a vλ λ σ
− − −

= = =

 = = = 
 
∑ ∑ ∑ , where { } rN

ii
−

=1σ  is the set of eigenvalues 

of ,rTλ  associated to eigenvectors in the orthogonal complement of rM  and as it was 

previously proved 10 << iσ . 

 

d) Finally: 

22
, ,

1 1 1 1 1 1

. ( )
N r N r N r N r N r N r

r i i i r i i i i i i i i i
i i i i i i

T v T a v a T v a v a a a v vλ λ σ σ
− − − − − −

= = = = = =

       = = = = < = =       
       
∑ ∑ ∑ ∑ ∑ ∑

, where the strict inequality holds because 10 << iσ , jivv ji ≠∀=〉〈 ,0,  and not all of 

the ia  are zero. 

This concludes the proof of this theorem. 
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Appendix D – Other examples 

In this appendix, three controlled experiments are presented to evidence problems 

related to the use of the HP filter on series that are dominated by a high order 

polynomial trend24 or that are integrated of order equal or superior to two. It also shows 

how high order filters can be used to avoid those problems. 

Initially, a series that includes only a polynomial trend was generated. Therefore, 

applying a filter to this series in order to extract its trend should return the same series. 

However, when the HP filter is applied to a third order polynomial, the filtered series 

depends on the smoothing factor, λ. Only when λ is small, the resulting trend 

approximates the correct trend. This fact does not occur when a fourth order filter25 is 

used. The trend is perfectly identified for any smoothing factor, λ. 

(a)                         (b) 

Figure D.1:  Gray -> actual trend ; Black -> fitted trend 
(a)  r = 2, λ = 1600 

(b) r = 4, λ = 2560000, fitted and actual trend are coincident. It happens for any λ. 

 

 

                                                           
24 In the present context, high order means second order or superior.  
25 In fact, any filter with order equal or superior to 4 could have been used.  The filter order should be 
superior to the polynomial order. 
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The same behavior can be observed when a noise26 is added to the input series. It is 

important to emphasize that misidentifying the trend can lead to false conclusions. 

Figure D.2 (a) shows, for instance, a period that the series is continuously below its 

trend. If it were potential output estimation, the output gap would be negative during 

this entire period. However, when the trend is correctly identified, it becomes clear that 

this conclusion does not hold. 

                                       (a)                                                                                                   (b) 

Figure D.2:  Gray -> actual data ; Black -> fitted trend 
(a)  r = 2, λ = 1600 

(b) r = 4, λ = 2560000 (same cut-off frequency). As in the previous case the time trend is perfectly fitted . 

 

                                                           
26 Uniformly distributed in the interval [-3, 3]. 
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The last experiment considers a series that is integrated of order 3. Figure D.4 gives 

evidence that using a high order filter can make the residual stationary27. 

                                         (a)                                                                                                   (b) 

Figure D.3:  Gray -> actual data ; Black -> fitted trend 
(a)  r = 2, λ = 1600 

(b)  r = 4, λ = 2560000 (same cut-off frequency). 

 

Figure D.4: residues when r = 2 (Gray) and r = 4 (Black) 

                                                           
27 Despite the evidence shown, there is no proof that this is a general result. 
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