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When half the truth is better than the truth:

A Theory of aggregate information cascades�

Antonio Guarino, Heike Harmgart and Ste¤en Hucky

Abstract

We introduce a new model of aggregate information cascades where only

one of two possible actions is observable to others. When called upon,

agents (who decide in some random order that they do not know) are

only informed about the total number of others who have chosen the

observable action before them. This informational structure arises nat-

urally in many applications. Our most important result is that only

one type of cascade arises in equilibrium, the aggregate cascade on the

observable action. A cascade on the unobservable action never arises.

Our results may have important policy consequences. Central agencies,

for example in the health sector, may optimally decide to withhold in-

formation from the public.

1 Introduction

A hiring committee must make a decision on a job candidate who has just

been interviewed. The candidate mentions that three other companies have

already made him an o¤er, information that the committee can verify. On the

other hand, the committee can only speculate on how many rival companies

have already rejected the candidate�s job application.
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useful comments. We gratefully acknowledge �nancial support from the ESRC and the
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A manager of a venture capital �rm discusses a project with an inventor

who needs capital to develop a new product. The inventor has already secured

funds from two other venture capital �rms, information that the present man-

ager can verify. The manager will also have some private information about

the viability of the project but he can only speculate about how often the

inventor was turned down by other rival �rms who thought that the project

was bad.1

A restaurant goer must decide whether or not he wants to dine at a par-

ticular restaurant he stands in front of. He has some private information on

how good the restaurant is, and he is able to peer through the window to

see how many others have already decided to dine there. But he can only

speculate about how many others stood before the same door and decided to

pass.

What these examples have in common is that agents who have to decide

between two options have only aggregate information about one of the two

options (o¤ering a job, �nancing a project, dining in a restaurant), simply

because the choice of the other option is not observable. In this paper we

study the properties of social learning in this type of environment.

This informational environment appears to arise rather naturally in many

social interactions. Like in the case of the restaurant goer or the venture

capital �rm, in many circumstances, a decision maker can gather some aggre-

gate information (how many �rms have already adopted a new technology,

invested in a speci�c project, etc.), but he can rarely observe all the individual

decisions. Clearly, if the decision is binary, knowing the number of agents who

have made a certain decision also helps to update on the number of agents

who have made the opposite decision. But this is not equivalent to knowing

it. And as we will show below this makes an important di¤erence for social

learning.

The social learning literature so far has focussed on situations where,

in principle, all available actions are observable. The standard model of

informational cascades (Banerjee, 1992, and Bikhchandani et al., 1992), for

1This example could also be extended to the market for syndicated loans where several

banks jointly o¤er funds to a borrowing �rm. See for example Su� (2007) for an empirical

analysis of the e¤ect of information provision between several lenders and the borrower on

the syndicate structure of the contract.
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instance, contemplates a sequence of binary decisions which are all observable.

Agent n knows whether each predecessor in the sequence, from agent 1 to

agent n � 1, decided in favor of one option or the other. Several studies

since have relaxed these stringent assumptions, some of which we discuss

brie�y below. However, the question of what happens if some actions are not

observable at all has not been addressed yet.

In the standard sequential model of Banerjee (1992) and Bikhchandani et

al. (1992) informational cascades arise: at a certain point in the sequence,

agents rationally neglect their own private information, i.e., they choose the

same action independently of the information they receive (for instance be-

cause they follow the decisions of the predecessors). In particular, di¤erent

types of cascades can arise. If the decision is binary, say, between investing

and not, there can be cascades where, from a certain point onwards, all deci-

sion makers decide to invest, as well as cascades where, from a certain point

onwards, all decisions makers decide not to invest. At a �rst glance, one could

think that this may be the case in our set up, too. If a restaurant goer sees

many people in a restaurant, he could disregard his information and just join

the crowd; and if he sees the restaurant empty, he could decide to go some-

where else independently of his private signal. However, we can prove that,

on the contrary, only the �rst cascade is possible. In equilibrium cascades

on the unobservable action cannot arise and a restaurant about which some

people have read good reviews will not remain empty for ever.

In many scenarios with binary actions, one of the available actions arises

naturally as the observable action. There are, however, also some important

cases where third parties may have the power to decide what kind of infor-

mation is provided to agents. An example is the disclosure policy of a health

agency. A central agency in health policy must decide how to disclose infor-

mation on the adoption of a new treatment. One possibility is to inform the

doctors on how many others have already decided to adopt the new treat-

ment. Another is to inform them on how many have considered doing it but

have judged that it is preferable to stick to the old practice. A third possi-

bility is to reveal both, the number of doctors in favor of the new practice

and the number of physicians in favor of the old one. Since in equilibrium

there cannot be a cascade on the unobservable action and since the central

agency can choose which action to make observable, it can essentially rule out
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one of the two cascades� by withholding information. In summary, we like to

argue that the aggregate information set up that we introduce here has not

only several intriguing properties� some of which are in stark contrast to the

predictions of the standard model� it also has potentially important policy

implications.

Other papers in the social learning literature have studied what happens

when we remove the strong assumption that agents can observe the entire

history of individual decisions.2 Smith and Sørensen (1998) study a sequential

decision model in which agents can only observe unordered random samples

from predecessors�actions (e.g., because of word of mouth communication).

With unbounded private signals complete learning eventually obtains in their

model. Similarly, Banerjee and Fudenberg (2004) present a model in which,

at every time, a continuum of agents choose a binary action after observing

a sample of previous decisions (and, possibly, of signals on the outcomes).

This can be interpreted as a model of word of mouth communication in large

populations. The authors �nd su¢ cient conditions (on the sampling rule,

etc.) for herding to arise, and conditions for all agents to settle on the correct

choice. Çelen and Kariv (2004) extend the standard model of sequential

social learning by allowing each agent to observe the decision of his immediate

predecessor only. The prediction of these authors is that behavior does not

settle on a single action. Long periods of herding can be observed, but switches

to the other action occur. As time passes, the periods of herding become

longer and longer, and the switches increasingly rare. Finally, Larson (2006)

is close to our paper in that he analyzes a situation in which agents observe

the pooled average action of a population of their predecessors (before making

a choice in a continuous action space). In contrast to our work, the focus of

the study is not on whether a cascade occurs or not, but on the speed of

learning (since the continuous action space guarantees that complete learning

eventually occurs).

The remainder of the paper is organized as follows. In Section 2 we in-

troduce the formal model. We present its equilibrium analysis in Section 3.

Section 4 contains an example. Section 5 concludes with a discussion.

2For comprehensive surveys of the literature see, among others, Gale (1996), Hirshleifer

and Theo (2003), Chamley (2004) and Vives (2007).
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2 The Model

In our economy there are n agents who have to decide in sequence whether or

not to take up a certain option. For convenience, we shall refer to this choice

as the decision about whether or not to invest. Time is discrete and indexed

by t = 1; 2; :::; n. Each agent makes his choice only once in the sequence.

Agent i�s (i = 1; 2; :::; n) action space is given by f0; 1g, where 1 is interpreted
as investment. Player i�s action is denoted by Ii 2 f0; 1g. An agent�s payo¤
�i depends on his choice and on the true state of the world ! 2 f0; 1g. The
prior probability of ! = 1 is r 2 (0; 1). If ! = 1 agent i receives a payo¤ of
1 if he chooses to invest, and a payo¤ of zero otherwise; vice versa if ! = 0.

That is,

�i = !Ii + (1� !)(1� Ii):

The sequence in which agents make their choices is randomly determined

before the �rst agent makes a decision, and agents are, w.l.o.g., (re-)numbered

according to their positions: agent i chooses at time i only. All sequences are

equally likely. The agents are, however, not informed about which sequence

has been chosen. Furthermore, they do not know their own position in the

sequence. When called upon, agent i is only informed about the total number

of agents before him who have decided to invest. In other words, the decision

to invest is assumed to be the only observable action. This means that, while

the aggregate number of investments is observable, each individual decision to

invest or not is not publicly known. We denote the total number of agents who

have invested before agent i by Ti, i.e., agent i is informed about Ti =
Pi�1
j=1 Ij .

In addition to observing Ti, each agent i receives a private signal �i 2 f0; 1g
that is correlated with the true state !. In particular, we assume that each

agent receives a symmetric binary signal distributed as follows:

Pr(�i = 1 j ! = 1) = Pr(�i = 0 j ! = 0) � q.

Note that, conditional on the state of the world, the signals are i.i.d.. We

shall refer to ! = 1 as the �good state�and to ! = 0 as the �bad state.�A

signal pointing in the direction of the good state (�i = 1) shall be called a

�good signal�and a signal pointing in the opposite direction (�i = 0) a �bad

signal.�We assume that 1 > q > r and that r + q > 1. These conditions

ensure that, in the one-agent case, an agent would invest after a good signal
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but not after a bad signal, which renders the problem interesting. Note that

these two conditions also imply that q > 1
2 , i.e., that the signal respects

the monotone likelihood ratio property. Finally, the signal is not perfectly

informative, which makes social learning possible and relevant.

Agent i�s information set is, therefore, represented by the couple (Ti; �i).

An agent�s strategy Ii maps (Ti; �i) into an action, i.e.,

Ii : f0; 1; 2; :::; n� 1g � f0; 1g ! f0; 1g .

An agent�s mixed strategy induces, for each (Ti; �i), a probability with which

the agent invests. We denote the probability with which agent i invests after

observing (Ti; �i) by Ii(Ti; �i).
To conclude the description of our model, it is useful to introduce the no-

tion of an aggregate information cascade. The de�nition is virtually identical

to the standard de�nition of information cascade, with the characteristic that

histories are summarized by the aggregate statistic Ti.

De�nition 1 An aggregate information cascade (AIC) occurs when, along

the equilibrium path, there is a critical value of Ti after which all agents choose

an action independently of their signal. In particular:

In an aggregate up cascade (AUC) there is a critical value TUP such that

if Tk = TUP all agents from k onwards choose to invest regardless of their

private signals. Consequently, there is some k such that Tk+j = Tk + j for all

j = 1; :::; n� k.
In an aggregate down cascade (ADC) there is a critical value TDOWN such

that if Tk = TDOWN all agents from k onwards choose not to invest regardless

of their private signals. Consequently, in an ADC there is some k such that

Tk+j = Tk for all j = 1; :::; n� k.

There is one small curiosity that can arise in our model. In some cases

there are multiple equilibria such that an equilibrium that triggers a cascade

can coexist with one that does not. In these cases, players who coordinate at

TUP on the AUC equilibrium could revert to the other equilibrium at TUP +1

(as no more new information is revealed). We shall rule this out, i.e., we

shall assume that once agents have coordinated on an aggregate information

cascade they will stay coordinated on that cascade.3

3This is intuitive as coordination on complicated switching patterns is perhaps less salient
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We are now ready to start analyzing the equilibrium decisions in our

economy.

3 Equilibrium Analysis

The ultimate goal of our analysis is to understand the social learning process

that occurs in our economy. Each agent can learn about the true state of the

world from the aggregate information that he receives about other agents�

choices. This can lead to better decisions. On the other hand, it may be that

also in our economy, as in the canonical model of social learning of Banerjee

(1992) and Bikhchandani et al. (1992), there is room for information cascades.

In such a case, the process of information aggregation will not be e¢ cient.

We will show that, indeed, �up cascades�of investments are possible even in

our set up, as they are in the canonical model. In contrast, �down cascades�

of non-investments never occur in equilibrium.

We shall restrict the entire analysis to symmetric Perfect Bayesian Nash

equilibria (PBNEs). For convenience, we shall sometimes drop the quali�ca-

tion and simply speak of an �equilibrium.�4

To start our analysis, it is convenient to focus �rst on the case of Ti = 0, in

which an agent observes that no one has invested before him. At a �rst glance,

the decision problem in such a situation appears to be fairly complicated. If

the agent knew that Ti = 0 simply because he is the �rst decision maker, then

he should certainly follow his private signal, since that is the only information

available. If, instead, he knew that he is not the �rst decision maker, then he

could decide not to invest independently of the signal, as other agents have

already chosen the non-investment option. Intuitively, one might think that

Ti = 0 is pretty bad information if there are many players. Suppose that n

is very large and you observe that nobody has invested before you. But at

the same time your own private signal is good. Would you trust your own

signal? Of course, the answer to this question would depend on the other

than coordination on a cascade. Moreover, for AUCs one can use a re�nement argument

to get the same result. If there is the slightest uncertainty about which equilibrium players

coordinated on at TUP when observing TUP + 1 the indi¤erence will be broken as the

increase in T might now actually be due to an additional good signal.
4Our economy is represented by a symmetric game and there is nothing in the envi-

ronment that could help agents to coordinate on an asymmetric outcome. Therefore, the

restriction to symmetric equilibria is very natural.
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agents�strategies. While the problem is made hard due to the fact that the

agent does not know his position in the sequence, it is made easier due to the

fact that the only thing that matters about other agents�strategies is what

these specify for the very same case of Ti = 0.

To attack the problem, let us start with the following de�nition:

De�nition 2 An initially-pure equilibrium (IPE) is an equilibrium that pre-

scribes pure actions for Ti = 0 and both possible signal realizations �i = 0 and

�i = 1.

Note that there can be mixing in an IPE after observing Ti > 0. The

de�nition of an IPE just excludes the cases in which an agent mixes after

observing Ti = 0. We are able to establish some results that focus on Ti = 0.

First, we prove that in any IPE agents must follow their signal after observing

Ti = 0: there cannot exist IPEs in which an agent plays independently of his

signal or plays against it.

Lemma 1 In any IPE, an agent follows his own signal if he observes that

nobody has invested so far, i.e., Ii(0; �i) = �i for all i.

Proof We prove this by contradiction. Suppose that for Ti = 0 agents choose

either to invest always or never (independently of their private signals).

Consider the latter possibility �rst, i.e., consider a pure-strategy equi-

librium with Ii(0; 0) = Ii(0; 1) = 0. Then, along the equilibrium path,

nobody ever invests and, for any agent i = 1; :::; n, Ti = 0. Hence, Ti = 0

does not reveal any information on the true state of the world. Since

the posterior probability that ! = 1 is still r, agent i is better o¤ by fol-

lowing his informative signal �i. Next, consider the case of investment

after Ti = 0, i.e., an equilibrium with Ii(0; 0) = Ii(0; 1) = 1. In this

case, along the equilibrium path, only the �rst agent in the sequence

observes that nobody else has invested before. That is, Ti = 0 if and

only if i = 1. Hence, after observing Ti = 0 agent i knows that he is the

�rst agent in the sequence and, thus, should follow his signal. Finally,

suppose that for Ti = 0 agents choose to play against their private infor-

mation, i.e., consider a pure-strategy equilibrium with Ii(0; �i) = 1��i.
Then, along the equilibrium path, after observing Ti = 0, agent i knows
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that he is either the �rst in the sequence or all other agents before him

have received good signals. In both cases, he should follow his signal.�

While we have shown that in any IPE an agent who observes zero in-

vestments should follow his signal, it remains unclear whether such equilibria

exist. The next lemma identi�es a necessary and su¢ cient condition under

which an IPE does indeed exist.

Lemma 2 An IPE exists if and only if r � 1�qn
2�(1�q)n�qn .

Proof We �rst prove that it is indeed optimal for an agent i to follow his

own good signal after Ti = 0 provided that everybody else follows his

signal after Ti = 0, and that the condition stated in the lemma holds.

(Notice that what another agent j does for Tj > 0 is irrelevant for agent

i�s optimal choice of Ii(0; �i)). Assuming such behavior of others, an
agent i who observes Ti = 0 and �i = 1 attaches to the good state a

posterior of

Pr(! = 1 j Ti = 0; �i = 1) =
rq
Pn
j=1(1� q)j�1

rq
Pn
j=1(1� q)j�1 + (1� r)(1� q)

Pn
j=1 q

j�1 .

He will follow his good signal if this posterior is at least 1=2, i.e., if

rq

nX
j=1

(1� q)j�1 � (1� r)(1� q)
nX
j=1

qj�1.

Solving for the sums and rearranging the terms, we get the condition in

the lemma. To complete the proof we have to show that an agent i who

assumes that the others play according to the rules stated in the lemma

and who observes Ti = 0 and �i = 0 does not invest, i.e., we need that

Pr(! = 1 j Ti = 0; �i = 0) =
r(1� q)

Pn
j=1(1� q)j�1

r(1� q)
Pn
j=1(1� q)j�1 + (1� r)q

Pn
j=1 q

j�1 <
1

2
,

or

r(1� q)
nX
j=1

(1� q)j�1 < (1� r)q
nX
j=1

qj�1,
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which can be written as

r

(1� r) <
q2

(1� q)2
1� qn

1� (1� q)n . (1)

Since r < q we also have r
1�r <

q
1�q . Hence, inequality (1) holds if

q
1�q

1�qn
1�(1�q)n > 1. This can be rewritten as 2q > 1 + q

n+1 � (1 � q)n+1

which is obviously true for q > 1=2.�

Notice that the condition imposed in the lemma is always ful�lled if r �
1=2, i.e., when the good state is initially at least as likely as the bad state, an

IPE always exists.

We now turn our attention to Perfect Bayesian Nash equilibria that are

not initially pure. The next lemma trivially follows from Bayesian updating.

We state it formally because we shall need it later on. The lemma after

that shows that, in an equilibrium that is not an IPE, agents who observe

Ti = 0 never invest if their signal is bad, but will invest with some positive

probability if their signal is good.

Lemma 3 (i) In any equilibrium, Ii(Ti; 1) � Ii(Ti; 0) for all Ti.
(ii) In any equilibrium, if 0 < Ii(Ti; 0) < 1 then Ii(Ti; 1) = 1, and if

0 < Ii(Ti; 1) < 1 then Ii(Ti; 0) = 0 for all Ti.

Proof In equilibrium, each agent will infer the same information from ob-

serving a particular value of Ti. Whatever the posterior induced by just

observing Ti, it follows immediately from Bayes�rule that an agent who

has an additional good signal will be more optimistic about the good

state than an agent with a bad signal. The �rst part of the lemma

results from this consideration and from expected payo¤ maximization.

The second part follows from the same argument and the additional

observation that mixing requires indi¤erence.�

Lemma 4 In any equilibrium that is not an IPE, Ii(0; 0) = 0 and 0 <

Ii(0; 1) < 1 for all i.

Proof Given Lemma 3 we just need to rule out an equilibrium with 0 <

Ii(0; 0) < 1 and Ii(0; 1) = 1. For an agent to be indi¤erent between
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investing and not after observing Ti = 0 and �i = 0 we need Pr(! = 1 j
Ti = 0; �i = 0) = 1=2. Using Bayes�rule, this can be re-written as

rPr(Ti = 0; �i = 0 j ! = 1) = (1� r) Pr(Ti = 0; �i = 0 j ! = 0);

or

r
nX
j=1

(1� q)j(1� p)j�1 = (1� r)
nX
j=1

qj(1� p)j�1;

where p denotes the probability with which all other agents who see

Ti = 0 and �i = 0 invest. Rewriting this as

nX
j=1

��
r(1� q)j � (1� r)qj

�
(1� p)j�1

�
= 0

makes it obvious that there is no p > 0 that solves the equation: since

q > max
�
1
2 ; r
	
the left-hand side is strictly negative for any positive p.�

Having characterized equilibria that are not initially pure, we must discuss

whether they exist. The next lemma introduces a necessary and su¢ cient

condition for such mixed-strategy equilibria to exist.

Lemma 5 (i) Mixed-strategy equilibria with Ii(0; 0) = 0 and 0 < Ii(0; 1) < 1
for all i exist if and only if there is a p 2 (0; 1) that solves

r[1� (1� pq)n] = (1� r)[1� (1� p(1� q))n].

(ii) If such a p exists, it is unique.

(iii) A mixed strategy equilibrium does not exist for r � 1
2 .

Proof The �rst part of the lemma follows from observing that agent i�s in-

di¤erence between investing and not investing after observing Ti = 0

and �i = 1 requires Pr(! = 1 j Ti = 0; �i = 1) = 1=2. If all other agents
j 6= i use Ii(0; 0) = 0 and Ii(0; 1) = p, after applying Bayes�rule and

some algebraic manipulation, this equality becomes

rq
nX
j=1

(1� pq)j�1 = (1� r)(1� q)
nX
j=1

(1� p(1� q))j�1, (2)

which is equivalent to the equation in the lemma.
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For the second part, observe that Pr(! = 1 j Ti = 0; �i = 1) is strictly
decreasing in p.5

Finally, note that for r � 1
2 the left-hand side of (2) is strictly greater

than the right-hand side for any value of p, which proves the last part

of the lemma.�

This lemma completes our characterization of equilibrium decisions after

observing Ti = 0. In the following proposition we summarize what we have

learned so far.

Proposition 1 (i) If r � 1=2 agents who observe Ti = 0 follow their signal
in all equilibria.

(ii) If 1�qn
2�(1�q)n�qn � r < 1=2 there is an equilibrium where agents who

observe Ti = 0 follow their signal but there may also be other (mixed-strategy)

equilibria where agents who observe Ti = 0 follow their signal if it is bad and

mix if it is good.

(iii) If r < 1�qn
2�(1�q)n�qn there can only be equilibria where agents who

observe Ti = 0 follow their signal if it is bad and mix if it is good.6

Proof The proposition follows immediately from the four previous lemmas

and the observation that 1�qn
2�(1�q)n�qn < 1=2.�

Our analysis essentially shows that, when facing a situation with no pre-

vious investments, an agent should either follow his signal or use a mixed

strategy (only if the signal is good). An agent should never decide indepen-

dently of his signal, neither should he decide against it. This clearly indicates

that we should not observe a �down cascade�where all agent choose not to

invest. In other words, to go back to one of our examples, a restaurant will

5While this is very intuitive (the higher p the more likely it is that an agent i�s potential

predecessors had bad signals if Ti is still zero) the easiest procedure to show this formally is

as follows. Let A = Pr(Ti = 0; �i = 1 j ! = 1) and de�ne B accordingly for the bad state.

Note that A = q
Pn

j=1(1� pq)
j�1 and B = (1� q_

Pn
j=1(1� p(1� q))

j�1. It is easy to see

that the claim follows if and only if AB0 > A0B (where A0 is short for the derivative of A

with respect to p). It is also easy to establish that A > B. Finally, it remains to be shown

that B0 > A0. For that simply compare the summands in both expressions one by one.
6Notice that the third part of the proposition touches on an existence problem. For

obvious reasons we have restricted our analysis to symmetric equilibria� in case of bad

priors these may fail to exist.
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not stay empty forever only because it is empty when it opens. While this

puts already a lot of structure on the equilibrium solution of our game, we

still need to investigate what happens for di¤erent values of the aggregate

investment Ti.

To this purpose, we establish in the next step an intuitive monotonicity

result, according to which a higher value of Ti is always good news: when an

agent observes a higher number of investments made before him, he cannot

be less willing to invest himself. Once this monotonicity lemma is established,

we will be able to prove two fundamental results about aggregate cascades.

Lemma 6 In any equilibrium, if T 0i < T
00
i then Ii(T 0i ; �i) � Ii(T 00i ; �i) for both

�i = 0 and �i = 1. In particular, if 0 < Ii(T 0i ; �i) < 1, then Ii(T 00i ; �i) = 1.

Proof See Appendix.�

While this lemma seems very intuitive (how could a fuller restaurant be

worse news than an emptier?) it is actually not trivial to prove it. At the

very core of the proof there is, however, some very basic logic operating.

Essentially, it is the earlier monotonicity result (in Lemma 3) which is driving

this one. Agents with good signals are more likely to invest than agents with

bad signals. Good signals are more likely to be generated in the good state

than in the bad state. Hence, Ti grows, on average, �faster�in the good state

than in the bad state. Hence, the higher Ti the more con�dent can we be

about being in the good state.

Equipped with Lemma 6 we are now ready to state our two main propo-

sitions that characterize which forms of cascades will or will not arise. In

particular, we will see that aggregate down cascades never arise, while aggre-

gate up cascades are always part of an equilibrium.

Proposition 2 (i) In any equilibrium, Ii(0; 1) > 0, and Ii(Ti; 1) = 1 for all
Ti > 0, i.e., an agent with a good signal always invests with positive probability

(and invests with probability one after observing at least another investment)

and an ADC never occurs in equilibrium.

(ii) In any equilibrium, there can be at most one TMIX for which 0 <

Ii(TMIX ; 0) < 1. For all Ti < TMIX agents with bad signals follow their

signal and do not invest. For all Ti > TMIX , an AUC occurs in which agents

invest independently of their signal.
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Proof The �rst part of the proposition follows from Proposition 1 and Lemma

6. The second part follows again from Lemma 6.�

The �rst part of the proposition clearly implies that there are no cascades

on the unobservable action. In particular, after observing at least one in-

vestment, agents with a good signal always invest. Incidentally, we note that

such a result just comes from an equilibrium argument. One could imagine

that, when facing a �low�value of Ti, in order to make his decision, agent i

should consider all possible sequences and attach a probability to the event

that he is the �rst in the sequence, or the second, etc. After all, a low number

of investments may merely come from the fact that only few agents had the

opportunity to invest so far, in which case the low value of Ti should be con-

sidered good news. Or it could arise from many agents having the option of

investing but few only using it, in which case the low Ti should be viewed as

bad news. All this inference process could be quite complicated. Our analysis

solves the problems by just invoking some equilibrium arguments.

The second part of the proposition hints at the possible role of aggregate

up cascades. But from all we have established so far it could be that TMIX �
n, i.e., that agents always follow their signal (or mix) such that an AUC never

arises. The next proposition, however, shows that AUCs do arise� and are,

in fact, part of any equilibrium.

Proposition 3 AUCs are part of any equilibrium. In particular, in any equi-

librium Ii(Ti; �i) = 1 for all Ti > n
2 .

Proof Consider an agent i who observes Ti > n
2 and suppose he knew that

he were the last agent in the sequence. Further suppose there were no

AUC. If Ti = TMIX , then for Ti = TMIX + 1, an AUC would occur

by Proposition 2. If, instead, Ti 6= TMIX , then, due to Lemma 6, this

agent knows that there were at least Ti good signals and no more than

n � Ti � 1 bad signals. Hence, even if this agent�s own signal is bad,
he knows that there were altogether more good signals than bad signals

and he will decide to invest. Of course, agent i can�t be sure that he

really is the last agent. But if he isn�t, this means that there were fewer

bad signals so far, while he can still be sure that there were Ti good

signals. Hence, an agent who observes Ti > n=2 will always invest and,

thus, trigger an AUC.�
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�i = 0 �i = 1

Ti = 0 0 mixed; 1

0 < Ti < T
MIX 0 1

Ti = T
MIX mixed 1

Ti > T
MIX 1 1

Ti � TUP 1 1

Table 1: Structure of all equilibria. Entries indicate whether the agent mixes

or invests with probability 0 or 1.

The value n
2 is just an upper bound for the critical mass of observable

choices that triggers an AUC. Depending on the parameters�values, AUCs

may well be triggered earlier. But AUCs are indeed part of all equilibria. Of

course, this does not necessarily imply that AUCs will actually be triggered,

since there is always the possibility of su¢ ciently many bad signals occurring

such that the critical Ti that triggers an AUC may not be reached.

We summarize the structure of equilibria in Table 1. The rows in the table

indicate possible values of Ti, while the columns indicate the two possible

signal realizations. Note that not necessarily all the values of Ti in the table

exist. In particular, TMIX might not exist. For this reason, the last two

rows of the table have the same entries. Notice also that if TMIX exists, then

TUP = TMIX+1. In any case, the basic structure of all equilibria is captured

in the table and is nicely monotonic.

4 An example

Let us now illustrate our theory through a simple example. The example

shows how constructive the results that we have illustrated above are. Con-

sider the case in which n = 3 and r � 1=2 . From Proposition 1 we know that

Ii(0; �i) = �i and from Proposition 2 we know that Ii(2; �i) = 1 and that

Ii(1; 1) = 1. Thus, the two propositions alone immediately give us the equi-

librium actions for �ve out of the six possible contingencies agents can face.

The only remaining question is now what agents do after observing Ti = 1

and �i = 0. As is clear from the results illustrated in Table 1, this depends on

further conditions on r and q. Let us �rst check under which conditions agent

i rationally follows his bad signal. Recall that we are analyzing a symmetric
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equilibrium, therefore suppose each other agent j chooses Ij(1; 0) = 0. Then

it is optimal for agent i to do the same if his posterior for the good state is

not bigger than 1=2, i.e., if

r[q(1� q) + 2q(1� q)2]
r[q(1� q) + 2q(1� q)2] + (1� r)[q(1� q) + 2q2(1� q)] �

1

2

which is equivalent to

q � 2r � 1
2
� q.

Similarly, Ii(1; 0) = 1 is optimal if

r[q(1� q) + q(1� q)2] � (1� r)[q(1� q) + q2(1� q)].

which is equivalent to

q � 3r � 1 � q.

Note that q � q. Hence, in the case in which q > 0 and q < 1, we

obtain three equilibrium regions. For q < q there is a unique pure-strategy

equilibrium in which Ii(1; 0) = 1 and an AUC starts with Ti = 1. For q >

q there is a unique pure-strategy equilibrium in which Ii(1; 0) = 0 and an

AUC starts only with Ti = 2. Finally, for q � q � q both the two pure-

strategy equilibria exist and there is a mixed-strategy equilibrium as well�

with Ii(1; 0) =
1+2q�4r
q�r .

5 Discussion

We have introduced a new model of information cascades. The crucial dif-

ference between our model and those already in the literature is that only

one action taken by agents is observable by others. When it is their turn to

make the binary decision, agents simply receive aggregate information about

how many others before them took the observable action. We argue that this

setup arises naturally in many scenarios: for example, when entrepreneurs

seek investors they will typically not inform them about how many others

have turned them down before, but, surely, they will mention who else de-

cided previously to invest in their project. This asymmetry in observability

dramatically a¤ects all equilibria in such games. Most importantly, there can

be no �down cascades:� if an action is unobservable, there can never be an

information cascade where agents take this action.
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Our result has important implications. In particular, it implies that a

new, good project (e.g., a technological innovation, a new product or service,

a new medical treatment) will not be neglected for ever simply because there

is lack of interest at the beginning. Sooner or later (i.e., as soon as people

start receiving good information on it) the new project will start di¤using. A

lack of initial interest will not represent a barrier to future adoption because

of informational considerations.

Our study has also an important consequence for applications where a

third party can decide which information it is to release. In the introduction

we mentioned the case of an agency in health policy. Such an agency must

decide how to disclose information on the adoption of a new treatment: to

inform the doctors on how many others have already decided to adopt the

new treatment; inform them on how many have considered doing it but have

decided to stick to the old practice; or, �nally, to reveal both, the number of

doctors in favor of the new practice and the number of physicians in favor of

the old one. Can the way the information is disclosed make a di¤erence for

the di¤usion of the new treatment? Suppose the agency is uncertain about

the e¤ects of the new treatment and considers as the worst case scenario the

situation in which the new treatment is widely adopted while ultimately re-

sulting in worse health outcomes than the old treatment, for instance because

of side e¤ects. Which disclosure policy should the agency employ? Intuitively,

one would think that the disclosure of all available information should maxi-

mize social welfare. This is, however, only true if the welfare analysis focuses

on doctors and excludes patients. The standard intuition does hold: With

more information the doctors will always be better o¤. But as soon as the

doctors� interests are not perfectly aligned with that of patients� (perhaps

because patients care more about their own lives than their doctors do) the

picture changes. Since the agency may want to maximize patients�welfare

rather than doctors it may, in the light of our results, optimally withhold

some information. By withholding information on a particular decision (e.g.,

the number of doctors who decided to adopt the new treatment), the agency

can, in fact, guarantee that an informational cascade on that decision does

not occur.7 This may rule out the worst case scenario where many patients

7 In their seminal paper on information cascades, Bikhchandani et al. (1992) have argued

that the adoption of medical procedures is often based on fairly weak information and that
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die because of severe side e¤ects of the new treatment. A full-�edged welfare

analysis is beyond the scope of our paper, but these considerations show that

it can be an important topic for future research.

Models of social learning have been extensively tested in the laboratory,

with results sometimes supportive and sometimes less encouraging for the

theoretical analysis.8 We have studied the behavior of human subjects in a

laboratory setting that reproduces the model of this paper (Guarino et al.,

2008). Our preliminary results are encouraging. In just two simple treatments

we �nd that the main comparative statics go all in the right directions. In

particular, while we observe cascades on the observable action, cascades on

the unobservable actions either do not occur (in one treatment) or occur only

rarely (in the other). While this evidence is not yet conclusive, and although

some interesting anomalies emerge, our experimental results show that our

theory is able to capture some of the behavior we observe in the laboratory.
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6 Appendix

A Proof of Lemma 6

The proposition is equivalent to saying that in any equilibrium I(ti; �i) �
I(ti + 1; �i) for any ti = 0; 1; 2:::and both �i = 0 and �i = 1. Because of

expected payo¤ maximization, this inequality holds if, whenever Pr(! = 1 j
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Ti = t; �i) � 1
2 , we have Pr(! = 1 j Ti = t+ 1; �i) >

1
2 .

There are four relevant possibilities:

1. Pr(! = 1 j Ti = t; �i = 0) > 1
2 and Pr(! = 1 j Ti = t; �i = 1) >

1
2

2. Pr(! = 1 j Ti = t; �i = 0) < 1
2 and Pr(! = 1 j Ti = t; �i = 1) >

1
2

3. Pr(! = 1 j Ti = t; �i = 0) = 1
2 and Pr(! = 1 j Ti = t; �i = 1) >

1
2

4. Pr(! = 1 j Ti = t; �i = 0) < 1
2 and Pr(! = 1 j Ti = t; �i = 1) =

1
2

Case 1 is the case of an informational cascade. In such a case,

Pr(! = 1 j Ti = t; �i) = Pr(! = 1 j Ti = t+ 1; �i)

for both �i, and therefore the proposition obviously holds.

Now let us consider Case 2. In this case we want to show that Pr(! = 1 j
Ti = t + 1; �i = 1) >

1
2 (while nothing must be shown for the case of a bad

signal). Suppose not, i.e., suppose Pr(! = 1 j Ti = t+ 1; �i = 1) � 1
2 . Let us

consider, �rst, the case of the strict inequality.

By Bayes�rule,

Pr(! = 1 j Ti = t+ 1; �i = 1) =

= Pr(Ti=t+1j!=1;�i=1)Pr(!=1j�i=1)
Pr(Ti=t+1j!=1;�i=1)Pr(!=1j�i=1)+Pr(Ti=t+1j!=0;�i=1)Pr(!=0j�i=1) .

As we suppose that this is strictly smaller than 1
2 we know that

Pr(Ti = t+ 1 j ! = 1; �i = 1)
Pr(Ti = t+ 1 j ! = 0; �i = 1)

<
Pr(! = 0j�i = 1)
Pr(! = 1j�i = 1)

.

which is equivalent to

Pr(Ti = t+ 1 j ! = 1)
Pr(Ti = t+ 1 j ! = 0)

<
Pr(! = 0j�i = 1)
Pr(! = 1j�i = 1)

.

By the law of total probabilities,

Pr(Ti = t+ 1 j ! = 1) (3)

= Pr(Ti = t+ 1 j ! = 1; Ti�1 = t) Pr(Ti�1 = tj! = 1) (4)

+Pr(Ti = t+ 1 j ! = 1; Ti�1 = t+ 1)Pr(Ti�1 = t+ 1j! = 1) (5)

= qPr(Ti�1 = tj! = 1) + Pr(Ti�1 = t+ 1j! = 1). (6)

Notice that the last equality comes from the fact that we are analyzing Case

2 and that we are assuming (by contradiction) no investment after observing

t+ 1.
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Now the decision problem of agent i� 1 is identical to the one of agent i.
So, by applying recursively the same law, we obtain:

Pr(Ti = t+ 1 j ! = 1)

= qPr(Ti�1 = tj! = 1) + Pr(Ti�1 = t+ 1j! = 1; �i = 1)

= qPr(Ti�1 = tj! = 1) + [qPr(Ti�2 = tj! = 1) + Pr(Ti�2 = t+ 1j! = 1)]

+qPr(Ti�1 = tj! = 1) + qPr(Ti�2 = tj! = 1) + [qPr(Ti�3 = tj! = 1)

+Pr(Ti�3 = t+ 1j! = 1)] + :::

= qPr(Ti�1 = tj! = 1) + qPr(Ti�2 = tj! = 1) + qPr(Ti�3 = tj! = 1)

+:::+ qPr(Ti�m = tj! = 1)]

for some m (note that m depends on the value of i: indeed, for any value of i

there is an m such that Pr(Ti�m = t+ 1j! = 1) = 0). Similarly, conditioning
on ! = 0,

Pr(Ti = t+ 1 j ! = 0)

= (1� q) Pr(Ti�1 = tj! = 0) + (1� q) Pr(Ti�2 = tj! = 0)

+:::+ (1� q) Pr(Ti�m = tj! = 0):

Some algebraic computations show that for any pair of terms in the two

expressions above, the following inequality holds:

Pr(Ti�j = tj! = 1)
Pr(Ti�j = tj! = 0)

� Pr(Ti = tj! = 1)
Pr(Ti = tj! = 0)

:

Since we know that Pr(! = 1 j Ti = t; �i = 1) > 1
2 and, therefore,

Pr(Ti = t j ! = 1)
Pr(Ti = t j ! = 0)

>
Pr(! = 0j�i = 1)
Pr(! = 1j�i = 1)

simple algebra shows that

Pr(Ti = t+ 1 j ! = 1)
Pr(Ti = t+ 1 j ! = 0)

>
Pr(! = 0j�i = 1)
Pr(! = 1j�i = 1)

;

a contradiction.

Note that the same proof holds true when, by contradiction, we assume

that

Pr(! = 1 j Ti = t+ 1; �i = 1) =
1

2
:
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The only di¤erence is that in such a case

Pr(Ti = t+ 1 j ! = 1)

= qPr(Ti�1 = tj! = 1) + sPr(Ti�1 = t+ 1j! = 1);

where s represents the probability by which an agent receiving the good signal

decided not to invest. This change does not a¤ect the above inequalities.

Finally, note that the proofs for Case 3 (for both the good and the bad

signal) and Case 4 are identical to Case 2 just described, with the exception

that in Case 3,

Pr(Ti = t+ 1 j ! = 1; Ti�1 = t) = q + (1� q)u;

and

Pr(Ti = t+ 1 j ! = 0; Ti�1 = t) = qu+ (1� q);

where u is the probability of investment by an agent receiving a bad signal;

similarly, in Case 4,

Pr(Ti = t+ 1 j ! = 1; Ti�1 = t) = qu

and

Pr(Ti = t+ 1 j ! = 0; Ti�1 = t) = (1� q)u:

�
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