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Abstract

Non-radial measures of technical efficiency essentially differ from their radial counterparts
in that the product mix of the efficient reference is allowed to be different from the product
mix of the evaluated observation. Whereas existing non-radial measures are still based
on the product mix of the evaluated, i.e. possibly inefficient observation, we change the
perspective and propose a measure based on the mix properties of the efficient reference.
The resulting ‘inverse’ measure can be considered as complementary to the Fére-Lovell
(or “Russell”) efficiency measure.

Keywords: Data Envelopment Analysis, Non-radial efficiency measures, Product mix
benchmarking



1 Introduction

The purpose of the original DEA model of Charnes, Cooper and Rhodes ([1], [2]) —as
well as that of many of its successors— was to put into practice the notion of efficiency as
expressed in the earlier work of Debreu [3] and Farrell [6]. Not surprisingly therefore, the
associated “Debreu-Farrell” efficiency measure has become about as popular an analytical
tool as DEA itself. As the inverse of Shephard’s distance function the measure is closely
linked to the microeconomic theory of production. Moreover, even when focusing on
technical efficiency, Debreu-Farrell measures have a straightforward cost interpretation.
Specifically, they can be written as the ratio of reference to actual costs (input orientation)
or actual to reference revenues (output orientation), independently of the price vector that
is used (see [10]).

This convenient property follows from the radial projection of inefficient observations
on the reference frontier. The equiproportionate nature of comparisons has a drawback
however, as it implies that Debreu-Farrell efficiency does not necessarily coincide with
the more general Pareto-Koopmans efficiency concept (as introduced by Koopmans [8]).
Radial measures face a slack problem: “efficient” projections can sometimes increase their
technical efficiency by a further, non-radial change of some input or output dimensions.

Especially when slacks are large and occur frequently they could influence the efficiency
scores considerably, which in turn could result in wrong management conclusions. In such
cases it seems more appropriate to call for non-radial measures computed by comparing
each observation to a reference observation that is not dominated in the Pareto-Koopmans
sense. Non-radial measures essentially differ from their radial counterparts in that the
input (output) mix of the input (output) efficient projection may differ from the mix
of the inefficient observation. The Fére-Lovell [5] and the Zieschang [14] measures are
two examples belonging to this class.! Fire-Lovell input efficiency scores, for example,
are obtained starting from a “dimension-specific” correction of each component of the
inefficient input mix (see below). So are the Zieschang scores as the latter are constructed
as a simple product of a Debreu-Farrell and a Fire-Lovell component.

The central idea of this paper is that -once equiproportionality is no longer imposed-
non-radial projection allows to measure inefficiency in two ways. The non-radial mea-
sures mentioned above still compute the distance between the inefficient observation and
its efficient reference by starting from the mix of the inefficient observation. But one
could equally well argue that the orientation may be reversed. Thus one can take the
efficient reference itself rather than the inefficient observation as point of departure when
computing the distance of an observation to the production frontier. In the next section
we will propose an alternative non-radial measure which evaluates efficiency in this way.
In a certain sense this opposed perspective “pushes the argument further” regarding the
rationale of non-radial efficiency measurement. Any reference to properties of evaluated
observations is further weakened and replaced by the search for a best practice benchmark
on the basis of the latter’s characteristics. The change of perspective is also clearly re-
vealed by the formal representation of the associated efficiency measure which, in general,
will lead to lower scores relative to its aforementioned counterparts. The rationale behind

1The former is sometimes also referred to as the Russell measure.



this result can also be shown graphically. Additional remarks are contained in the final
section.

2 An ‘inverse’ Fare-Lovell measure

For ease of exposition we will concentrate on input efficiency in this section and postpone
the discussion of the output-oriented version of the ‘inverse’ Fire-Lovell (FL) measure
until the next section. First consider the original FIL measure.? Let y represent a semi-
positive output vector and z a strictly positive m-dimensional input vector and denote
the input correspondence associated with each y by L(y). The FL measure can now be
defined as follows:

m

FL(x%y°) = min{z% | (M, s Nl oo Ae,) € L(y°), Ai € (0,1] Vi}
i=1

The FL measure minimises the arithmetic mean of the scalars \;, i.e. the propor-
tional reduction in each input dimension. For an observation (x°,y°) the projection point
(x°*, y°*) is determined by scaling down each input by the corresponding element of the
efficiency measure —i.e. (z%,y%") = ()\{lazf, o Mo 40)— and will always belong to the
Pareto-Koopmans efficient subset of L(y°).

Kerstens and Vanden Eeckaut [7] have shown that the FL projection has a cost in-
terpretation when the ‘implicit’ cost prices of the evaluated observation are used. In-
deed, the same projection point results from cost minimisation under the assumption
that the relative factor prices are revealed by the inverse ratio of the input quantities
used by observation (x°, y°). The entries of the price vector w can thus be represented
as w;/wy, = x° /x¢, with z,, the numeraire input. This link can be made explicit by
rewriting the F'L measure as follows:

m m w
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with (M'z0, ..., M'z0, ., M'ze ) € L(y) and ' € (0,1] (Vi). Implicit cost prices follow
directly from proportions between inputs, so that the above result again demonstrates
that the FL measure is computed starting from the inefficient input mix.

As stated in the introduction, an alternative way to measure inefficiency is to start
from the efficient input mix.> This is achieved by making the implicit factor prices cor-
responding to the efficient projection an object of choice when minimising the ratio of

2A thorough discussion of the FL measure is provided by Fire, Grosskopf and Lovell [4].
3To some extent, an analogy can be drawn between the problem studied in this paper and the concepts
of equivalent and compensating variation in neoclassical consumer theory. Indeed, the latter are alter-



minimum to actual costs. The resulting ‘inverse’ F'L. measure will no longer minimise the
arithmetic mean of the scalars )\; as becomes clear from the following:

m m w*
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where w}/w!, = x% /x¢* with z¥ being the numeraire input. Again it holds that
ATt N o NHTze Y e L(y) and ' e (0,1] (Vi). The fact that in this case the
harmonic mean of the \;’s is obtained has a straightforward intuition. As inefficiency is
measured starting from the efficient input combination, one seeks for feasible expansions
in all input dimensions (i.e. the A\;'’s) to get from the endogenous efficient reference to
the inefficient observation. The resulting score for the inefficient observation thus equals
the inverse of the (arithmetic) mean of these scalars. Two results directly follow from the
general properties of both means. First, the inverse FL score will never exceed the FL
score. This increased stringency is intuitive precisely since the inverse measure further
weakens any reference to (input mix) properties of the inefficient observation. Second,
the two measures will coincide if and only if their projections coincide with the radial
projection (i.e. if A\ = X' = \ vi).4

Suppose there are N observations and that y is an n-dimensional vector. The in-
verse F'L measure for an observation o can then be computed by solving the following
mathematical programming problem:’

m

inverse FL = min |[—— (1)
input m
WS
i=1
subject to

N
o k .
\xl = E Opz; , i=1,....m
k=1

N
y; < DOk, j=1,.0m
k=1

natives to measure distances between indifference curves that differ w.r.t. the prices used to define the
relevant tangent lines of consumption bundles: “original” (equivalent variation/FL measure) or “final”
prices (compensating variation/inverse FL measure).

4Fire and Lovell [5] arrived at their non-radial measure using an axiomatic approach. It can easily
be demonstrated that the inverse FL measure satisfies the same properties as the original FL measure.

5Note that here we implemented the assumption of variable returns to scale by means of the convex-
ity constraint chvzl 0, = 1. Of course, other constraints concerning the € can be implemented in a
straightforwardly analogous way.
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While the above problem may seem somewhat complex, we show in the appendix
that for each observation the inverse F'L score can be computed following a simple three
step procedure, comparable to the pairwise vector comparison algorithm used in the FDH
procedure (as e.g. outlined in [13]). Specifically, it suffices to concentrate on the vertices
of the part of the reference technology that Pareto-Koopmans dominates the evaluated
observation. In a second step the harmonic mean of input reductions with respect to each
of these vectors is computed. Finally, the minimum of these harmonic means equals the
inverse F'L score.
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Figure 1: An illustrative example

The differences between both measures can also be represented graphically. In figure
1 the input vector z, (= (3,12)) is drawn. Suppose both the FL and the inverse FL
measures have selected z, (= (3,4)) as its reference vector. The FL score will be 66, 7%
whereas the inverse FIL score only amounts to 50%. To interpret this result, we construct
in a first step the implicit isocostlines associated with z, and x,. These lines take the
form o; = wl'z; (i = a,b) with w, (= (1,3/12)) and w, (= (1,3/4)) being the implicit
cost price vectors.® We further construct an isocostline through z, that is parallel to the
implicit isocostline through x; and, analogously, an isocostline through z;, that is parallel

6Input 1 is taken as the numeraire.



to the original isocostline through x,. This allows to identify z. and z,; which lie on the
intersection of these newly constructed isocostlines and the radials through z, and x,
respectively. In fact x. (z4) has the same cost level as x;, (x,), evaluated against w, (wp).
It is then easily seen that the FL score of x, coincides with its Debreu-Farrell score if z..
would be the reference, while the inverse FL score of z, equals the (lower) radial score of
x4 (compared to xy).

The input combination z; can also be considered as a real observation, and then
demonstrates what happens when both non-radial complements yield the same projection
as the Debreu-Farrell procedure, viz. x;. If this is the case, it does not matter whether
the implicit price vector of the efficient combination or the implicit price vector of the
inefficient vector is used. Indeed, both orientations yield the same value for the ratio
expression, which illustrates the point we made before.

Evidently, the FL and the inverse FL projection point need not necessarily coincide.
This is shown in the following example. Suppose an input vector z, (=(8, 8)) is to be eval-
uated and that there are two possible reference points, viz. x, (=(2,8)) and z. (=(5,4)).”
Figure 2 presents the original F'L case. Therefore figure 2 also presents the implicit iso-
costline through z, and its two parallels through x, and x.. It is immediately clear that
the FL measure will select x. as the reference input vector for x,. The associated FL
score equals 56, 3%.

Input x ,,

Input x ;

Figure 2: The FL case

The inverse FL measure will look for an efficient observation that minimises the same
ratio of the reference to the actual cost level, but now evaluated using the reference’s

"To facilitate discussion an FDH reference technology is assumed, since in this case only actually
observed input combinations can serve as a reference point. FDH boils down to adding the integrality
constraint 8, € {0,1} to the mathematical programming problem presented above (see Tulkens [13]).
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implicit price vector. This case is presented in figure 3. The implicit isocostlines through
xp and x. are drawn together with their parallels through x,. The ratio value associated
with z equals only 40% whereas the same value associated with z, amounts to 55,5%.
In fact the inverse FL measure penalises the inefficient observation x, for using too much
of the second input, which is accorded a relatively high implicit price by the efficient
observation x,. The inverse F'L procedure will select z; as the reference input vector, thus
illustrating that the change of orientation may alter not only the efficiency scores but also
the projection.

107 a=x,+(1/4)x,

10=x,+(1/4)x,
18=x,+(5/4)x,

Input x ,

10=x,+(5/4)x,

0 2 4 6 8 10

Input x ;

Figure 3: The inverse F'L case

3 Additional remarks

In the previous section the input oriented version of the inverse F'L measure was discussed.
The output oriented version can be obtained in an analogous way. Suppose again that
there are N observations for each of which a semi-positive m-dimensional input vector x
and a strictly positive n-dimensional output vector y is observed. The inverse F'L output
score for an observation o is computed as the solution of the following mathematical

programming problem:

n
inverse F'Lg,,,, = max |— (2)
20 -1
2 A
Jj=1
subject to



~

N
x; > Zekxf, 1=1,..m
k=1

N
Ny; = Zekyf ,7=1,...,n
k=1

N

S0 = 1

k=1
0, > 0,k=1,.,N
A > 1, j=1..n

Again, we consider an equivalent formulation of this problem in the appendix. In
contrast to the input oriented inverse FL measure, the output oriented version does not
possess a straightforward implicit revenue price representation. The interpretation of the
objective (2) is analogous to the one of (1), however. Inefficiency is again computed
starting from the efficient observation and not by referring to the inefficient output mix.

By using the inverse input and output oriented F'L measures to evaluate the efficiency
of an observation, one considers the more demanding path to the frontier, which is clearly
expressed by the objectives (1) and (2). As Lovell and Vanden Eeckaut [9] have shown for
the original FL. measure, one could also apply a less demanding procedure to analyse inef-
ficiency if one is working in an FDH setting. A (non-convex) FDH reference technology is
obtained by adding the integrality constraint 6, € {0, 1} to the respective mathematical
models, and the set of possible references should be restricted to the undominated obser-
vations which at the same time dominate the o-th observation. Then, the direction of the
objectives can be altered, which amounts to substituting (1) and (2) by respectively (3)
and (4):®

m
. o
inverse FLg, ., = max | (3)
=1
n
. 0 .
inverse FLg ... = min | 5—— (4)
J=1

A final note concerns the Zieschang [14] measure which is computed by first radially
scaling down the input vector (scaling up the output vector) of an inefficient observation,
so as to apply an FL input (output) projection in a second step. Zieschang scores are
then computed as the product of the resulting Debreu-Farrell and FL scores. Clearly, an
FL score different from unity is obtained only if the radial projection would result in a
reference point lying on a Pareto-dominated part of the isoquant. It is evident then that

8In the example presented in figures 2 and 3 such a procedure would lead to a swap in the reference
projections.



one could also construct an inverse Zieschang measure, computed as the same Debreu-
Farrell score multiplied by an inverse FL score.”

Once the input-output mix of an inefficient observation has been allowed to vary
when looking for better alternatives, at least to us it seems justifiable to minimise the
“focal” character of this mix further. Thus, one can turn attention towards the mixes of
observations that are known to perform better from the technical efficiency point of view.
The concomitant change of perspective results in an ‘inverse’ F'L measure that constitutes
a valuable alternative for the original FL measure. It can be applied in exactly the
same circumstances where the latter seems appropriate. Both alternatives provide the
researcher with useful, complementary information about the non-radial efficiency of a
Pareto-dominated observation.
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A Finding optima for the inverse FL problems

In this appendix we will discuss the solutions for problems (1) and (2). In section A.1
a procedure is presented to obtain the input oriented inverse F'L score. We show that
it is sufficient to compare evaluated observations only with the vertices of the Pareto-
Koopmans dominant reference frontier. This procedure is very similar to the one which
is used in an FDH framework and thus attractive given its ease of implementation. In
appendix A.2 we introduce a problem which is equivalent to problem (2). It is shown
that for this problem the necessary and sufficient Kuhn-Tucker optimality conditions are
fulfilled. We also introduce the solution procedure under the assumption of a constant, a
non-increasing and a non-decreasing returns to scale technology.

A.1 Input orientation

Clearly, minimising objective (1) is equivalent to maximising its inverse, which in turn
can be expressed as:

1 f‘: xg
m N
i=1 <Z 91: .I'f)
k=1
Given the last (equivalent) representation, we now show that in an optimum for prob-

lem (1) the reference input vector will always be a vertex of the part of the efficient
reference frontier that dominates the DMU to be evaluated. In other terms, the inverse

9Again, the inverse Zieschang measure satisfies the same axiomatic properties as its original
counterpart.



FL projection will always be either an actually observed Pareto-Koopmans dominant
point or a ‘dimension specific efficient projection’. An example is provided in figure 4,
where points 2 and 3 are the dimension specific efficient projections for observation 1. Fig-
ure 4 further illustrates that any potential reference for observation 1 (i.e. any element
of the dominant part of the input production frontier) can be constructed as a convex
combination of the vertices 2, 3 and 4, a result which also applies in general. The above
assertion thus implies that to obtain the inverse F'L score for observation 1, one only has
to take the minimum of the inverse FL scores associated with references 2, 3 and 4.

inputx ,

input x ;

Figure 4

To see this, first consider a situation where an input vector z° has to be compared
only to convex combinations of two different dominant vectors z!, 2. In an optimum the

reference will maximise the following function with respect to 6 € [0, 1]:

m o

s
— (O} + (1 —0)x?)

2

Clearly g(1) and g(0) give the values of the above function when z° is evaluated against
x! and x2, respectively. Taking the second order derivative with respect to 6, one gets:

Fol0) o (ol —a?)
—= =2 ; — >0
00T 2 G 1 (1= o))

That is, the function g(0) is strictly convex. We thus have for 0 < 6 < 1:

9(0) < 0g(1) + (1 - 0)g(0) ()



So, if ¢g(0) > ¢g(1) [g(1) > ¢(0)], then g(0) [g(1)] maximises g(#) for all possible
¢ € [0,1], which implies that one only has to consider g(0) and g(1) when looking for a
maximum : z° has to be compared with 2! and z? only. Equivalently, one only has to
take the minimum over the harmonic means of input reductions of 2° with reference to
r! and 22

The extension to an arbitrary number N, of vertices of the dominant part of the
reference frontier is straightforward. Let X be an N, X m matrix with rows corresponding
to the vertex input vectors z* (i =1,...,N,), and 87 = (0,0,,...,0x,) a row vector of
intensity parameters with >n°, 0, = 1. The objective to be maximised looks as follows:

0=
o (E

o
=LY Ok
k=1

The reference input vectorX” 6 can be written as a linear combination of the vector z*
and an input vector (1/1 — 61) XZ,0_; with 07, = (6,,...,05,) and X_; an (N, — 1) x m
matrix with rows corresponding to z2, ..., zNe:

XT0 = 6,2 + (1—65) [ Xﬂel]

1—6,

But then, applying the above reasoning either ; = 1 or 1 — 6; = 1. In the former
case x! is the reference for x° with respect to which the minimum inverse F'L score is
obtained. On the other hand, if #; = 0 one can restrict attention to the vector X”,6 ;.
We can then repeat the exercise to check whether 6, = 1, and so on. In conclusion, there
will be one input vector z' (I € {1,...,N,}) with §; = 1 while for all other vectors the
corresponding intensity parameter is zero. Therefore, it suffices to take the minimum of
the harmonic means of input reductions with reference to the different rows of X. Convex
combinations should not be considered as these would never generate a lower inverse F'L
score.

The three step procedure just described (identifying efficient vertices of the feasible
region of problem (1) using e.g. the algorithm outlined in [11] (which is employed in the
ADBASE code [12]), calculating the harmonic mean of input reductions with respect to
each of these vectors, selecting the minimum of these harmonic means) is very similar
in terms of computational requirements to the FDH procedure outlined in [13]. In the
latter case, an equally simple vector comparison algorithm (identifying Pareto dominant
DMU’s, calculating the maximum dimension specific input shrinkage factor with respect
to each of these vectors, selecting the minimum of these maximum factors) suffices to
obtain efficiency measures.

So far we have restricted attention to a technology characterised by variable returns
to scale, with & 6, = 1. However, the above algorithm applies equally well for tech-
nologies with non-increasing returns to scale (& , 6, < 1), non-decreasing returns to
scale (Y&, 0, > 1) or constant returns to scale (Y5, 6 unbounded). Obviously, dif-
ferent scores may be obtained when the set of efficient vertices of the Pareto-Koopmans
dominant region alters.

10



A.2 QOutput orientation

The problem as stated in (2) is equivalent to the programming problem below:

(1 / inverse FL? ) ~ min > > Yi

output
6 n “ N
7j=1 k
> ekyj
k=1

subject to
N
x> Zeka:f L i=1,..m (7)
k=1
N
¥ < Do byy, i=1,..,n (8)
k=1

N
S6, = 1 (9)
k=1

0 > 0, k=1,...N

Clearly the constraints in this problem are all linear, so that strict convexity of the
objective function is the only requirement for the Kuhn-Tucker conditions to be necessary
and sufficient for a unique global minimum. Above we already showed that this function
is convex if # is two-dimensional. This result can be used to establish strict convexity
with respect to a vector 6 of dimension N. Indeed, strict convexity holds if for any two
vectors 01 and 0y (0 = (0;1,...,0in), Xk 0 =1 (1 =1,2),0; # 05) and a value 0 < k < 1
we have:

: Zl l k -k Z1 X k g =1 Xy k X k
=X Owy; = gl Oary; o gl O1ry; + (1—kr) gl Oory;

The latter immediately follows from (5) as the Y"3_ Oy? (i = 1,2) are two elements
of the production set. We conclude that for problem (6) the Kuhn-Tucker conditions are
necessary and sufficient to characterise a unique global optimum. Denote the Lagrange
multipliers corresponding to restrictions (7) and (8) by 7; (¢ = 1...,m) and ¢; (j = 1,...n),
respectively. With the convexity constraint (9) we associate the dual variable u. An
optimal @ for problem (6), which also maximises objective (2), will solve the following
system:

1 & vy SR
——y —— > > oy - mawitu, l=1,..,N
; =1 i=1

m

Tk +ul ,l=1,..,N
1

YY; -
= (Z 9;:3/;?) =
k=1
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N
o k .
x; > ng% ,i=1,...m
k=1
N
o k .
TiX, = 7'1-29;.33:1- ,i=1,...m
k=1
N
o k .
k=1

N
ojY; = 0 Z@kyf ,7=1,...,n
k=1

N
b =1
k=1
6 > 0,1=1,.,N
7 > 0,1=1..m
o > 0,75=1,...,n
u = free

Analogously with the input oriented case, the above system also characterises the
optimal solution under the assumptions of constant, non-increasing and non-decreasing
returns to scale, after appending respectively u = 0, v > 0 and v < 0 and replacing

N
Z,]ﬂvzl 0, =1 by Z,]ﬂvzl Or = free, > 0, <1 and Z,]ﬂvzl 0, > 1, in that order.
k=1
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