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Abstract

We characterize a family of r-extended generalized Lorenz dominance quasi-orderings and
a family of r-Gini welfare orderings, on the basis of two allegedly “incompatible” axioms
for heterogeneous welfare comparisons (Ebert, 1997, Ebert and Moyes, 2003, Shorrocks,
1995), but at the cost of either completeness or separability.
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1 Motivation

Ebert (1997) and Shorrocks (1995) pinpoint some difficulties to reconcile the Pareto indif-
ference principle with the between type Pigou-Dalton (btpd) transfer principle. The first
principle requires social indifference between two social states if each individual, given her
type and income in the respective states, reaches the same living standard in both states.
The latter principle says that money transfers which bring living standards closer together,
are preferable. These difficulties originate from a paradox described in Pyatt (1990) and
Glewwe (1991) and reappear in Ebert (1999) and Ebert and Moyes (2003). Furthermore,
the btpd transfer principle would imply to weight households in a social ranking by their
equivalence scales, giving up the conventional wisdom of weighting households by the number
of individuals (Ebert, 1997).
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We characterize a family of r-extended generalized Lorenz dominance quasi-orderings and a
family of r-Gini social welfare orderings, which (i) reconcile the Pareto indifference and the be-
tween type Pigou-Dalton transfer principle (at the cost of either completeness or separability)
and (ii) are in line with the standard practice of weighting individuals equally.

2 Notation

A heterogeneous income distribution is denoted by (x;a) = (x1, . . . , xH ; a1, . . . , aH) , with
xh ∈ R++ the income of household h and ah = (nh, ch) its type, a description of all potentially
relevant non-income characteristics, including household size nh ∈ N0, as well as other char-
acteristics ch, e.g., the age of the household members, their handicaps and so on.1 The set A

collects all possible household types and is assumed to satisfy a richness condition: it contains
at least three types with household size equal to one. Whether or not a social observer treats
these types differently depends on her choice of the equivalent income function, to be defined
later. The domain assumption plays the same role as in social choice theory: it allows to cre-
ate imaginary societies which can be more easily compared according to our ethical intuitions,
in order to derive principles for judging less transparent real world situations. Although the
number of households H is variable, we keep the number of individuals N =

∑H
h=1 nh ≥ 3

fixed. In a companion paper (Capéau and Ooghe, 2004), we present some problems as well
as a solution in case of a variable population size N . In this note, the set of heterogeneous
income distributions equals:

D =

{
(x;a) ∈ ∪

1≤H≤N

RH
++ ×AH

∣∣∣∣∣a satisfies
H∑

h=1

nh = N

}
.

We use an equivalent income function E : R+×A → R+, to compare living standards between
individuals of different households. A particular single, say a∗ = (1, c∗), will be the reference
type. The equivalent income E (x, a) is then the income needed by this reference type to
obtain the same living standard as the members of a household with income x and type a.2

We consider equivalent income functions which belong to a general parameterized domain
E (r), with 1 ≤ r < ∞, defined by the following assumptions:

E1. E (0, a) = 0, for all a ∈ A,

E2. E (x, a∗) = x, for all x ∈ R+, with a∗ = (1, c∗) the reference type, and,

E3. there exist α, β ∈ R++, with β
α = r, such that nα ≤ ε

E(x+ε,a)−E(x,a) ≤ nβ holds, for all
x ∈ R+, all ε ∈ RN

++ and all a ∈ A.

1 In the sequel, subscripts h will be dropped if we do not refer to a particular household.
2 In this paper we assume perfect measurability and full comparability of equivalent incomes.
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In words, we impose that, without household income, the equivalent income is zero for all
types (E1), and, the equivalent income of the reference type equals its income level (E2).
Linear equivalent income functions (E(x, a) = x/m(a), with m (a) ∈ R++ an income indepen-
dent equivalence scale and m (a∗) = 1) satisfy conditions E1 and E2. In the linear case, the
boundary condition E3 reduces to α ≤ m(a)

n ≤ β for all types a ∈ A. It puts restrictions on
the per capita equivalence scales.
More generally, the term ε

E(x+ε,a)−E(x,a) (locally) measures the additional income needed by
a household of type a in order to increase its equivalent income by one unit.3 Notice that the
bounds on this needs measure grow with household size n, reflecting that larger households
may have higher needs, everything else constant.
Finally, E (1) reduces to using per capita incomes –with a constant efficiency equal to one
for all types– as the only possible living standard concept. Increasing r, expands the domain
E (r), allowing for larger need differences. Letting r → ∞, we end up with all increasing
equivalent income functions satisfying E1 and E2.

3 Core axioms

We want to rank heterogeneous distributions (x;a) in D via a rule

f : E (r) → Q : E 7→ RE = f (E) ,

with Q the set of quasi-orderings on D.4 PE and IE are the corresponding strict preference
and indifference relations.
Strong monotonicity requires welfare to increase with household income.
Strong Monotonicity (sm)
For each E ∈ E (r), and for all (x;a) , (y;a) ∈ D: if xh ≥ yh, for all h = 1, . . . , H, then
(x;a) RE (y;a). If, in addition, x 6= y, then (x;a) PE (y;a).

Define e (x;a) ∈ RN
++ as the vector of individual equivalent incomes, i.e.,

e (x;a) ≡


E (x1, a1) , . . . , E (x1, a1)︸ ︷︷ ︸

n1 times

, . . . , E (xH , aH) , . . . , E (xH , aH)︸ ︷︷ ︸
nH times


 .

The Pareto indifference axiom requires social welfare to remain unchanged, whenever each
individual reaches the same equivalent income in two heterogeneous distributions.
Pareto Indifference (pi).
For each E ∈ E (r), and for all (x;a) , (y;b) ∈ D: if e (x;a) = e (y;b), then (x;a) IE (y;b).

3 The lower bound on E(x+ε,a)−E(x,a)
ε

( 1
nβ

> 0) implied by condition E3, guarantees that the equivalent

income functions are strictly increasing, while the upper bound ( 1
nα

< ∞) guarantees Lipzitsch continuity.
4 A quasi-ordering is a reflexive and transitive binary relation, and, an ordering is a complete quasi-ordering.
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Due to Pareto indifference, we can convert every income distribution of H heterogeneous
households into a welfare-equivalent income distribution of N homogeneous reference type
singles, by replacing each household h by nh reference type singles, each with an income
equal to the equivalent income of household h.
The between type Pigou-Dalton transfer principle requires social welfare to increase whenever
an income transfer between households makes their equivalent incomes closer together.
Between type Pigou-Dalton transfer principle (btpd).
For each E ∈ E (r), for all (x;a) , (y;a) ∈ D, and for all i, j ∈ {1, . . . ,H}: if (i) xk = yk for all
k 6= i, j, (ii) xi − yi = yj − xj , and (iii) E (yi, ai) < E (xi, ai) ≤ E (xj , aj) < E (yj , aj), then
(x;a) RE (y;a).

Finally, consider two distributions where all households are of the reference type a∗. Ho-
mogeneity unanimity requires a unanimous ranking of such distributions for all equivalent
income functions.
Homogeneity Unanimity (hu).
For all E,E′ ∈ E (r), for all x,y ∈ RN

++: (x; a∗, . . . , a∗) RE (y; a∗, . . . , a∗) if and only if
(x; a∗, . . . , a∗) RE′ (y; a∗, . . . , a∗).

4 Intermediate results

Pareto indifference and homogeneity unanimity lead to welfarism.5

Proposition 1 A rule f : E (r) → Q satisfies pi and hu if and only if there exists a unique
quasi-ordering R defined on RN

++ such that, for all E ∈ E (r), and for all (x;a) , (y;b) ∈ D:

(x;a) RE (y;b) ⇐⇒ e (x;a) R e (y;b) .

Welfarism allows us to focus on quasi-orderings R defined over individual equivalent income
distributions, denoted u = (u1, . . . , uN ) ∈ RN

++. From now on, we look at individuals i ∈
{1, . . . , N}, rather than households h ∈ {1, . . . ,H}. We define two additional axioms for R.
According to the strong Pareto principle, higher living standards are better:
Strong Pareto (sp).
For all u,v ∈ RN

++: if ui ≥ vi for all i = 1, . . . , N , then uRv. If, in addition, u 6= v, then
uPv.
The s-extended Pigou-Dalton transfer principle, with 0 < s < ∞, requires social welfare to
increase whenever the equivalent incomes of two individuals come closer together, and the
loss in total equivalent income is restricted by s in a specific way:
s-extended Pigou-Dalton transfer principle (pd(s)).
For all u,v ∈ RN

++, and for all i, j ∈ {1, . . . , N}: if (i) uk = vk, for all k 6= i, j, (ii) vi < ui ≤
uj < vj , and (iii) vj−uj

ui−vi
= s, then uRv.

5 All proofs are relegated to the appendix.
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We call an equivalent income transfer which satisfies conditions (i)-(iii) a pd(s) transfer from
j to i. Choosing s = 1, one recognizes the standard Pigou-Dalton transfer principle, here
applied to equivalent incomes. Furthermore, if R satisfies strong Pareto, then, the higher s,
the stronger the transfer principle:

Lemma 1 Consider a quasi-ordering R on RN
++ which satisfies sp. For any given s ∈ (0,∞),

if R satisfies the pd(s) transfer principle then R satisfies the pd(t) transfer principle for all
t in (0, s].

If strong Pareto holds, then by letting s →∞, the pd(s) transfer principle approaches Ham-
mond’s equity principle: any equalizing transfer of individual equivalent incomes is an im-
provement, irrespective of the total loss in equivalent income.
The next proposition shows that, under welfarism, strong monotonicity and the btpd transfer
principle for a rule f : E (r) → Q are equivalent with strong Pareto and the pd(r) transfer
principle for the corresponding quasi-ordering R (as defined in proposition 1). This result
serves as a rationale for our endorsement of the pd(r) transfer principle, where the level of r

depends on the maximal needs difference determined by the choice of the domain.

Proposition 2 Consider a rule f : E (r) → Q which satisfies welfarism: f satisfies sm and
the btpd transfer principle if and only if the corresponding quasi-ordering R satisfies sp and
the pd(r) transfer principle.

5 Main characterizations

We consider first some additional properties for R.
Weak Continuity (con).
For each convergent sequence of distributions

(
v`

)
`∈N0

, if there exists an M ∈ N0 such that
for some u ∈ RN

++: v`Ru for all ` ≥ M then, for v∗ ≡ lim
`→∞

v`, v∗Ru; if uRv` for all ` ≥ M ,
then uRv∗.
Weak continuity ensures that small changes in distributions cannot cause large changes in
social evaluation.6

Anonymity (a).
For each u ∈ RN

++, and each permutation σ : N → N : uIσ(u), with σ(u) =
(
uσ(1), . . . , uσ(N)

)
.

Anonymity tells us that the names of the individuals do not matter. We can thus focus on
rank- ordered distributions. We will consider the sub-domain D =

{
u ∈ RN

++ |u1 ≤ . . . ≤ uN

}
.

Relative Invariance (ri).
For all u,v ∈ RN

++ and for each λ > 0: if uIv, then λuIλv.

6 For orderings it coincides with the ordinary continuity concept (closed weak better-than- and worse-

than-sets), but for quasi-orderings, it does not always imply the strict better-than- and worse-than-sets to be

open.
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Absolute Invariance (ai).
For all u,v ∈ RN

++ and for each λ > 0: if uIv then (u+λ1) I (v+λ1).
Relative (resp. absolute) invariance requires the indifference of two distributions to be un-
changed, when multiplying both with the same constant (resp. adding the same constant
vector to both).
Rank-ordered Separability (rose).
For all u,v,w, z ∈ D, for all M ⊆ {1, . . . , N}: if (i) uj = wj and vj = zj for all j ∈ M , and
(ii) ui = vi and wi = zi for all i ∈ N \M , then uRv if and only if wRz.
Rank-ordered separability prohibits unconcerned “positions” to matter.
The r-extended gld quasi-ordering R (r) is defined, for all distributions u,v ∈ D, as:

uR (r)v ⇔
k∑

i=1

rk−i (ui − vi) ≥ 0 for all k = 1, . . . , N .

One recognizes the standard gld quasi-ordering when r = 1. Increasing r, increases the weight
for the lower equivalent incomes, and, when r → ∞, we approach the leximin ordering. We
obtain the following characterization:

Proposition 3 For all u,v ∈ D, the following statements are equivalent:

(a) uR (r)v,

(b) u can be derived from v by a sequence of pd(r) transfers and income increments,

(c) uRv holds, for all quasi-orderings R which satisfy con, sp, and pd(r).

Let W =
{
w ∈ RN

++ |w1 ≥ . . . ≥ wN = 1
}

be a class of (strictly) positive, decreasing, and
normalized weight vectors. An r-Gini ordering R (r,w) is defined, for all u,v ∈ D, as

uR (r,w)v ⇔
N∑

i=1

rN−iwi (ui − vi) ≥ 0.

Again, the extreme cases correspond with a standard generalized Gini ordering (when r = 1)
and the leximin ordering (when r →∞). Our final proposition characterizes the r-Ginis.

Proposition 4 Let N ≥ 3. An ordering R satisfies con, sp, pd(r), ri, ai, and rose if and
only if R is an r-Gini ordering R (r,w) for some w ∈W.

In a companion paper (Capéau and Ooghe, 2004), we show that the r-gld criterion is the
intersection of the corresponding family of r-Ginis: at the cost of completeness we regain
separability.
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6 Conclusion

In the present note we show that it is possible to reconcile Pareto indifference with the
between type Pigou-Dalton transfer principle for comparing heterogeneous distributions.
Given the difficulties to reconcile both principles, pinpointed in the literature (Ebert, 1997,
Shorrocks, 1995), it should be no surprise that our results come at a cost. The r-gld criterion
gives up completeness, whereas all r-Ginis are complete, but separable only over rank-ordered
distributions.
The leaky r-extended Pigou-Dalton transfer principle is at the heart of our results. It turns
out to be equivalent with the between type Pigou-Dalton transfer principle if one is willing
to accept welfarism.
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Appendix

Proof of proposition 1

We show in the following auxiliary lemma equivalence between on the one hand, pi and hu,
and strong neutrality on the other.
A rule f : E (r) → Q is said to be strongly neutral (sn), if for all E,E′ ∈ E (r), for all
(x;a) , (y;b) , (x′;a′) (y′;b′) ∈ D such that e (x;a) = e′ (x′;a′) and e (y;b) = e′ (y′;b′):

(x;a) RE (y;b) ⇐⇒ (
x′;a′

)
RE′

(
y′;b′

)
.

Lemma 2 A rule f : E (r) → Q satisfies pi and hu if and only if it satisfies sn.

Proof.
Sufficiency:

– sn implies hu: let (x1;a∗) play the role of (x;a) and (x′;a′) in the definition of sn, and
similarly, let (y1;a∗) = (y;b) = (y′;b′). By construction and property E2 of equivalent
income functions, x1 = e(x1;a∗) = e(x;a) = e′(x′;a′) and y1 = e(y1;a∗) = e(y;b) =
e′(y′;b′). By sn we have:

(x1;a∗) RE (y1;a∗) ⇐⇒ (x1;a∗) RE′ (y1;a∗) ,

which establishes the result.

– sn implies pi: let E = E′, let (x1,a1) play the role of (x;a), (x′;a′) and (y′;b′) in the
definition of sn, and let (x2;a2) play the role of (y;b). Assume as in the antecedent
of pi, that e(x1;a1) = e(x2;a2). We also have e(x1;a1) = e′(x1;a1) (because E = E′)
and e(x2;a2) = e′(x1;a1) (from e(x1;a1) = e′(x1;a1) and E = E′). Applying sn gives:

(x1;a1)RE (x2;a2) ⇐⇒ (x1;a1) RE (x1;a1) .

By reflexivity of RE we have established that (x1;a1) RE (x2;a2). Exchanging the roles
of (x1;a1) and (x2;a2), we obtain in a similar fashion: (x2;a2) RE (x1;a1). Hence, by
definition of IE , we have: (x1;a1) IE (x2;a2).

Necessity:
Suppose the antecedent of sn is true. Recall that the reference type a∗ is a single, thus n∗ = 1.
Construct distributions (x′′;a∗) and (y′′;a∗) as follows:

(
x′′;a∗

)
=


e (x;a) ; a∗, . . . , a∗︸ ︷︷ ︸

N times


 =


e′

(
x′;a′

)
; a∗, . . . , a∗︸ ︷︷ ︸

N times


 , and

(
y′′;a∗

)
=


e (y;b) ; a∗, . . . , a∗︸ ︷︷ ︸

N times


 =


e′

(
y′;a∗

)
; a∗, . . . , a∗︸ ︷︷ ︸

N times


 ,
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which all belong to D. Via pi, transitivity and E2, we have:

(x;a)RE (y;b) ⇔ (
x′′;a∗

)
RE

(
y′′;a∗

)
, (1)

(
x′;a′

)
RE′

(
y′;b′

) ⇔ (
x′′;a∗

)
RE′

(
y′′;a∗

)
. (2)

Via hu, we get: (
x′′;a∗

)
RE

(
y′′;a∗

) ⇔ (
x′′;a∗

)
RE′

(
y′′;a∗

)
. (3)

Combining (1), (2), and (3) leads to the desired result. ¥
We are now able to proof proposition 1. We show first that we can construct a binary relation
R on RN

++ from any rule f that satisfies sn. For all u,v ∈ RN
++, let uRv ⇐⇒

∃E ∈ E (r) and ∃ (x;a) , (y;b) ∈ D : u = e (x;a) , v = e (y;b) , and (x;a) RE (y;b) .

From sn of f , it follows that for all E ∈ E (r) and for all (x;a) , (y;b) ∈ D it holds that
(x;a) RE (y;b) if and only if e (x;a) R e (y;b), as required.
Notice that, for each vector u ∈ RN

++ there exists an equivalent income function E ∈ E (r) and

a distribution (x;a) ∈ D such that u = e (x;a). For example choose (x;a) =


u; a∗, . . . , a∗︸ ︷︷ ︸

N times


.

Furthermore, strong neutrality ensures that the ranking of u and v does not depend on
the chosen equivalent income function or the distributions which generate these equivalent
incomes. Thus, R is a unique binary relation, which inherits (from f) reflexivity, transitivity,
and possibly, completeness, in case the range of f is restricted to orderings (complete quasi-
orderings). Conversely, construct a rule f from any quasi-ordering R on RN

++ as follows:

(x;a) RE (y;b)∀E ∈ E (r) and ∀ (x;a) , (y;b) ∈ D with u = e (x;a) and v = e (y;b)
⇐⇒ uRv.

Now, f is well defined (for every u,v ∈ RN
++, there exist (x,a) , (y,b) ∈ D: u = e(x,a) and

v = e(y,b) for all E ∈ E(r), see above). Reflexivity and transitivity (and completeness, if R is
an ordering) of RE for each E ∈ E(r) are inherited from R, and f satisfies sn by construction.

Proof of lemma 1

Consider a quasi-ordering R which satisfies sp and the pd(s) transfer principle, for some
s ∈ (0,∞). We show that R also satisfies the pd(t) transfer principle for all t ∈ (0, s].
Consider a distribution u obtained from v via a pd(t) transfer (with t ∈ (0, s]) of size δ > 0:

u = (v1, . . . , vi−1, vi + δ, vi+1, . . . , vj−1, vj − tδ, vj+1, . . . , vN ) ,

with vi + δ ≤ vj − tδ.
Construct u′ from v by means of a pd(s) transfer of size ε = δ t

s (notice that ε ≤ δ):

u′ =
(

v1, . . . , vi−1, vi + ε, vi+1, . . . , vj−1, vj − s

(
δ
t

s

)
, vj+1, . . . , vN

)
.
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Using the pd(s) transfer principle, we must have u′Rv. From sp and ε ≤ δ, it follows that
uRu′. By transitivity, we get uRv, as required.

Proof of proposition 2

Consider a rule f which satisfies welfarism, and denote by R the corresponding quasi-ordering
defined over RN

++. It is obvious that (i) a welfarist rule f satisfies monotonicity if and only if R

satisfies the strong Pareto principle. We only prove (in the remainder) that (ii) a welfarist rule
f satisfies the btpd transfer principle if and only if R satisfies the pd(s) transfer principle for
all s in

[
1
r , r

]
. Statements (i) and (ii) together establish the required result, because lemma 1

tells us that a quasi-ordering R which satisfies sp, satisfies the pd(s) transfer principle for all
s ∈ [

1
r , r

]
if and only if it satisfies the pd(r) transfer principle.

First, we show that if f satisfies the btpd transfer principle, then R satisfies the pd(s) transfer
principle for all s in

[
1
r , r

]
. Consider vectors u,v ∈ RN

++, and individuals i, j ∈ {1, . . . , N},
such that (i) uk = vk for all k 6= i, j, (ii) vj−uj

ui−vi
= s for some s ∈ [

1
r , r

]
and (iii) vi < ui ≤ uj <

vj . We must prove that uRv holds. Recall that A contains at least three possible types with
household size equal to 1, the reference type a∗ and two other types, say a1 and a2. Choose
a linear equivalent income function E such that:

E (x, a) =
x

m (a)
, for all x ∈ R+ and for all a ∈ A, and

m (a1)
m (a2)

= s.

Given s ∈ [
1
r , r

]
, we can choose E in such a way that it belongs to E (r). Consider heteroge-

neous distributions (x;a) and (y;a) with

x = ( u1, . . . , ui−1, m (a1) ui, . . . , uj−1, m (a2) uj , uj+1, . . . , uN )
y = ( v1, . . . , vi−1, m (a1) vi, . . . , vj−1, m (a2) vj , vj+1, . . . , vN )
a = ( a∗, . . . , a∗, a1, . . . , a∗, a2, a∗, . . . , a∗ ).

These distributions satisfy e (x;a) = u, e (y;b) = v, and x can be derived from y by
transferring an amount of income, ε = m (a2) (vj − uj) = m (a1) (ui − vi) from individ-
ual/household j to individual/household i, without changing their mutual equivalent income
position (from (iii)). Using the btpd transfer principle, we have (x;a) RE (y;b) and using
welfarism, we get uRv, as required.
Secondly, we show that if R satisfies the pd(s) principle for all s ∈ [

1
r , r

]
, then f satis-

fies the btpd principle. Consider an equivalent income function E ∈ E(r), distributions
(x;a) , (y;a) ∈ D, and households i, j ∈ {1, . . . ,H}, such that (i) xk = yk for all k 6= i, j,
(ii) yj−xj

xi−yi
= 1, and (iii) E (yi, ai) < E (xi, ai) ≤ E (xj , aj) < E (yj , aj). We must prove that
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(x;a) RE (y;a) holds. Define ε = yj − xj = xi − yi. Let

u ≡ e (x;a) =


. . . , E (yi + ε, ai) , . . . , E (yi + ε, ai)︸ ︷︷ ︸

ni times

, . . . , E (xj , aj) , . . . , E (xj , aj)︸ ︷︷ ︸
nj times

, . . .


 ,

v ≡ e (y;a) =


. . . , E (yi, ai) , . . . , E (yi, ai)︸ ︷︷ ︸

ni times

, . . . , E (xj + ε, aj) , . . . , E (xj + ε, aj)︸ ︷︷ ︸
nj times

, . . .


 .

Now, we show that there exists an s ∈ [
1
r , r

]
such that u can be derived from v by a sequence

of ni×nj pd(s) transfers between individuals. Each individual from household j transfers an
amount of 1

ni
(E (xj + ε, aj)− E (xj , aj)) equivalent income units to each of the individuals

belonging to household i, who only receive 1
nis

(E (xj + ε, aj)− E (xj , aj)) of it. We must

have nj(E(xj+ε,aj)−E(xj ,aj))
nis

= E (yi + ε, ai)− E (yi, ai), or

s =
nj (E (xj + ε, aj)−E (xj , aj))
ni (E (yi + ε, ai)−E (yi, ai))

,

which lies in the interval
[

1
r , r

]
, because our domain assumption E3 guarantees that the

right-hand side lies in between α
β = 1

r and β
α = r.

Proof of proposition 3

Results (b) ⇒ (c) and (c) ⇒ (a) are obvious. We show (a) ⇒ (b) for r > 1 (the case for
r = 1 is well-known). Consider r > 1, and two distributions u,v ∈ D for which uR (r)v
holds. Consider the following algorithm, which leads to a sequence of distributions

(
v`

)
`∈N0

.

1. v1 = v.

2. If v1
N > uN , construct v2 by subtracting εN = min{v1

N − uN , r
1+r

(
v1
N − v1

N−1

)} from
v1
N and adding 1

rεN to v1
N−1; this is the maximal pd(r) transfer which ensures that

v2
N ≥ uN . Otherwise, choose v2 = v1.

3. If v2
N−1 > uN−1, construct v3 by subtracting εN−1 = min{v2

N−1 − uN−1, r
1+r (v2

N−1 −
v2
N−2)} from v2

N−1 and adding 1
rεN−1 to v2

N−2. Otherwise, choose v3 = v1.

. . .

N. If vN−1
2 > u2, construct vN by subtracting ε2 = min{vN−1

2 − u2, r
1+r

(
vN−1
2 − vN−1

1

)
}

from vN−1
2 and adding 1

rε2 to vN−1
1 . Otherwise, choose vN = vN−1.

Steps k(N − 1)+2 to (k +1)N +1− k, with k ∈ N0: repeat steps 2 to N , starting from
distribution vk(N−1)+1.
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In the remainder of the proof we show that the sequence
(
v`

)
`∈N0

converges to a vector,
say v∗, which is Pareto dominated by u (lemma 4). If so, the sequence

(
v`

)
`∈N0

–based on
pd(r) transfers– supplemented with an income increment (u − v∗), allows to derive u from
v = v1, the desired result.
In order to proof convergence to a limit v∗ ≤ u, we first establish the following property of
the sequence

(
v`

)
`∈N0

.

Lemma 3 For all r ≥ 1, for all u,v ∈ D: uR (r)v implies uR (r)v`, for all ` ∈ N0.

Proof by induction. It holds for ` = 1 (see step 1 of the algorithm). We show that, if
it holds for some ` ∈ N0 (induction hypothesis) then it also holds for ` + 1. Step ` + 1
(for some j ∈ {2, . . . , N}) is described as follows: if (a) v`

j > uj then construct v`+1 by

subtracting εj = min
(
v`
j − uj ,

r
1+r

(
v`
j − v`

j−1

))
from v`

j and adding 1
rεj to v`

j−1. Otherwise

(if (b) v`
j ≤ uj) choose v`+1 = v`. We focus on case (a); case (b) is straightforward. Notice

that

ui − v`+1
i = ui − v`

i for all i /∈ {j, j − 1} ,

uj−1 − v`+1
j−1 = uj−1 −

(
v`
j−1 +

1
r
εj

)
, and,

uj − v`+1
j = uj −

(
v`
j − εj

)
.

We obtain7

k∑

i=1

rk−i
(
ui − v`+1

i

)
=

k∑

i=1

rk−i
(
ui − v`

i

)

︸ ︷︷ ︸
≥0 from uR(r)v`

for all k 6= j − 1, and

j−1∑

i=1

rj−1−i
(
ui − v`+1

i

)
=

j−2∑

i=1

rj−1−i
(
ui − v`

i

)
+ uj−1 −

(
v`
j−1 +

1
r
εj

)
,

=
1
r

(
j−1∑

i=1

rj−i
(
ui − v`

i

)
− εj

)

≥︸︷︷︸
as −εj≥uj−v`

j

1
r

(
j−1∑

i=1

rj−i
(
ui − v`

i

)
+

(
uj − v`

j

))

≥ 1
r︸︷︷︸
≥0

(
j∑

i=1

rj−i
(
ui − v`

i

))

︸ ︷︷ ︸
≥0 from uR(r)v`

,

and thus uR (r)v`+1 must hold. ¥
Notice that lemma 3 implies that v`

1 ≤ u1, for all ` ∈ N0, by definition of R(r).

7If j = 2, the summation
∑j−2

i=1 (·) has to be interpreted as zero.
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Lemma 4 The sequence
(
v`

)
`∈N0

converges to a vector v∗ ≤ u.

Proof.8

If vi ≤ ui for all i ∈ {1, . . . , N}, the sequence is constant and thus converges. We consider
now vectors for which ∃k ∈ {2, . . . , N} : vk > uk. Notice that the range of the sequence(
v`

)
`∈N0

is a compact subset of RN
++, bounded by the rectangle [v1, vN ]N . Hence there exist

convergent subsequences. We now show that no two convergent subsequences can converge
to different limits. If so, the sequence converges.
Consider the sequence of means of the vectors v`, say

(
µ`

)
`∈N0

, with µ` ≡
∑n

i=1 v`
i

n . This is
a decreasing sequence bounded from below by v1. Hence it converges to its greatest lower
bound. As a consequence, the means of all convergent subsequences converge to the same
limit.
Now, suppose there exist two subsequences of

(
v`

)
`∈N0

with different limits. Then the se-
quence oscillates. Oscillating is only possible via infinitely many (sets of successive) pd(r) trans-
fers . Each such a (set of) pd(r) transfers decreases the mean with an amount at least as great
as some positive constant. This would lead to divergent means, contradicting convergence
of the mean. Hence, there can be no convergent subsequences with different limits. So, the
sequence converges.
The sequence cannot converge to a point v∗, in which there are still pd(r) transfers possible.
This can be shown as follows. Let

(
wk

)
k∈N be a subsequence of

(
v`

)
`∈N0

, selecting the
vectors v(k(N−1)+1), for k = {0, 1, 2, . . .}. Let g : D→ D : wk 7→ wk+1 = g

(
wk

)
. The function

g collects N − 1 subsequent steps of the algorithm that make pd(r) transfers from richer
individuals to their immediate successors, starting from the richest. If g is continuous, then

lim
k→∞

wk+1 = v∗ = g

(
lim

k→∞
wk

)
= g (v∗). If so, no further pd(r) transfers can be made in the

limit. Continuity of g can be shown as follows. Notice that g is composed of N − 1 ‘taxes’
imposed on the richer of two subsequent individuals, pair-wisely associated with N − 1 ‘gifts’
to the poorer of the two individuals. Denote the N−1 ‘tax’-functions by g↓2, g

↓
3, . . . , g

↓
N and the

N −1 associated ‘gift’-functions by g↑1, g
↑
2, . . . , g

↑
N−1. Then g = g↑1 ◦g↓2 ◦g↑2 ◦ . . .◦g↓N . We show,

that for all ε > 0, for all t,v ∈ D: ‖t− v‖ ≡
√∑n

i=1 (ti − vi)
2 < δ ⇒ ‖g (t)− g (v)‖ < ε,

provided that 0 < δ < ε
2N−1 . It can be checked that for any r, s ∈ D and any δ > 0:

‖s− r‖ < δ ⇒
∥∥∥g↓i (s)− g↓i (r)

∥∥∥ ≤
√(

r
1+r

)2
δ2 + δ2 <

√
2δ i = 2, 3, . . . , N ,

and

‖s− r‖ < δ ⇒
∥∥∥g↑i (s)− g↑i (r)

∥∥∥ ≤
√(

1
1+r

)2
δ2 + δ2 <

√
2δ i = 1, 2, . . . , N − 1.

Because g = g↑1 ◦ g↓2 ◦ g↑2 ◦ . . . ◦ g↓N we get ‖t− v‖ < δ ⇒ ‖g (t)− g (v)‖ ≤ 2N−1δ and thus it
suffices to choose δ < ε

2N−1 .

8 We thank Luc Lauwers for help with proving convergence.
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We conclude by showing that the limit of the sequence, say v∗, is Pareto dominated by u (i.e.
v∗ ≤ u). If not, there is a coordinate i such that v∗i > ui. By the previous property, it must
hold that v∗i = v∗i−1 = . . . = v∗1 (otherwise there still would be pd(r) transfers possible) and
thus v∗1 > ui ≥ u1. But the latter is precluded by lemma 3. ¥

Proof of proposition 4

Due to corollary 5 in Ebert (1988)9 any ordering on RN
++ which satisfies con, sp, rose, a,

ri and ai has a linear representation over the rank-ordered subset D, more precisely, for all
u ∈ D, we have

W (u) =
N∑

i=1

αiui with αi > 0 and αN = 1.

We show that, imposing the pd(r) transfer principle for r ≥ 1, leads to weights αi = rN−iwi

with w1 ≥ . . . ≥ wN = 1. It is easy to verify that these weights guarantee the pd(r) transfer
principle. We show they are also necessary. The change in welfare due to a pd(r) transfer
of size δ > 0 from individual j to i, with j > i, which does not change the position of any
individual, has to be non-negative, or

αi (ui + δ) + αj (uj − rδ)− (αiui + αjuj) ≥ 0,

which is true if and only rαj ≤ αi. As this should hold for any i < j we obtain the desired
result.

9See also Wakker (1993) for possible problems and a complete proof.
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