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1 Introduction

The idea of separability allows to model optimising behaviour of the economic agents as

separate parts of a larger whole, without taking account of all possible interactions between

economic variables. Within consumer theory (especially in agricultural applications),

separability is often assumed or tested for a specific group of commodities (e.g. food), where

conditional demand is modelled with the budget spent on these commodities and their

prices as the only explanatory variables (see, e.g., Eales and Unnevehr, 1988, Hayes, Wahl

and Williams, 1990 and Sellen and Goddard, 1997). The implicit assumption of this approach

is that there is multi-stage budgeting, which means that the consumer takes her decisions in

sequential steps. In its simplest form, two-stage budgeting, the consumer first allocates her

total budget to broad commodity groups or aggregates (food, clothing, shelter,...), while in a

second step group expenditures are allocated to the different items within that group (e.g.

meat, fruit,...). Other applications of demand analysis model these consecutive steps and

take the concept of two-stage budgeting explicitly into account (see, e.g., Baker, Blundell and

Micklewright, 1989 and Edgerton, 1997). An advantage of this approach is that total instead

of partial elasticities can be derived. Perhaps more important, with regard to practical

applications, is that the number of commodities to model is almost unlimited, which allows

for fairly disaggregated demand systems. These can, e.g., be used in microsimulation

models for indirect taxation, where it can be important that these are able to simulate

changes in indirect taxes on particular commodities rather than on broad commodity

groups.

The present study intends to evaluate the performance of three two-stage demand

systems for 32 commodities, which are to be used in ASTER, a static microsimulation model

for indirect taxes (see Decoster, 1995). Due to the fact that we do not dispose of a long time

series of Belgian individual household data (like the UK Family Expenditure Survey data) to

capture precise price effects, estimation was done on aggregated time series data. (Though it

might be possible to estimate price effects on a single household budget survey, see Deaton,

1987 and 1990).  Therefore, before the systems will be used in ASTER, income effects will be

re-estimated in the future on budget survey data and linked to the price effects estimated on

time series. Another approach would be to find an optimal combination of micro (on budget

survey data) and macro (on time series data) estimations using a minimum-distance

estimator (see, e.g., Nichèle and Robin, 1995). Although the demand systems will be used in

ASTER in an adapted form, it may be worth while to evaluate them on the basis of time

series data (which is the usual approach, see, e.g., Parks, 1969, Klevmarken, 1979 and Barten,

1993). Evaluation of the three two-stage demand systems will be done by means of a

comparative study of goodness-of-fit measures, the elasticities and the forecasting
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performance of the models. As a benchmark, the empirical performance of a naive model

was also evaluated.

The question of which separability concept is most appropriate to model two-stage

demand systems is not easy to solve, because separability is a flag which covers many

cargo’s (for an overview see, e.g., Blackorby, Primont and Russell, 1978 and Pudney, 1981).

Although appealing concepts like quasi-homothetic separability (e.g., Blackorby, Boyce and

Russell, 1978) and quasi separability (e.g., Rossi, 1987) proved to be useful in empirical

applications, we have chosen for the well-known weak separability. The reason for this is

that this concept is easily imposed on one of the systems we wish to evaluate, namely the

Rotterdam demand model which was first proposed by Theil and Barten (see, e.g., Barten,

1969). A slightly different approach will be followed to apply weak separability on Deaton

and Muellbauer’s (1980a) Almost Ideal Demand System (AIDS) and its extension the

Quadratic Almost Ideal Demand System (QUAIDS) of Banks, Blundell and Lewbel (1997). In

these cases weak separability will be assumed, rather than explicitly imposed as in the case

of  Rotterdam.

The structure of the paper is as follows. In the second section, the approach to model

a two-stage demand system by means of AIDS, QUAIDS and Rotterdam is described. The

data and some general estimation results are discussed in the third section. Section 4

discusses the elasticities of the three systems, while some goodness-of-fit measures are

presented in the fifth section. Finally, the sixth section presents the results of the evaluation

of the out-of-sample forecasting performance of the three systems and a naive model.

Section 7 concludes.

2 Specification of two-stage budgeting AIDS, QUAIDS and Rotterdam systems

2.1 Utility maximisation under two-stage budgeting

Weak separability implies that the direct utility function can be written in the following form

:

(1) ( ) ( ) ( )[ ]u v q f v q v q v qG G N N= =( ) , . . . , , . . . ,1 1

where v is a strictly quasi concave, increasing and differentiable function, q is the commodity

vector, f is some increasing function and v1,v2,...,vN  are well-behaved subutility functions

with non-overlapping subvectors q1,q2,...,qN. A utility function of the form of equation (1)

gives birth to second stage Marshallian demands for all goods i of group G of the form :

(2) ( )q g x pi Gi G G= ,
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where xG  equals expenditures on group G and pG is the vector of within-group prices. These

second stage demands are the result of the maximisation of vG subject to p q xi i
i G

G
∈
∑ =  and

have all the usual properties of demand functions, since they are derived from a standard

utility maximisation procedure. Thus far the second stage of the two-stage budgeting model.

Contrary to the second stage budgeting, the allocation of total expenditures x to

group expenditures poses more problems. Consider equation (1), where the subutility

functions are replaced by their respective values :

(3) ( )u f u u uG N= 1 , . . . , , . . . ,

where uG is the utility level of group G assigned by the group utility function vG(qG).

Equation (3) is to be maximised subject to ( )c u p xG G G
G

,∑ = , where cG(uG,pG) is the group

cost function which minimises the cost to reach the group utility level uG with a given

within-group price vector pG, that is ( )c u p p q v q uG G G
q

k k G G
k G

G
G

( , ) min ;= =










∈
∑  and which

itself is a representation of the within-group preferences. It is easily seen that in general this

maximisation problem requires all individual prices in order to be solved. To be empirically

useful however, it should be possible to derive a maximisation problem which uses a single

price and quantity index for each commodity group. The necessary and sufficient conditions

for consistent commodity aggregation were derived by Gorman (1959) and are rather

restrictive. A first possibility makes use of homothetic preferences at the second stage, which

implies the independence of the within-group budget shares of the group expenditures.

Another solution needs group indirect utility functions of the Gorman generalised polar

form and invokes strong or additive separability1. Given the strong Gorman conditions,

which are empirically implausible, an approximate solution will be needed to solve the first

stage problem.

This approximate solution is described in Deaton and Muellbauer (1980b). As can be

seen from the above maximisation problem, there are in general no quantity indices QG and

exogenous price indices PG, such that ( )P Q x c u pG G G G G G= = , . A first step to obtain these

price and quantity indices is unravelling the group cost functions as follows :

(4) ( ) ( )c u p c u p
c u p

c u pG G G G G G
G G G

G G G
, , .

( , )

( , )
= 0

0

                                                       
1 Strong or additive separability is much less general than weak separability, in that the utility function must have the

following additive form under some monotone transformation : ( ) ( ) ( )[ ]u f v q v q v qN N= + + +1 1 2 2 . . .
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where pG
0  is a base period price vector. The second term of the right-hand side is the true

cost-of-living price index for group G and is denoted by ( )P p p uG G G G, ;0 . The first term of the

right-hand side can be interpreted as the money cost of reaching utility level uG with the base

period price vector pG
0 . Consequently, this term can be considered as a quantity index and

will be denoted by QG. The subgroup utility level uG is given by the indirect utility function

( )ψG G GQ p, 0  which is the inverse of ( )c u pG G G, 0 . Now we have the following maximisation

problem for the first stage :

(5) ( ) ( ) ( )[ ]max , , . . . , , , . . . , ,
Q

G G G N N N
G

u f Q p Q p Q p= ψ ψ ψ1 1 1
0 0 0

subject to ( )P p p u Q xG G G G
G

G, ; .0∑ = . The endogeneity problem still exists of course, due to

the presence of the group utility level in the true cost-of-living price indices. However,

under certain conditions the latter can be approximated by, e.g., Laspeyres or Paasche price

indices which are independent of the group utility level. These are first-order

approximations of the true cost-of-living indices which are weighted by respectively base

period and current period group utility. For the Laspeyres or Paasche price indices to be a

good approximation to the true index, one of the following conditions has to be satisfied :

pG  has to be close to pG
0 , pG  is relatively proportional to pG

0  or finally, substitution effects

between commodities are small.

After solving the maximisation problem of equation (5), we get the following general

form for the first stage Marshallian demand functions :

(6) ( )Q g P P P xG G G N= 1 , . . . , , . . . , , for G = 1,…, N

where PG is a Paasche or Laspeyres price index and QG is a quantity index which is

implicitly defined by x PG G . Combining equation (6) with equation (2), we finally get an

easily implementable, though approximate, solution for the two-stage budgeting problem.

The estimation of both the first and second stage demand functions will produce

parameter estimates, which can be used to derive partial expenditure and price elasticities.

Edgerton (1997) showed that, given the above approach, the total expenditure elasticities of

commodities i ∈ G  equal :

(7) ε ε εi G i
G= .

where ε
∂
∂i

i

i

q
x

x
q

= , ε
∂
∂G

G

G

Q
x

x
Q

=  and ε
∂
∂i

G i

G

G

i

q
x

x
q

=  (i.e., respectively the total, the first

stage and the second stage expenditure elasticity).

The total uncompensated price elasticities of commodities i ∈ G have the form :

(8) ( )ε δ ε ε δ εij
u

GH ij
uG

i
G

j
H

GH GH
uw= + +. . .
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where ε
∂
∂ij

u i

j

j

i

q
p

p

q
=  (i ∈ G, j ∈ H), ε

∂
∂GH

u G

H

H

G

Q
P

P
Q

=  and ε
∂
∂ij

uG i

j

j

i

q
p

p

q
=  (i ∈ G, j ∈ G) are

respectively the total uncompensated price elasticity, the first stage uncompensated price

elasticity and the within-group uncompensated price elasticity, w j
H  is the within-group

budget share  and δGH  is the Kronecker delta which equals 1 if G = H and 0 otherwise.

Compensated price elasticities can be calculated in the usual way, using the Slutsky

equation in terms of elasticities. Partial first and second stage compensated price elasticities

(with respectively total utility u and group utility uG held constant) are obtained as follows :

(9) ε ε εGH
c

GH
u

H Gw= + . (G,H = 1,...,N)

(10) ε ε εij
cG

ij
uG

j
G

i
Gw= + . (i ∈ G, j ∈ G)

where wH is the group budget share. Total compensated price elasticities (with total utility u

held constant) can be calculated as follows :

(11) ε ε εij
c

ij
u

j iw= + . (i ∈ G, j ∈ H)

where w w wj H j
H= . is the total budget share of commodity j ∈ H.

2.2 Two-stage budgeting AIDS and QUAIDS models

The above approach is now applied on Deaton and Muellbauer’s (1980a) well-known AIDS

and its quadratic extension QUAIDS (Banks, Blundell and Lewbel, 1997). The former is a so-

called rank two demand system (see Lewbel, 1987, 1989 and 1990). Recent empirical analysis

on micro data, however, suggested that demand systems should be rank three, which

implies that they would be able to display a greater variety of shapes of the Engel curves

than rank two models (see, e.g., Lewbel, 1991, Blundell, Pashardes and Weber, 1993 and

Banks, Blundell and Lewbel, 1997). Following this result Banks et alii (1997), derived a

complete class of integrable, rank three, quadratic logarithmic expenditure share systems

and proposed the appealing model QUAIDS which belongs to that class and which nests

AIDS.

Demand systems of the above class have indirect utility functions of the form :   

(12) ( )ψ λx p
x a p

b p
p,

log log ( )
( )

( )=
−







 +













− −1 1

where 
( )

( )
log logx a p

b p

−
 is the indirect utility function of a PIGLOG demand system and λ(p)

is a differentiable, homogeneous of degree zero function of p. One particular member of this

class of demand systems is QUAIDS and is specified as follows :

(13) ( )log log log log*a p p p pk k kj k j
jkk

= + + ∑∑∑α α γ0
1
2
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(14) b p pi
i

i( ) = ∏ β

(15) ( )λ λp pi
i

i= ∑ log

where equations (13) and (14) are the AIDS specification of the PIGLOG cost function. Filling

in the above three equations in equation (12) results in the QUAIDS indirect utility function :

 (16) ( )ψ

α α γ

λβx p

x p p p

p
p

k k
k

kj k j
jk

i
i

i i
i

i
,

log log log log

log

*

=

− − −


















+





















∑ ∑∑

∏ ∑

− −

0

1 1
1
2

which corresponds to the following cost function :

(17) ( )log , log log log
log

*c u p p p p

u p

u p
k k kj k j

i
i

i i
i

jkk

i

= + + +
−

∏
∑∑∑∑α α γ

λ

β

0
1
2 1

If all λi coefficients in equation (17) are set equal to 0, then the QUAIDS cost function

reduces to that of AIDS. Applying Roy’s identity on equation (16) (or alternatively applying

Shephard’s lemma on equation (17) and substituting u for the indirect utility function), we

get the QUAIDS budget share equations :

(18) w
x

a p p

x
a p

pi i i
i

k
k

ij j
j

k
= +









 +



















 +

∏ ∑α β
λ

γβlog
( )

log
( )

log
2

for i = 1,…,n and where log a(p) can be approximated by the Stone price index w pk k
k

log∑

(see Deaton and Muellbauer, 1980a). The QUAIDS budget shares reduce to those of AIDS if

λi = 0 for all i. In that case the rank three Engel curves of QUAIDS reduce to rank two

Working-Leser Engel curves.

Adding-up requires the following restrictions to be satisfied :

α β λi i i
iii

= = =∑∑∑ 1 0 0, ,  and γ ij
i

=∑ 0  for all j. Homogeneity is satisfied if γ ij
j

=∑ 0

for all i. The conditions to satisfy symmetry and negativity are most easily shown by using

the matrix K, which consists of the coefficients kij :

(19)
[ ]k

p p s

x
x

a p b p
x

a p b p

x
a p

w w wij
i j ij

ij i j
i j j i i j

ij i i j= = +








 +

+ 





















+






















− +γ β β
β λ β λ λ λ

δlog
( ) ( )

log
( ) ( )

log
( )

2

2

32

where sij is the compensated price effect or Slutsky effect. Slutsky symmetry is satisfied if for

all i,j γ γij ji= , while the negativity restriction is satisfied if the matrix K is negative

semidefinite.
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As already mentioned above, because QUAIDS is a rank three model, its Engel

curves have the possibility to display a greater variety of shapes than the rank two AIDS.

This is easily seen by making use of the expenditure elasticity:

(20) ε
β λ

i
i

i

i

iw w b p
x

a p
= + +









1

2
( )

log
( )

 

First, remark the difference between the QUAIDS expenditure elasticity and that of AIDS :

(21)  ε
β

i
i

iw
= +1

Commodities are luxury goods or necessities throughout the whole expenditure

range (βi > 0 respectively βi < 0). Contrary to this, in the QUAIDS case the character of the

commodities depends on the level of total expenditures. With a positive βi and a negative λi,

e.g., the elasticity will be greater than unity at low levels of expenditure. If total expenditures

increase, and the second term in the right-hand side of equation (20) becomes more

important, the expenditure elasticity eventually becomes less than unity. Equation (20)

allows thus for certain goods being luxuries at some income levels and necessities at others.

Uncompensated price elasticities under AIDS and QUAIDS are respectively given by :

(22) ε
β γ

δij
u i j

i

ij

i
ij

w

w w
=

−
+ −

.

(23) ( ) ( )ε
β γ

δ
λ

λ β

ij
u i j

i

ij

i
ij

i j

i

i j

i

w

w w b p

x
a p

w

w

x
a p

w b p
=

−
+ − −





















 −



















.

log
( )

.

log
( )2

2

It is now easy to translate equation (18) into a two-stage demand system. The first

stage cost function of QUAIDS (which is the dual representation of equation (5) and which

consists of total utility and Paasche or Laspeyres price indices) can be written as follows :

(24) ( )log , log log log
log

*C u P P P P

u P

u P
G G GH G H

G
G

G G
G

HGG

G

= + + +
−

∏
∑∑∑∑α α γ

λ

β

0
1
2 1

which gives the AIDS cost function if all λG coefficients are set equal to 0. Applying

Shephard’s lemma and after substituting u for the indirect utility function, we get the

QUAIDS (and of course AIDS under the above condition) first stage budget share equations

:

(25) w x w P
P

x w P PG G G H H
H

G

H
H

H H
H

GH H
H

H
= + −









 + −









 +∑ ∏ ∑ ∑α β

λ
γβlog log log log log

2

for G = 1,...,N and where total expenditures are deflated by the Stone price index. With the

appropriate index changes, the same theoretical restrictions as above apply to (25).
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The second stage of the two-stage allocation problem amounts to applying

Shephard’s lemma and substituting the group utility by the group indirect utility function on

the following second stage QUAIDS cost function :

(26) ( )log , log log log
log

*c u p p p p

u p

u p
G G G

G
i
G

i kj
G

k j

G k
k G

G k
G

k
k G

j Gk Gi G

k
G

= + + +
−

∈

∈
∈∈∈

∏
∑∑∑∑α α γ

λ

β

0
1
2 1

This results in the within-group QUAIDS budget shares :

(27) w x w p
p

x w p pi
G

i
G

i
G

G j
G

j
j G

i
G

j
j G

G j
G

j
j G

ij
G

j
j Gj

G= + −










 + −











 +

∈

∈

∈ ∈
∑

∏
∑ ∑α β

λ
γ

β
log log log log log

2

for i ∈ G and G = 1,…,N and where the same theoretical restrictions have to be satisfied as in

the first stage. Equation (27) reduces to the AIDS budget shares if all λ i
G  are set equal to 0.

2.3 Weak separability imposed on the Rotterdam demand system

Up to now, weak separability of preferences was assumed which made the above two-stage

modelling possible. This assumption, which implies a certain structure of the Slutsky matrix,

can be easily tested for smaller commodity breakdowns (see, e.g., Goldman and Uzawa,

1964 and  Moschini, Moro and Green, 1994). However, by lack of enough degrees of

freedom, this formal testing is almost impossible with a demand system consisting

of 32 commodities. Another approach consists of the explicit imposition of separability on

utility functions, production functions or demand systems (see, e.g., Barten and Turnovsky,

1966, Byron, 1970 and Berndt and Christensen, 1973). Due to the specific functional form of

Rotterdam, where the Slutsky effects are directly captured by the price coefficients, weak

separability or blockwise dependence is very easily imposed on it (see Theil, 1976).

Consider the Rotterdam demand equations :

(28) w d q b d x w d p c d pi i i k k
k

ij j
j

log log log log= −








 +∑ ∑          i = 1,...,n

where b p
q
xi i
i=

∂
∂

 and c
p p s

xij
i j ij= . Adding-up is satisfied if the real expenditure

parameters bi sum to one, i.e. bi
i

=∑ 1 , and the price parameters cij satisfy the

condition c ij
i

=∑ 0  for all j. The homogeneity restriction requires that for all i c ij
j

=∑ 0 .

Symmetry is satisfied if for all i and j c cij ji= . Finally, negativity requires the matrix C

consisting of the elements c ij  being negative semidefinite.

Weak separability implies the following structure of the Slutsky effects for all i ∈ G

and j ∈ H :
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(29) s s
q
x

q

xij GH ij
G

GH
i

G

j

G
= +δ λ

∂
∂

∂

∂

where δGH  is the Kronecker delta, s ij
G  is the within-group Slutsky effect and λGH is the

intergroup substitution effect. Substituting the Slutsky effects of equation (29) into the price

coefficients of equation (28) and summing over all goods belonging to commodity group G

results in the following first stage demand equations :

 (30) w d q b d x w d P c d Pi i G H H
H

GH H
Hi G

log log log log= −








 +∑ ∑∑

∈

1 2     for G = 1,...,N

where b bG i
i G

=
∈
∑ , c

xGH
GH=

λ
, d P w d pH k

H
k

k H
log log1 =

∈
∑  (the Divisia price index) and

( )
d P

p q

x
d pH

k k

Hk H
klog log2 =

∈
∑

∂

∂
 (the Frisch price index). The same theoretical restrictions as in

equation (28) apply to the first stage Rotterdam equations.

Remark that in this first stage allocation model, the restrictive Gorman conditions or

the approximate solution as in the former section, are evaded by the use of two price indices

per commodity group. This approach assumes that the correct first stage allocation is known

at a certain period’s prices and total expenditures. As long as there are only small changes in

these explanatory variables (so that the associated coefficients can be treated as constants),

the consumer is able to continuously update her group expenditures by means of the above

two sets of price indices (see Gorman, 1970).

The allocation of group expenditures to within-group commodities can be written as

follows :

(31) w d q b d x w d p c d pi
G

i i
G

G j
G

j
j G

ij
G

j
j G

log log log log= −










 +

∈ ∈
∑ ∑

where b p
q
xi

G
i

i

G
=

∂
∂

 and c
p p s

xij
G i j ij

G

G
= . Note that the same restrictions apply as in the first

stage demand model.

The first and second stage parameter estimates can now be linked to obtain total

parameter estimates, as if the system was estimated in one shot rather than in two stages.

Note that this approach differs from the case where weak separability was assumed and

where first and second stage elasticities are directly linked to each other. It can be shown

that the Rotterdam total parameter estimates can be derived as follows:

(32) b b bi G i
G= .

(33) c c w c b bij GH ij
G

G GH i
G

j
H= +δ . . . .
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These can then be used to calculate the total expenditure and uncompensated price

elasticities which are given by :

(34) ε i
i

i

b
w

=

(35)
( )

ε ij
u ij i j

i

c b w

w
=

−

In the next section, we focus on the estimation of the above two-stage budgeting AIDS,

QUAIDS and Rotterdam demand models.

3 Data and first stage estimation results

The two-stage demand models AIDS, QUAIDS and Rotterdam were estimated on

aggregated data of the Belgian National Accounts from 1953-19892. The first stage consists of

a thirteen commodity breakdown : (1) food, (2) beverages, (3) tobacco, (4) clothing, (5) rent,

(6) heating, (7) lighting, (8) durables, (9) housing, (10) personal care, (11) transportation,

(12) leisure goods and (13) services. Four commodity groups were further disaggregated :

food, beverages, heating and transportation3. This resulted in the joint modelling

of 32 commodities. Both AIDS and QUAIDS were estimated in first differences by making

use of Zellner’s Seemingly Unrelated Regressions (SUR). The two-stage Rotterdam model

was estimated by maximum likelihood estimation within the DEMMOD estimation package,

developed by A.P. Barten. Intercept terms have been added to all models at both stages, in

order to capture possible time trends (e.g., as a result of taste changes). To deal with the

population increase, expenditure per capita appears at the right-hand side. With regard to

the perfect nonlinear aggregation properties of AIDS and QUAIDS, this can be done under

the assumption that the expenditure distribution and the demographic composition

remained the same during the sample period (Deaton and Muellbauer, 1980b). Due to the

fact that concavity of the cost function cannot be maintained over the whole price-

expenditure space under AIDS and QUAIDS, only the adding-up, homogeneity and

symmetry conditions were explicitly imposed on these systems. On the contrary, the

Rotterdam equations were estimated with all the theoretical restrictions imposed.

Due to limitations of space, not all estimations (five complete systems per two-stage

demand model) can be discussed thoroughly. Therefore attention is restricted to some

general results of the first stage estimations.

                                                       
2 Data of the commodities within the group heating were only available from 1973-1989.
3 Food consists of (1) bread, (2) meat, (3) fish, (4) dairy, (5) oils and fats, (6) potatoes, vegetables and fruit, (7) coffee,
tea and chicory, (8) sugar and jam and (9) other food. Beverages is broken down in (1) water and soft drinks, (2) beer,
(3) alcohol and (4) wine and others. The commodity group heating is divided in (1) coal, (2) gas, (3) electrical heating
and (4) oil fuel. Finally, transportation consists of (1) costs for own transportation, (2) diesel oil, (3) gasoline, (4) LPG,
(5) public transportation and (6) other means of transportation.
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Table 1 presents the expenditure and own-price parameter estimates and the

accompanying standard errors of the first stage AIDS, QUAIDS and Rotterdam systems. As

can be seen from the results, most of the parameter estimates are significantly different from

zero at a significance level of 0.05. Important for the QUAIDS case is that nine parameters

associated with the quadratic real expenditure term (λG) are significantly different from zero.

The parameter estimates on their own are not so illuminating to compare the different

demand systems. Moreover, opposite to the AIDS and Rotterdam cases, it is impossible to

determine with a glimpse which goods are luxuries and which are necessities, respectively

inferior and normal for QUAIDS from table 1. Therefore, it makes sense to write the

parameter estimates into elasticities and to check whether they are not conflicting with a

priori expectations. This question will be taken up in the next section.

Table 1
First stage restricted expenditure and own-price parameter estimates

(Standard errors between brackets, * parameter significant at 0.05 significance level)
  AIDS     QUAIDS      Rotterdam

  βG γGG          βG λG γGG           bG cGG

Food -0.10233 0.09184 0.14194 0.08115 0.12234 0.16669 -0.13170
(0.0370)* (0.0251)* (0.0589)* (0.0228)* (0.0321)* (0.0420)* (0.0282)*

Beverages 0.00276 0.02829 -0.04721 -0.01454 0.02180 0.04964 -0.01912
(0.0196) (0.0122)* (0.0406) (0.0142) (0.0126) (0.0180)* (0.0073)*

Tobacco -0.01536 0.00787 -0.03604 -0.00737 0.01130 0.01002 -0.01292
(0.0068)* (0.0003)* (0.0180)* (0.0063) (0.0038)* (0.0056) (0.0022)*

Clothing 0.04540 0.03688 0.10108 0.02040 0.04095 0.12913 -0.05050
(0.0221)* (0.0078)* (0.0324)* (0.0129) (0.0090)* (0.0241)* (0.0096)*

Rent -0.09949 0.09589 -0.02041 0.02734 0.09833 -0.01026 -0.00567
(0.0084)* (0.0040)* (0.0164) (0.0057)* (0.0041)* (0.0087) (0.0025)*

Heating 0.01812 0.03367 -0.08521 -0.03860 0.03977 0.08599 -0.01505
(0.0232) (0.0037)* (0.0345)* (0.0134)* (0.0052)* (0.0328)* (0.0063)*

Lighting -0.00135 0.01505 -0.03807 -0.01263 0.01552 0.01136 -0.00243
(0.0070) (0.0022)* (0.0130)* (0.0046)* (0.0027)* (0.0055)* (0.0015)

Durables 0.16355 0.09547 -0.05388 -0.07039 0.10300 0.26140 -0.06293
(0.0418)* (0.0267)* (0.0600) (0.0225)* (0.0301)* (0.0397)* (0.0245)*

Housing -0.00485 0.01170 -0.06370 -0.02052 0.02479 0.04746 -0.03513
(0.0111) (0.0081) (0.0255)* (0.0088)* (0.0082)* (0.0106)* (0.0085)*

Personal care -0.00757 0.06058 -0.00905 -0.00037 0.06304 0.06670 -0.01014
(0.0229) (0.0114)* (0.0386) (0.0142) (0.0115)* (0.0247)* (0.0131)

Transportation -0.01465 0.06774 -0.09538 -0.03043 0.07661 0.04919 -0.01543
(0.0173) (0.0107)* (0.0343)* (0.0121)* (0.0121)* (0.0148)* (0.0084)

Leisure goods 0.00275 0.07730 0.11010 0.03718 0.08620 0.08421 -0.02458
(0.0205) (0.0107)* (0.0337)* (0.0124)* (0.0113)* (0.0204)* (0.0107)*

Services 0.01302 0.04048 0.09583 0.02879 0.03479 0.04847 -0.01319
(0.0221) (0.0135)* (0.0373)* (0.0129)* (0.0109)* (0.0241)* (0.0131)

The results of the statistical testing of the theoretical restrictions are shown in table 2. In the

case of Rotterdam, which has been estimated by means of maximum likelihood, the

likelihood ratio test was used.  To test homogeneity and symmetry for AIDS and QUAIDS,
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the T° test statistic of Gallant and Jorgenson (1979), which is analogous to the likelihood ratio

test, was retained4. As can be seen from the results homogeneity is not rejected at the 0.05

significance level for AIDS and QUAIDS. On the contrary, homogeneity is rejected for the

Rotterdam case. However, the likelihood ratio test is strongly biased towards rejection of the

homogeneity restriction for systems with a large number of equations. A test which is better

fit for large systems is the Laitinen test statistic (Laitinen, 1978). On the basis of the latter,

homogeneity cannot be rejected for Rotterdam at the 0.05 significance level

(1.44 < F(12,11) = 2.79). The much stronger symmetry restriction is rejected for all three

demand systems. As can be seen from table 2, also the negativity condition is rejected at

the 0.05 significance level5.

 Table 2
Testing the theoretical restrictions on the first stage AIDS, QUAIDS and Rotterdam systems

AIDS QUAIDS Rotterda
m

T° T° 2LL     χ2(0.05)
Homogeneity 5.0314 9.7136 38.5124 21.0261
Symmetry 160.9655 121.4562 156.1276 85.9515
Negativity 36.6022 9.4877

The rejection of the theoretical restrictions is not at all a new result (see, e.g., Barten, 1969,

Christensen, Jorgenson and Lau, 1975 and Deaton and Muellbauer, 1980a). The question

arises in how far one should be worried by the violation of the theoretical restrictions. From

an empirical point of view, one can say that one should not lay too much weight on the non-

satisfaction of the theoretical restrictions. If according to the data the concavity of the cost

function is rejected and the theory says that this is a necessary condition, who cares?

Moreover, given that most of the parameter estimates are significantly different from zero,

the demand model is able to predict fairly well (which is a primary aim for a demand

system that is a possible basis for a good microsimulation model). However, the violation of

the theoretical restrictions has far-reaching consequences for welfare analysis. In order to

make meaningful welfare evaluations by means of a cost function, it is necessary that the

latter is concave. Also the calculation of true cost-of-living indices and optimal taxation

results are only possible with well-behaved cost functions.

To conclude this section, we will test whether AIDS is a restriction on QUAIDS. This

is done for both the first and second stage estimations. Therefore, the Gallant and

                                                       
4 The change in the least-squares criterion function which is minimised under SUR, multiplied by the number of
observations can be seen as an asymptotically valid chi-square test with degrees of freedom equal to the difference in
the number of free parameters in the unrestricted and the restricted models.
5 It is not clear how many degrees of freedom one should take into account to test the negativity condition using a
likelihood ratio test, because this condition is an inequality restriction. Following Barten and Geyskens (1975), the
number of negative Cholesky values (which are a by-product of the Cholesky decomposition of the Rotterdam matrix
of price coefficients) under the symmetry condition is taken as the number of degrees of freedom.
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Jorgenson T° test can be used again. Except for the commodity group heating, AIDS is a

restriction at the 0.05 significance level on the basis of table 3. As to the first stage estimation,

this strengthens the results of table 1, where nine λG’s were significantly different from zero.

This seems to suggest that the extension of AIDS with a quadratic term in deflated

expenditure is justified.
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Table 3
Is AIDS a restriction on QUAIDS ?

T° χ2(0.05) Conclusion
First stage λG = 0  G N= 1,..., 58.3829 21.0261 Restriction

Food λi
G = 0  i G∈ 17.3791 15.5073 Restriction

Beverages λi
G = 0  i G∈ 10.9677   7.8147 Restriction

Heating λi
G = 0  i G∈   4.4699   7.8147 No restriction

Transportation λi
G = 0  i G∈ 57.4435 11.0705 Restriction

After the more general discussion of the (partial) first stage estimation results, the following

sections will focus on the empirical performance of the total two-stage demand systems.

4 Comparison of the partial and total elasticities

Table 4 presents the expenditure, the uncompensated and the compensated own-price

elasticities of the first stage estimations of the three systems evaluated at budget shares

of 1987. As can be seen from the results, the elasticities differ largely in magnitude across the

different demand systems. Only in six cases the goods have the same character with regard

to the expenditure elasticities (i.e. food, lighting, personal care and transportation are

evaluated as necessities, while clothing and durables can be seen as luxury goods). All

commodities are evaluated as price inelastic. Remark that two goods (heating and

transportation under both AIDS and QUAIDS) have positive compensated own-price

elasticities, which is the most clear indication of the rejection of the negative

semidefiniteness of the Slutsky matrix.

Table 4
First stage expenditure, uncompensated and compensated own-price elasticities

AIDS QUAIDS Rotter. AIDS QUAID
S

Rotter. AIDS QUAIDS Rotter.

εG εG εG εGG
u εGG

u εGG
u εGG

c εGG
c εGG

c

Food 0.421 0.863 0.929 -0.378 -0.356 -0.901 -0.304 -0.203 -0.736
Beverages 1.069 0.563 1.246 -0.294 -0.455 -0.530 -0.251 -0.433 -0.480
Tobacco 0.024 -0.331 0.618 -0.484 -0.280 -0.807 -0.484 -0.285 -0.797
Clothing 1.602 1.786 1.714 -0.556 -0.547 -0.799 -0.436 -0.412 -0.670
Rent 0.159 0.354 -0.088 -0.090 -0.087 -0.038 -0.071 -0.045 -0.049
Heating 1.570 0.807 2.448  0.040  0.143 -0.514  0.090  0.168 -0.437
Lighting 0.923 0.303 0.635 -0.140 -0.132 -0.147 -0.124 -0.127 -0.136
Durables 2.225 1.676 1.986 -0.449 -0.350 -0.739 -0.151 -0.126 -0.474
Housing 0.876 0.446 1.204 -0.696 -0.381 -0.939 -0.662 -0.364 -0.892
Pers. care 0.932 0.926 0.601 -0.449 -0.426 -0.158 -0.345 -0.323 -0.091
Transport 0.790 0.527 0.702 -0.016  0.083 -0.269  0.039  0.120 -0.220
Leisure 1.029 1.363 0.910 -0.176 -0.161 -0.350 -0.080 -0.033 -0.265
Services 1.169 1.479 0.650 -0.487 -0.624 -0.225 -0.397 -0.510 -0.175
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Table 5 shows the partial expenditure, uncompensated and compensated own-price

elasticities of the second stage demand systems, evaluated at 1987 within-group budget

shares.

Table 5
Second stage expenditure, uncompensated and compensated own-price elasticities

Food
AIDS QUAIDS Rotter. AIDS QUAIDS Rotter. AIDS QUAIDS Rotter.

εi
G εi

G εi
G εii

uG εii
uG εii

uG εii
cG εii

cG εii
cG

Bread -0.063 0.414 -0.043 -0.466 -0.546 -0.447 -0.474 -0.492 -0.453
Meat 1.733 1.423 1.684 -0.920 -0.889 -0.942 -0.297 -0.377 -0.336
Fish 0.593 0.893 0.405 -0.710 -0.681 -0.444 -0.673 -0.625 -0.419
Dairy 0.143 0.229 0.022 -0.144 -0.028 -0.115 -0.126 0.001 -0.112
Oils 0.310 0.697 0.824 0.470 0.414 -0.211 0.485 0.448 -0.170
Vegetables. 1.457 1.328 1.520 -0.510 -0.474 -0.670 -0.312 -0.294 -0.464
Coffee 0.588 0.078 1.075 0.083 0.211 -0.215 0.100 0.213 -0.184
Sugar 1.245 1.440 1.167 -0.645 -0.695 -0.645 -0.569 -0.607 -0.574
Other food 0.520 0.983 0.396 -0.938 -1.277 -0.737 -0.915 -1.233 -0.719

Beverages
AIDS QUAIDS Rotter. AIDS QUAIDS Rotter. AIDS QUAIDS Rotter.

εi
G εi

G εi
G εii

uG εii
uG εii

uG εii
cG εii

cG εii
cG

Soft drinks 0.922 0.574 0.691 -0.406 -0.045 -0.254 -0.177 0.097 -0.083
Beer 0.980 0.885 1.323 -0.899 -0.857 -1.018 -0.580 -0.569 -0.587
Alcohol 0.885 1.374 1.371 -0.786 -0.765 -1.055 -0.678 -0.596 -0.887
Wine 1.132 1.322 0.744 -0.940 -0.858 -0.691 -0.597 -0.457 -0.465

Heating
AIDS QUAIDS Rotter. AIDS QUAIDS Rotter. AIDS QUAIDS Rotter.

εi
G εi

G εi
G εii

uG εii
uG εii

uG εii
cG εii

cG εii
cG

Coal 0.185 0.976 0.855 -0.185 -0.231 -0.172 -0.166 -0.131 -0.085
Gas 0.787 0.868 0.512 -0.480 -0.477 -0.275 -0.204 -0.172 -0.095
Electrical 1.055 1.037 0.649 -0.461 -0.553 -0.098 -0.324 -0.418 -0.014
Oil fuel 1.362 1.106 1.575 -0.786 -0.548 -0.858 -0.219 -0.087 -0.201

Transport
AIDS QUAIDS Rotter. AIDS QUAIDS Rotter. AIDS QUAIDS Rotter.

εi
G εi

G εi
G εii

uG εii
uG εii

uG εii
cG εii

cG εii
cG

Own trans. 2.037 1.329 1.990 -1.163 -0.939 -1.123 -0.306 -0.380 -0.286
Gasoline 0.907 1.702 0.994 -0.606 -1.269 -0.876 -0.301 -0.698 -0.542
Diesel oil -0.975 -1.520 -1.757 -0.493 -1.286 -0.541 -0.592 -1.439 -0.718
LPG 0.034 0.314 -0.673 1.133 1.312 -0.544 1.133 1.313 -0.547
Public
trans.

-0.682 0.948 -0.060 -0.243 -0.172 -0.426 -0.306 -0.085 -0.432

Other -0.012 -1.416 0.489 -1.072 -2.089 -0.746 -1.073 -2.155 -0.723

In general the same conclusions as in the first stage estimation can be drawn. Elasticities are

rather different across the different demand systems and most of the goods are evaluated as

price inelastic. The elasticities not only differ largely in magnitude, also the commodity



17

character, with regard to the expenditure elasticities, differs from one system to another. The

law of demand (negative compensated own-price elasticities) is violated in a couple of cases,

which points to the fact that group cost functions are not concave as they should be.

Table 6
Total expenditure, uncompensated and compensated own-price elasticities

AIDS QUAIDS Rotter. AIDS QUAIDS Rotter. AIDS QUAIDS Rotter.
εi εi εi εii

u εii
u εii

u εii
c εii

c εii
c

Bread -0.027 0.357 -0.040 -0.471 -0.511 -0.452 -0.471 -0.503 -0.453
Meat 0.730 1.227 1.565 -0.533 -0.559 -1.186 -0.487 -0.481 -1.087
Fish 0.250 0.771 0.376 -0.687 -0.645 -0.431 -0.684 -0.636 -0.427
Dairy 0.060 0.198 0.020 -0.133 -0.009 -0.113 -0.131 -0.005 -0.112
Oils 0.131 0.601 0.765 0.480 0.436 -0.201 0.481 0.441 -0.194
Vegetables 0.614 1.146 1.413 -0.387 -0.358 -0.728 -0.372 -0.330 -0.694
Coffee 0.248 0.067 0.999 0.094 0.212 -0.214 0.095 0.212 -0.209
Sugar 0.524 1.242 1.085 -0.598 -0.638 -0.647 -0.592 -0.625 -0.635
Other food 0.219 0.848 0.368 -0.924 -1.249 -0.727 -0.922 -1.242 -0.724
Soft drinks 0.986 0.323 0.860 -0.244 0.033 -0.148 -0.234 0.036 -0.140
Beer 1.047 0.498 1.649 -0.673 -0.700 -0.880 -0.660 -0.694 -0.859
Alcohol 0.946 0.774 1.708 -0.710 -0.673 -1.006 -0.705 -0.669 -0.997
Wine 1.211 0.745 0.927 -0.698 -0.639 -0.560 -0.683 -0.630 -0.548
Tobacco 0.024 -0.331 0.618 -0.484 -0.280 -0.807 -0.484 -0.285 -0.797
Clothing 1.602 1.786 1.714 -0.556 -0.547 -0.799 -0.436 -0.412 -0.670
Rent 0.159 0.354 -0.088 -0.090 -0.087 -0.038 -0.071 -0.045 -0.049
Coal 0.291 0.788 2.094 -0.165 -0.117 -0.122 -0.164 -0.114 -0.115
Gas 1.236 0.701 1.253 -0.193 -0.129 -0.146 -0.179 -0.121 -0.132
Elec.heat. 1.657 0.837 1.588 -0.318 -0.399 -0.048 -0.311 -0.396 -0.042
Oil fuel 2.137 0.892 3.856 -0.196 -0.021 -0.704 -0.167 -0.010 -0.653
Lighting 0.923 0.303 0.635 -0.140 -0.132 -0.147 -0.124 -0.127 -0.136
Durables 2.225 1.676 1.986 -0.449 -0.350 -0.740 -0.151 -0.126 -0.474
Housing 0.876 0.446 1.204 -0.696 -0.381 -0.939 -0.662 -0.364 -0.892
Pers. care 0.932 0.926 0.601 -0.449 -0.426 -0.158 -0.345 -0.323 -0.091
Own
transp.

1.610 0.701 1.397 -0.320 -0.334 -0.699 -0.273 -0.313 -0.658

Gasoline 0.717 0.897 0.698 -0.306 -0.650 -0.779 -0.289 -0.629 -0.762
Diesel oil -0.770 -0.802 -1.233 -0.590 -1.452 -0.629 -0.596 -1.458 -0.638
LPG 0.027 0.166 -0.472 1.133 1.313 -0.547 1.133 1.313 -0.548
Public
trans.

-0.539 0.500 -0.042 -0.305 -0.078 -0.432 -0.309 -0.075 -0.432

Other trans. -0.010 -0.747 0.343 -1.073 -2.160 -0.727 -1.073 -2.162 -0.725
Leisure 1.029 1.363 0.910 -0.176 -0.161 -0.350 -0.080 -0.033 -0.265
Services 1.169 1.479 0.650 -0.487 -0.624 -0.225 -0.397 -0.510 -0.175

Tables 4 and 5 presented partial elasticities which were obtained by respectively the first and

second stage estimates. Table 6 concentrates on the total elasticities, which are obtained by

linking first and second stage estimates (in the Rotterdam case) or by linking first and

second stage elasticities (AIDS and QUAIDS). Given the rather different elasticities across

the first and second stage demand systems, it should not be striking that this conclusion also

applies to the total elasticities. The systems rather agree with each other with regard to the
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uncompensated own-price elasticities, which are in most of the cases price inelastic. Less

agreement between the systems can be found with regard to the expenditure elasticities.

Only 12 of the 32 commodities have the same character across the models (most of these

goods are necessary). The most striking differences are given by coal (which is a strong

luxury good in Rotterdam !) and oil fuel. On the other hand, the expenditure elasticity of

diesel oil is similar across the demand systems. Though the inferior character of that

commodity remains somewhat counterintuitive. The total price elasticities are mainly

influenced by the second stage price elasticities (see equation (8)). An obvious consequence

of this is that the violation of the law of demand within the second stage is carried over to

the total compensated own-price elasticities. This is the case for soft drinks in the QUAIDS

case and oils, coffee, LPG in both the AIDS and the QUAIDS cases.

Following former studies (see, e.g., Parks, 1969, Klevmarken, 1979, Decoster and

Schokkaert, 1990 and Barten, 1993), we can conclude that the obtained elasticities differ

largely across demand systems and that on the basis of the latter no system outperforms the

others in a convincing way. Moreover, on the average most of the above elasticities seem

more or less reasonable. However, it should be borne in mind that ex post almost every

elasticity can be defended. To be able to discriminate against a system, we will in the next

sections pay attention to the empirical performance with regard to goodness-of-fit and

forecasting accuracy of the three two-stage demand systems.

5 Goodness-of-fit measures

In this section, we restrict our attention to the sample period performance, which is

examined by some goodness-of-fit measures.

Table 7
Coefficients of determination

AIDS QUAIDS Rotterdam
R2 R2(adj.) R2 R2(adj.) R2 R2(adj.)

Food 0.4729 0.3564 0.4962 0.3626 0.6588 0.5834
Beverages 0.3079 0.1549 0.2631 0.0678 0.3840 0.2479
Tobacco 0.5277 0.4233 0.5631 0.4474 0.7167 0.6541
Clothing 0.3950 0.2614 0.4079 0.2510 0.6813 0.6109
Rent 0.9437 0.9312 0.9709 0.9632 0.1549 -0.0319
Heating 0.7820 0.7338 0.8128 0.7632 0.5725 0.4780
Lighting 0.5724 0.4779 0.6779 0.5925 0.3962 0.2627
Durables 0.6620 0.5873 0.6719 0.5850 0.7047 0.6394
Housing 0.2625 0.0995 0.3823 0.2186 0.5286 0.4244
Personal care 0.5029 0.3931 0.4983 0.3653 0.3103 0.1579
Transportation 0.7118 0.6481 0.7638 0.7012 0.3133 0.1615
Leisure goods 0.5119 0.4040 0.5857 0.4759 0.5189 0.4126
Services 0.3294 0.1813 0.4754 0.3339 0.3483 0.2043
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Table 7 shows the coefficients and adjusted coefficients of determination of the first stage of

the three demand systems. Remark that the coefficient of determination is only an

approximation of the goodness-of-fit of an individual equation. The reason for this is that in

general, system estimation does not minimise the residual sum of squares of a single

equation and consequently does not maximise the explained part of the regression (see, e.g.,

Berndt, 1991). Moreover, the coefficients of determination are not comparable between

Rotterdam and the other two systems because of the fact that the dependent variables are

not the same. On the contrary, AIDS and QUAIDS are comparable to each other. On the

basis of the adjusted coefficients of determination, QUAIDS seems to provide the best fit.

Only for beverages, clothing, durable goods and personal care, a higher adjusted coefficient

of determination is obtained in the AIDS case.

A better goodness-of-fit measure is Theil’s information inaccuracy (Theil and

Mnookin, 1966). Opposite to the coefficient of determination, this measure takes the whole

(two-stage) demand system into account in that it gives each commodity an appropriate

weight in the measure. This measure, which is based on information theory, is for a single

year defined as follows :

(36) I w
w
wt it

it

iti
= ∑ log

$

where w it  and $w it  are respectively the observed and the estimated budget shares of

commodity i in year t6. A measure for the whole prediction set (or parts of it) is provided by

the average information inaccuracy :

(37) I
T

I t
t

= ∑1

where T is the number of periods. The procedure to obtain predicted budget shares of the

three demand systems was as follows. Things are most simple in the AIDS and QUAIDS

cases, where changes in first and second stage budget shares were sequentially estimated by

means of the first difference form of equations (25) and (27) and linked to each other by :

(38) ( ) ( )$ $ $ $ $, ,w w w w w w wit Gt it
G

G t Gt i t
G

it
G= ⋅ = + ⋅ +− −1 1∆ ∆

Use is made of the budget share change decomposition to obtain the budget shares in the

Rotterdam case :

(39) dw w d q w d p w d xi i i i i i= + −log log log

                                                       
6 It can be shown that the information inaccuracy is positive as soon as there are pairwise differences in observed and
estimated budget shares. Moreover, it also takes into account the relative forecasting errors. This is easily seen when
the observed and estimated budget shares are not too far from each other, where in that case the information
inaccuracy can be approximated as follows :
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To get the changes in the first level budget shares wG, equation (39) is summed over all

commodities i G∈  :

(40) dw dw w d q w d p w d xG i i i i i i
i Gi Gi Gi G

= = + −
∈∈∈∈
∑∑∑∑ log log log

where the first part of the right-hand side is the dependent variable of the first stage

Rotterdam demand system (see equation (30)) and the other two parts are changes in prices

and expenditures which are taken as given. Remark that in practice the finite change version

of equation (40) is applied7.  Predicted changes of the second stage budget shares are

obtained by the finite version of equation (39) where the indices are appropriately changed

(see section 2.3).

Table 8 shows the results of the application of the above concept on the two-stage

AIDS, QUAIDS, Rotterdam and a naive model for each year separately, for four subperiods

and for the entire sample period8. This naive model predicts no change at all in the budget

shares, i.e. :

(41) $ ,w wit i t= −1

It corresponds with the assumption that all expenditure elasticities are equal to unity, while

own- and cross-price elasticities are respectively minus one and zero.

Table 8
Average information inaccuracies of the in-sample budget share predictions

AIDS QUAIDS Rotterdam Naive
model

I1974 5.606E-04 6.699E-04 5.963E-04 1.320E-03
I1975 7.018E-04 7.608E-04 1.008E-03 2.157E-03
I1976 6.005E-04 4.487E-04 5.753E-04 1.426E-03
I1977 4.515E-04 3.766E-04 5.429E-04 1.951E-03

I1974-77 5.786E-04 5.640E-04 6.806E-04 1.713E-03
I1978 4.444E-04 4.163E-04 5.980E-04 9.589E-04
I1979 3.476E-04 3.717E-04 4.005E-04 1.109E-03
I1980 4.156E-04 4.535E-04 3.781E-04 1.094E-03
I1981 5.916E-04 4.871E-04 5.347E-04 2.210E-03

I1978-81 4.498E-04 4.322E-04 4.778E-04 1.343E-03
I1982 6.697E-04 4.909E-04 7.006E-04 7.640E-04
I1983 3.849E-04 3.340E-04 5.318E-04 9.906E-04
I1984 4.558E-04 4.213E-04 5.024E-04 6.371E-04
I1985 8.126E-04 8.117E-04 7.547E-04 6.069E-04

I1982-85 5.808E-04 5.145E-04 6.224E-04 7.496E-04
I1986 5.272E-04 4.113E-04 7.563E-04 4.492E-03
I1987 2.442E-04 1.496E-04 6.004E-04 1.482E-03
I1988 4.982E-04 3.630E-04 9.700E-04 1.276E-03
I1989 3.603E-04 3.067E-04 4.546E-04 5.646E-04

I1986-89 4.075E-04 3.077E-04 6.953E-04 1.954E-03
I1974-89 5.042E-04 4.546E-04 6.190E-04 1.440E-03

                                                       
7 Due to the fact that the variation in logpi and logx is larger than the change in the budget share, wit can be replaced
by wi,t-1 in the finite change version of equation (40).
8 Remark that average information inaccuracies could only be calculated from 1974-89, due to the fact that there were
only data available for the commodity group heating from 1973 on.
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As can be seen from the results, QUAIDS has the smallest average information inaccuracy

for the entire sample period and for each of the four subperiods. AIDS seems to occupy the

second place in fitting the data and has a fit that is not much worse than that of QUAIDS.

This is in line with the conclusions that possibly could be drawn after the discussion of the

estimation results. There it was shown that according to the Gallant and Jorgenson T° test

AIDS was a restriction on QUAIDS for four of the five systems within the two-stage

allocation process. Moreover, at the first stage, nine of the thirteen coefficients associated

with the quadratic expenditure term were significantly different from zero. The three

theoretical demand systems tend to be superior to the naive model, which is the last comer

in the ranking. This clearly shows that the investigated demand models highly gain in

explanatory power in comparison with the constant share model. These conclusions are not

contradicted by the results for each year separately, where the same ranking as above is

obtained in nine of the sixteen cases. This stresses the dominance of QUAIDS, though closely

followed by AIDS and Rotterdam, over the naive model.

A good fit is only one evaluation criterion for a demand system. The crucial acid test

for the latter is its ability to forecast budget shares, given observed explanatory variables

which were not included in the sample period. This is done in the next section.

6 Forecasting accuracy

In this section the out-of-sample forecasting performance of the three two-stage demand

systems is examined. A first useful measure to discriminate between models is again Theil’s

average information inaccuracy. Table 9 shows this measure applied on the three demand

systems and the naive model for the entire prediction sample (1990-95), two subsamples and

each year apart9.

Table 9
Average information inaccuracies of the out-of-sample predictions

AIDS QUAIDS Rotterdam Naive
model

I1990 1.181E-03 1.710E-03 8.701E-04 8.993E-04
I1991 1.393E-04 1.458E-04 1.195E-04 1.946E-04
I1992 2.553E-04 2.683E-04 3.022E-04 4.726E-04

I1990-92 5.252E-04 7.082E-04 4.306E-04 5.222E-04
I1993 1.155E-03 1.910E-03 1.345E-03 6.335E-03
I1994 3.580E-04 3.662E-04 3.325E-04 5.074E-04
I1995 3.178E-04 3.319E-04 3.812E-04 3.573E-04

I1993-95 6.102E-04 8.693E-04 6.862E-04 2.400E-03
I1990-95 5.676E-04 7.887E-04 5.584E-04 1.461E-03

                                                       
9 The predicted budget share was put equal to the observed budget share for 9 of the 32 commodities and that due to
the fact that out-of-sample data for these goods were not available.
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Things are a bit reversed in this (small sample) forecasting exercise. On average the

Rotterdam model seems to predict best, though it is very closely followed by AIDS.

Moreover, both systems occupy three times the first place if the information inaccuracy for

each separate year is considered. QUAIDS, which had the best goodness-of-fit, occupies the

third place. The three demand systems clearly forecast better than the naive model which

predicts no change in the budget shares.

The robustness of the above forecasting results can in some sense be examined by

the pairwise comparison of the three systems and the naive model by means of some

nonparametric tests. In this case the null hypothesis of no difference in prediction accuracy

of two models is tested against the alternative that one of the models produces better

forecasts. Consider the following specification of the loss function for system A at time t for

share i, which is in general a function of the forecast and the observed budget shares :

(42) ( )g w w
w w

wAit it
Ait it

it
$ ,

$
=

−

The choice of the specific functional form of the loss function is arbitrary and depends  on

the application considered (see, e.g., Diebold and Mariano, 1995). In our application the

absolute percentage forecast error was chosen, in order to make the loss function

independent of the weights of the equations within a system. A first nonparametric test that

will be applied is the sign test (see Lehmann, 1975). The null hypothesis of equal forecast

accuracy of two systems A and B is in this case a zero median loss differential dit :

(43) ( )med
w w
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w w
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= = 0

The sign test can be specified as follows10 :

(44) ( )S I d it
i

N

t

T

= +∑∑

where ( )I dit+ = 1  if dit > 0 and ( )I d it+ = 0  otherwise. The sign test statistic S follows the

binomial distribution, but in large samples the distribution

 (45) S
S TN

TN
N =

−
1
2

1
2

tends to the normal distribution. The results of the pairwise application of the sign test on

AIDS, QUAIDS, Rotterdam and the naive model are shown in table 10. The null hypothesis

of equal forecast accuracy is tested against the alternative hypothesis that the first

                                                       
10 Note that we preferred to use two summation signs in order to draw attention to the fact that each system consists
of N budget shares and that the forecasting sample contains T years (where T and N equal respectively 6 and 23 in our
exercise).
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mentioned system produces more accurate forecasts11.  Only the AIDS - Rotterdam

comparison gives a decisive answer, in favour of the former,  at a significance level of 0.05. If

the level of significance is raised to 0.10, AIDS predicts better than the other demand

systems and the naive model.

Table 10
Sign test statistics and probability that null hypothesis is not rejected

S SN PHo

AIDS-QUAIDS 60 -1.53226 0.063
AIDS-Rotterdam 58 -1.87276 0.031
AIDS-Naive model 61 -1.36201 0.087
Rotterdam-QUAIDS 68 -0.17025 0.433
QUAIDS-Naive model 68 -0.17025 0.433
Rotterdam-Naive 68 -0.17025 0.433

A test which is in many cases more powerful than the sign test, is the Wilcoxon signed-rank

test which is illustrated below (see also Lehmann, 1975). This test uses both the signs of the

loss differences and the magnitude of these differences. The null hypothesis in this case is

not only a zero median loss differential, but also an equal distribution of the forecast errors.

The test is specified as follows:

(46) ( ) ( )W I d rank dit it
i

N

t

T

= +∑∑

which sums the ranks of the absolute values of the positive loss differentials. In large

samples the test statistic WN is asymptotically standard normal :

(47)

( )
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1 2 1
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Table 11, where the Wilcoxon signed-rank test results are shown, shades the picture that

arose in the case of the sign test results.

Table 11
Wilcoxon signed-rank test statistic and probability that null hypothesis is not rejected

W WN PHo

AIDS-QUAIDS 4392 -0.8576 0.1949
AIDS-Rotterdam 4342 -0.9638 0.1685
AIDS-Naive model 4490 -0.6493 0.2578
Rotterdam-QUAIDS 4414 -0.8108 0.2090
QUAIDS-Naive model 4596 -0.4240 0.3372
Rotterdam-Naive model 4792 -0.0074 0.4960

                                                       
11 There are as many positive loss differentials as negative when S = 69 (median).
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None of the models is able to beat one of the others at a significance level

of, say, 0.05 or 0.1012. The results of the pairwise comparison of Rotterdam and QUAIDS and

QUAIDS and the naive model are tightened up as compared with the sign test results.

Contrary to this, taking into account the distribution of the forecast errors weakens the

results of the pairwise comparisons of AIDS and the other models and of the comparison of

Rotterdam and the naive model.

To conclude this section, we can state that on the basis of Theil’s average

information inaccuracies the theoretically derived demand systems seem to predict better

than the naive model which predicts no change in budget shares. A conclusion which does

not conflict with the results of the nonparametric tests. More care is needed to discriminate

against the  three demand systems when they are compared with each other. Although

Rotterdam and AIDS had the smallest full sample average information inaccuracies, no

system is able to beat another at fairly low levels of significance on the basis of the

nonparametric tests.

7 Conclusion

In this paper, the empirical performance was evaluated of three two-stage budgeting

demand systems based on weak separability : the Almost Ideal Demand System, its

quadratic extension QUAIDS and the Rotterdam demand system. Weak separability was

explicitly imposed on the latter, while for the others we had to resort to an approximate

solution. The three systems were estimated on Belgian time series data and were evaluated

by means of a comparison of the elasticities (both partial and total), goodness-of-fit measures

and out-of-sample forecasting accuracy.

On the basis of a comparison of the elasticities, a ranking of the models is neigh on

impossible. Though the elasticities differ largely in magnitude across the demand systems,

most of them seem quite reasonable. An exception of this are some positive compensated

own-price elasticities under AIDS and QUAIDS, which points to the violation of the

negativity restriction. In the light of this, the ability of the Rotterdam system to impose the

negativity restriction seems to be an advantage over the other two systems.

More illuminating are the goodness-of-fit measures and the forecasting accuracy of

the two-stage budgeting demand systems. On the basis of Theil’s average information

inaccuracies, QUAIDS seems to have the best fit. All three theoretically derived demand

systems tend to be superior to a naive model, which predicts no change in budget shares.

This shows that the investigated demand systems are able to explain the data more

                                                       
12 The median, taking into account the distribution of the prediction errors, equals 9591 in the Wilcoxon signed-rank
test case.
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accurately than the naive model. This conclusion also arises with respect to the (out-of-

sample) forecasting accuracy of the systems. Things are less clear if one compares the three

demand systems with each other. The out-of-sample average information inaccuracies seem

to suggest that Rotterdam predicts best (though very closely followed by AIDS). The

forecasting results on the basis of the average information inaccuracies are not so robust,

however. On the basis of some nonparametric tests, no system is able to discriminate against

another at fairly low levels of significance.

By the ambiguity of the above results (and following earlier results on single stage

demand systems), it is rather difficult to proclaim one of the two-stage demand systems

winner of the contest. If one takes into account not only the above results, but also the nice

theoretical implications of the rank three QUAIDS model, which is able to capture more

variety in Engel curves than rank two systems as AIDS and Rotterdam, one can be inclined

to favour QUAIDS. The full exploitation of this feature, however, will only take place when

the system is applied on budget survey data, which show much more heterogeneity than

aggregate data. A topic for further research, therefore, will be the re-estimation of the

expenditure parameters of the systems on micro data, which will be linked to the price

parameters obtained by time series data. These adapted demand systems can then form a

basis for a new comparison of their empirical performance.
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