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Abstract

In this article we introduce e¢ cient Wald tests for testing the null hypothesis of unit

root against the alternative of fractional unit root. In a local alternative framework,

the proposed tests are locally asymptotically equivalent to the optimal Robinson (1991,

1994a) Lagrange Multiplier tests. Our results contrast with the tests for fractional unit

roots introduced by Dolado, Gonzalo and Mayoral (2002) which are ine¢ cient. In the

presence of short range serial correlation, we propose a simple and e¢ cient two-step

test that avoids the estimation of a nonlinear regression model. In addition, the �rst

order asymptotic properties of the proposed tests are not a¤ected by the pre-estimation

of short or long memory parameters.
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1 Introduction

Testing for nonstationarity of a time series is routinely performed as a �rst step in economet-

ric modeling. For instance, in the traditional I(0)/I(1) framework, unit-root tests have been

applied frequently. Recently, there has been considerable interest in studying long mem-

ory series where the degree of nonstationarity is characterized by a fractional integration

parameter that takes values in a continuum. Analysis with long memory series has posed

new problems and led to the development of new asymptotic and optimality theory. For

instance, Robinson (1991, 1994a) have proposed Lagrange Multiplier (LM) tests both in the

frequency and time domain, and Dolado, Gonzalo and Mayoral (2002, hereinafter DGM)

have introduced a test based on an auxiliary regression for the null of unit root against the

alternative of fractional integration.

In the basic framework yt denotes a fractionally integrated process whose true order of

integration is d, denoted as I(d),

�dyt1 ft > 0g = "t; t = 1; 2; : : : ; (1)

where "t are independent and identically distributed (i.i.d.) random variables with zero

mean and �nite variance, and 1f�g denotes the indicator function. The fractional di¤erence
operator �d = (1� L)d is de�ned in terms of the lag operator L by the formal expansion,

�� :=
1X
i=0

�i(�)L
i;

for any real �; where for � 6= 1; 2; : : : ;

�i(�) =
� (i� �)

� (i+ 1)� (��) ;

and � is the Gamma function, with �(0)=�(0) = 1; so the �rst coe¢ cients are �0 (�) = 1

and �1 (�) = ��: From now on, in the notation we will suppress the truncation in (1) for

nonpositive t; assuming implicitly that yt = "t = 0; t � 0:
We consider testing the null hypothesis

H0 : d = 1;

versus either a simple alternative

HA : d = dA < 1;

or a composite alternative

H1 : d < 1:
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DGM proposed to test the null hypothesis by means of the t-statistic of the coe¢ cient of

�d1yt�1 in the ordinary least squares (OLS) regression

�yt = �1�
d1yt�1 + ut; t = 1; : : : ; T; (2)

where T denotes the sample size. DGM called this t-ratio the fractional Dickey-Fuller test,

based on a particular analogy with the Dickey and Fuller�s (1979) test that led them to

interpret d1 as "the true value of d under the alternative hypothesis", and hence, they

propose to use d1 = dA when testing against HA; and a consistent estimator of d when

testing against H1.

Notice that, in model (2), the null and alternative hypotheses can be expressed in terms

of �1, de�ned as the probability limit of the OLS coe¢ cient of �
d1yt�1. Under H0; �1 = 0

because �yt is white noise, and hence, it is uncorrelated with �d1yt�1 for any value of d1. By

contrast, under the alternative, using that �yt = �1�d"t = "t + (d� 1) "t�1 + � � � and that
�d1yt�1 = �

dyt�1 = "t�1 when d1 = d is employed, it is simple to show that �1 = d� 1 < 0.
Since �1 is also negative for any d1 > 0:5, the regression model (2) can be used for testing

the null hypothesis by checking the signi�cance of the regressor �d1yt�1 with a one sided

t-ratio test.

However, note that the null hypothesis could also be tested by testing the signi�cance

of alternative regressors. In fact, given that �yt is i.i.d. under the null, �d1yt�1 could be

replaced in (2) by any function of the past, and the associated coe¢ cient would still be zero;

whereas, under the alternative, this coe¢ cient would be negative for any function of the

past with negative covariance with �yt.

This article questions the use of the regressor �d1yt�1 proposed by DGM, and examines

carefully the optimal selection of the regressor in a regression model like (2) to conduct

inference on the degree of integration of yt. We argue that �d1yt�1 is not the best class of

regressors one can choose. In order to grasp the intuition behind it, consider all the regressors

which lead to a test statistic whose asymptotic null distribution is the standard normal (for

instance, �d1yt�1, with d1 > 0:5). Note that the test that maximizes the power among this

group is the one that maximizes the correlation between the regressand and the regressor,

and thus, it is based on a regression model where the errors are serially uncorrelated and

uncorrelated to the regressor. Therefore, a regressor such as �d1yt�1 can not be optimal

because, under the alternative hypothesis, there does not exist any values of �1 and d1 that

guarantee that the error term ut in model (2) is serially uncorrelated and orthogonal with

the regressor �d1yt�1. In this sense, model (2) is misspeci�ed because it does not include

the data generating process (DGP) de�ned by (1) as a particular case under the alternative

hypothesis. In particular, the errors of the model, ut; are di¤erent from the innovations of

the process, "t, de�ned in (1). This misspeci�cation implies that OLS estimation and the

3



resulting t-test based on regression (2) are ine¢ cient, even when d1 is optimally chosen.

In this article we propose the use of an alternative regression model based on (1), which

leads to an e¢ cient t-test that can also be interpreted as a Wald test since the relevant slope

coe¢ cient in the estimated regression is linearly related to the parameter of interest. The

proposed Wald test is asymptotically e¢ cient against local alternatives since it is asymp-

totically equivalent to Robinson�s (1991, 1994a) LM test, which is optimal in a Gaussian

framework. In particular, we show that our t-test statistic is locally asymptotically equiva-

lent to Robinson�s time-domain LM test statistic

LM = T 1=2
�
�2

6

��1=2 T�1X
j=1

j�1b��y (j) ; (3)

where b��y (j) denotes the sample autocorrelation of order j of �yt: This statistic has also
been attributed to Tanaka (1999), but note that it already appears in Robinson (1991), see

also Robinson (1994b).

The plan of the article is the following. Section 2 proposes and analyzes the new e¢ cient

fractional regression test. Section 3 studies the consequences of allowing for serial correlation

in "t in (1) and proposes a simple and e¢ cient two-step test. Section 4 reports a Monte

Carlo exercise on the �nite sample performance of the considered tests. Section 5 concludes

and proposes some lines of further research.

2 An optimal Wald test

In this section we study carefully the optimal selection of the regressor and develop an

e¢ cient Wald type test. In order to motivate the selection of the proposed regressor, note

that for any d we can rewrite the DGP (1) as

�yt =
�
���d

�
yt + "t =

�
1��d�1��yt + "t; (4)

where the error term "t is truly i.i.d. under (1), both under the null and under the alternative

hypotheses, and where the variable
�
1��d�1��yt does not contain �yt because

�
1��d�1��yt = (d� 1)�yt�1 + t�1X

j=2

�j(d� 1)�yt�j: (5)

Equation (4) can also be written as

�yt = '2
�
�d�1 � 1

�
�yt + "t; t = 1; : : : ; T; (6)

where '2 = 0 under the null and '2 = �1 under the alternative. Equation (6) suggests the
use of the regressor

�
�d2�1 � 1

�
�yt where d2 denotes the input of the new test to distinguish
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it from the input d1 in DGM�s test. However, note that d2 can not take the value d2 = 1,

which would make the regressor equal to zero, as (5) indicates. In addition, note that a

one-sided t-ratio test statistic for the signi�cance of '2 in (6) should not be used with values

of d2 > 1 because the sign of the coe¢ cients of
�
�d2�1 � 1

�
�yt in the expansion (5) changes

depending on whether d2�1 is positive or negative. Therefore, in order to make the regressor
continuous at d2 = 1, instead of (6) we propose to employ the following rescaled regression

model

�yt = �2zt�1(d2) + ut; t = 1; : : : ; T; (7)

where

zt�1(d2) =

�
�d2�1 � 1

�
1� d2

�yt: (8)

We propose to test the null hypothesis by testing the signi�cance of the coe¢ cient of zt�1(d2);

with d2 > 0:5; in (7) by means of a left-sided test based on the t-ratio test statistic, denoted

by t�:

Note that, when d2 = d in (7), the true value of �2 is obtained immediately by �2 =

'2 (1� d) = d � 1, which maps the hypotheses on the parameter d continuously into �2:
That is, under the null, �2 = '2 = 0, and, under the alternative, �2 takes negative values,

the larger in absolute value the further d is from the null. Note the analogy with the original

Dickey-Fuller test based on model �yt = �yt�1+ut, where � = �� 1 and � denotes the �rst
order autocorrelation. In this case � = 0 (or � = 1) is the null and � < 0 (or � < 1) is the

alternative. Both tests are Wald because of the relation between the slope coe¢ cient in the

auxiliary regression and the parameter of interest.

The model (7) is obviously related to the DGP (4) as we analyze next. Under the null

hypothesis, �yt is i.i.d. and so, �2 = 0 for any value of d2; and model (7) is properly

speci�ed, with ut = "t. Under the alternative hypothesis, when d2 is chosen equal to d,

�2 = d � 1 and model (7) is again properly speci�ed, with ut = "t. However, when d2 is

chosen di¤erently from the true value of d, this property is lost because the errors ut are

not i.i.d. and, in consequence, �2 (de�ned as the probability limit of the OLS estimator of

the coe¢ cient of zt�1(d2)) is no longer d � 1. Therefore, under the alternative, in order to
maximize the correlation between the regressand and the regressor (and hence, to maximize

the power of the corresponding t-test), the researcher should set d2 = d. Other selections of

d2 would render consistent but ine¢ cient tests compared to the selection d2 = d.

Comparing models (2) and (7), we see that the only di¤erence with DGM�s test is the use

of the regressor zt�1(d2) instead of the regressor �d1yt�1. Both regressors can be expressed

as a linear combination of past values of yt, and if we denote by czj and c
o
j the coe¢ cients of

yt�j for zt�1(d) and �dyt�1, respectively, it is simple to see that czj = (d� 1)coj+1 for j � 2.
However, the use of regressor zt�1(d2) instead of �d1yt�1 leads to an important di¤erence.
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Whereas for model (7) there exist a value of the pair (d2; �2), namely (d2; �2) = (d; d � 1);
that leads to errors which are i.i.d. and independent of the regressor under the alternative

hypothesis, for model (2) there does not exist any value of the pair (d1; �1) with that property.

Therefore, the t-test based on the OLS estimation of (2) is ine¢ cient (for any selection of d1)

compared to the t-test based on the OLS estimation of (7) that uses d2 = d. The intuition

behind this ine¢ ciency is straightforward: the regressor zt�1(d) contains all relevant past

information to forecast �yt; whereas �d1yt�1 does not, irrespective of the value of d1.

In addition, note that in the d2 = 1 case, the indetermination 0=0 in (8) is solved using

L�Hôpital rule since, as d2 ! 1; the ratio
�
�d2�1 � 1

�
=(1�d2) tends to the derivative of the

fractional �lter (1�L)�� evaluated at � = 0; that is, to the linear �lter J(L) = � log(1�L) =P1
j=1 j

�1Lj: In this case the regression (7) can be rewritten as

�yt = �2

t�1X
j=1

j�1�yt�j + ut; t = 1; : : : ; T: (9)

Interestingly, the t-test for the signi�cance of �2 in (9) is Robinson�s LM test statistic

given in (3), apart from a di¤erent, but asymptotically equivalent (under local alternatives)

normalization. In order to see that, note that the sample covariance between the dependent

and independent variable in (9) is given by
PT�1

j=1 j
�1b�y (j), where b�y (j) denotes the

sample autocovariance of order j of �yt. The t-test for the signi�cance of �2 in (9) has been

considered by Agiakloglou and Newbold (1994) and Breitung and Hassler (2002). Although

the t-test based on (9) is asymptotically locally equivalent to the t-test based on (7), in

a �xed alternative framework the t-test based on (7) should be preferred to one based on

(9). The reason is that there does not exist any value for �2 that makes ut in (9) to be

both i.i.d. and independent of the regressor for �xed alternatives, and hence, the regressorPt�1
j=1 j

�1�yt�j does not maximize the correlation with the regressand �yt.

The next theorem establishes the asymptotic properties of t� where d2 is allowed to be

stochastic with limit not necessarily equal to d. In particular, under local alternatives it

shows that the test is asymptotically equivalent to the optimal Robinson�s LM test when d2
is optimally chosen. The proof is in Appendix 1. Introduce the function h;

h(d2) =

P1
j=1 j

�1�j (d2 � 1)pP1
i=1 �i(d2 � 1)2

; d2 > 0:5; d2 6= 1;

and h(1) =
qP1

j=1 j
�2 =

p
�2=6:

Theorem 1. Under the assumption that the DGP is given by

�dyt1 ft > 0g = "t;
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where "t is i.i.d. with �nite fourth moment, the asymptotic properties of the t-test statistic

t� for testing �2 = 0 in (7), where the input bd2 of zt�1 satis�es
bd2 = d2 + op

�
T��

�
; with � > 0; and bd2 > 0:5; (10)

for some �xed d2 > 0:5; are given by:

a) Under the null (d = 1),

t� !d N(0; 1):

b) Under �xed alternatives (d < 1), the test based on t� is consistent.

c) Under local alternatives (d = 1� �=
p
T ; � > 0),

t� !d N(��h(d2); 1):

Remark 1.1. The drift function h is plotted in Figure 1. Note that h achieves an absolute
maximum at d2 = 1, and that h(1) equals the noncentrality parameter of the locally optimal

Robinson�s LM test, so the new test is locally asymptotically equivalent to this test when a

consistent estimator of d; which satis�es condition (10), is employed as the input d2. Also

note that the drift of DGM�s test statistic is 1, so the asymptotic relative e¢ ciency of DGM

test is 0:79:

Remark 1.2. Notice that the �rst part of condition (10) holds with d2 = d for any esti-

mator of d that is consistent at a power rate, so that not only parametric
p
T -consistent

estimators of d as proposed by DGM (e.g. Velasco and Robinson, 2000) are allowed but also

many semiparametric estimators for an appropriate choice of the bandwidth parameter can

be employed, such as those of Velasco (1999a, b). The condition bd2 > 0:5 can be imposed

naturally for implicitly de�ned memory estimators, such as the Gaussian semiparametric

procedure of Robinson (1995), whereas for other estimators this condition could be replaced

by the condition jbd2j � K; for some K > 0; as in Robinson and Hualde�s (2003) Assump-

tion 3. The purpose of these conditions is to guarantee that the use of estimated regressors

does not alter the asymptotic distribution of the test statistic, given that �2 = 0 under the

null, see, for instance, the discussion in Wooldridge (2002, Chapter 6).

3 Short run dynamics

The analysis in the previous sections imposes that the DGP is �dyt = "t, where "t is white

noise. Practically, it is more appropriate to allow for �dyt to be serially correlated. In this

section we consider that the DGP of yt is given by the ARFIMA(p; d; 0) model

� (L)�dyt1 ft > 0g = "t; t = 1; 2; : : : ; (11)
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where � (L) = 1 � �1L � � � � � �pL
p is a polynomial in the lag operator with all its roots

outside the unit circle. Note that this DGP can be written as

� (L)�yt = � (L)
�
1��d�1��yt + "t;

or equivalently, by letting the same dependent variable on the left as in the pure fractional

case,

�yt = � (L)
�
1��d�1��yt + (1� � (L))�yt + "t: (12)

Note that none of the t-tests considered in the previous sections can properly control

the type one error because of the short run correlation induced by �(L) on �dyt: DGM

proposed the use of an augmented test based on the t-statistic associated to the coe¢ cient

of the regressor �d1yt�1 in a regression of �yt on �d1yt�1 and p lags of �yt. Similarly,

in order to keep the linearity of the regression model, we could simplify equation (12) by

suppressing the factor � (L) in the �rst regressor, and consider the regression of �yt on

zt�1(d2) and p lags of �yt. It is simple to show that this test can properly control the type I

error but it is ine¢ cient due to the deletion of the factor � (L) in the �rst regressor of (12).

Hence, we prefer to analyze the following two-step approach that leads to e¢ cient tests.

Note that equation (12) motivates the nonlinear regression model

�yt = '2
�
� (L)

�
�d2�1 � 1

�
�yt

	
+

pX
j=1

�j�yt�j + ut;

which is similar to (6), except for the inclusion of the lags of �yt, and for the �lter � (L)

in the regressor whose signi�cance is tested. Similar to the white noise case, for continuity

reasons, we propose to use the rescaled regression model

�yt = �2 f� (L) zt�1(d2)g+
pX
j=1

�j�yt�j + ut; (13)

with zt�1(d2) de�ned in (8). As in the white noise case, the DGP (12) is a particular case of

model (13). Under the null hypothesis, �yt �
Pp

j=1 �j�yt�j is i.i.d. and, therefore, �2 = 0

for any value of d2, with ut = "t: Under the alternative hypothesis, when d2 is chosen equal

to d, �2 = d� 1 (so that the DGP (12) is recovered), model (13) is properly speci�ed, with
regressors � (L) zt�1(d) and f�yt�jgpj=1 independent of the i.i.d. error term ut = "t. This is

not true when d2 is chosen di¤erently from the true value of d, indicating that an appropriate

selection of the input d2 is needed for deriving optimal tests.

Estimation of model (13) is complicated because of the nonlinearity in the parameters

�2 and � = (�1; : : : ; �p)
0. Compared to the white noise case, note that the practical problem

arises because the vector � is unknown, and so, the regressor � (L) zt�1(d2) is unfeasible.
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Hence, �rst we need to obtain a consistent estimate of �. We propose the following two step

procedure.

First, estimate by OLS the equation

�
bd2yt =

pX
j=1

�j�
bd2yt�j + ut (14)

where the input bd2 is any consistent estimator of d that satis�es
bd2 = d+Op

�
T��

�
; � > 0; and jbd2j � K; for some K > 0: (15)

The OLS estimator of � is consistent with a convergence rate that depends on the conver-

gence rate of the estimator of d, cf. the proof of Theorem 1 in Appendix 1.

Second, estimate by OLS the equation

�yt = �2

hb� (L) zt�1(bd2)i+ pX
j=1

�j�yt�j + vt; (16)

where b� (L) denotes the estimator of � (L) from the �rst step, and bd2 takes the same value
as in the �rst step. The asymptotic null distribution of the resulting t-statistic associated

to �2 is still the standard normal, as if b� (and bd2) were �xed, because �2 = 0 under H0,

see Remark 1.2 in Section 2. Under the alternative, since b� converges to the true � and bd2
converges to the true d, a t-test for �2 = 0 based on (16) has asymptotic properties similar

to one based on model (13) with d2 = d.

The next theorem establishes the asymptotic properties of the t-test statistic, t�, for

testing �2 = 0 in (16). The proof is in Appendix 2. Introduce the notation

!2 =
�2

6
� �0��1�;

� = (�1; :::; �p)
0 with �k =

P1
j=k j

�1cj�k; k = 1; : : : ; p; where the cj are the coe¢ cients of

Lj in the expansion of 1=�(L), and where � = [�k;j] ; �k;j =
P1

t=0 ctct+jk�jj; k; j = 1; : : : ; p;

denotes the Fisher information matrix for � under Gaussianity.

Theorem 2. Under the assumption that the DGP is an ARFIMA (p,d,0) model de�ned as

� (L)�dyt1 ft > 0g = "t;

where "t is i.i.d. with �nite fourth moment, and � (L) = 1��1L�� � ���pLp is a polynomial
in the lag operator with all its roots outside the unit circle, the asymptotic properties of

the t-ratio test statistic t� for testing �2 = 0 in (16); where the b� used in the regressor
9



nb� (L) zt�1(bd2)o is obtained from the OLS estimation of (14) and the input bd2 of zt�1

satis�es ( 15), are given by:

a) Under the null (d = 1),

t� !d N(0; 1):

b) Under �xed alternatives (d < 1), the test based on t� is consistent.

c) Under local alternatives (d = 1� �=
p
T ; � > 0),

t� !d N(��!; 1):

Remark 2.1. Note that the drift of the asymptotic distribution under local alternatives
coincides with that in Robinson (1994a, Theorem 4), and so, the proposed Wald test is

asymptotically locally equivalent to the optimal LM test, similarly to the white noise case.

Comparing ! with h(1) = �=
p
6 given in Theorem 1, we can observe the asymptotic loss of

e¢ ciency due to the estimation of the short memory parameters.

Remark 2.2. In Theorem 2, for simplicity, we have just considered the case where consistent
estimators of d are employed as bd2, because, as in Theorem 1, these are the only values that
lead to e¢ cient tests in this framework. Under condition (10); when d2 6= d, t-tests are

asymptotically standard normal under the null, but ine¢ cient.

Remark 2.3. In a framework similar to the one of this section, Breitung and Hassler (2002)
have also proposed a two step procedure that presents two main di¤erences with the one

described in this section. First, it is based on the local regressor zt�1(1); and second, in

their �rst step the �0s are estimated consistently only under the null hypothesis. However,

note that these selections for the long and short term parameters lead to a regression model

where the regressor whose signi�cance is tested does not maximize the partial correlation

with �yt given the p lags of �yt for �xed alternatives.

4 Simulations

Next, we examine the �nite sample performance of the considered tests by means of a small

Monte Carlo study. We consider two Gaussian DGP�s, a pure fractionally integrated process

and an ARFIMA(1; d; 0). Tables I and II report the results for the �rst DGP for a nominal

level of 0:05 and two samples sizes, 100 and 500, respectively. For Table I the number of

replications is 50,000 and for Table II it is 10,000. The parameter d takes values from 0:5

to 1 with increments of 0:05 in Table I, and it takes values from 0:8 to 1 with increments of

0:025 in Table II. These tables report the results of the time domain version of Robinson�s

LM test, of DGM�s test, and of the new e¢ cient Wald test. Regarding DGM�s test and the

10



new e¢ cient test, note that the reported results correspond to unfeasible implementations

of the tests because they assume that the true d is known and ignore the sampling error

associated with the estimation of d. We also have computed these tests using parametric

and semiparametric estimators of d with similar results, which are omitted for brevity, the

only noticeable di¤erence is some slight additional size distortion when T = 100. These

tables report the size results (d = 1) and size-adjusted power instead of raw power (d < 1)

because Robinson�s LM test is somewhat conservative compared to DGM�s test and the new

e¢ cient test for T = 100.

The main messages from these two tables are the following. First, as expected, the most

powerful test is the proposed e¢ cient test which can improve the size-adjusted power up to

30% with respect to DGM�s original proposal. Second, compared to the e¢ cient test, the

loss of power of the LM test is larger the further from the null the alternative is, re�ecting

the local character of this test.

In Table III we consider the case where the DGP is a Gaussian ARFIMA(1; d; 0) with

autoregressive parameter �1 = f�0:5; 0; 0:3; 0:6; 0:8g. We only report the results for one
negative value for �1 because for other negative values the results were similar, contrary to

the �1 > 0 case, where �nite sample power depends greatly on �1: In addition, the most

empirically relevant case is when �1 > 0. The parameter d takes values from 0:5 to 1 with

increments of 0:05. As above, we use 0:05 as the nominal level, and consider two samples

sizes, 100 and 500, with 50,000 and 10,000 replications, respectively.

We report results for three tests: a) the original unfeasible augmented DGM�s test that

uses d1 = d, b) the unfeasible two step e¢ cient test that ignores the sampling variation

associated with the estimation of d, and c) the feasible two step test that uses as d2 the

Gaussian semiparametric estimator of Velasco (1999b) with bandwidth m = T 0:55. In Table

III these tests are denoted by ADGM, 2S and 2SSP, respectively. For the three tests we

have included one lag in the augmented regression.

Next, we comment on the results from Table III. Note that under the null hypothesis,

for any value of �1; the empirical rejection probabilities are above the nominal level for

all tests. This size distortion is especially apparent for the feasible 2SSP test, as we could

expect, because the estimation of d leads to an increase in the sampling variation of the test

statistic. Hence, we report size-adjusted power instead of raw power. The most noticeable

feature of Table III is that power is higher when the serial correlation is negative, and

deteriorates substantially, and rapidly, as �1 becomes positive and large. For instance, it is

interesting to observe the enormous loss of power associated to an increase of �1 from 0:6

to 0:8. When �1 = 0:8 and T = 100, the three tests report very low size-adjusted power,

indicating that, in the presence of moderate or strong positive correlated innovations, long

time series are needed in order to discriminate reasonably well between fractional integration

11



and weak dependence.

Table III also indicates that the unfeasible e¢ cient 2S test presents higher size-adjusted

power than the unfeasible ADGM, as expected, and that this di¤erence is especially relevant

when positive serial correlation is present, the case of most practical interest. In particular,

for �1 = 0:8 and T = 500, the 2S test presents twice as much power as ADGM test for

values of d between 0.6 and 0.7. In addition, note that the loss of power of the feasible

2SSP test compared to the unfeasible 2S test is rather moderate, except for the �1 = 0:8

case. Also, the case �1 = 0 is interesting for comparing the loss of power of introducing an

irrelevant regressor in the augmented regression. Comparing Tables I and II with Table III,

it is noticeable that this loss of power is substantial, up to 50%, indicating that a careful

selection of the number of lags included in the augmented regression is crucial to balance

the trade-o¤ between size and power that a researcher faces in practice. Finally, notice that

the non-monotonic behavior for the power �gures, when �1 = 0:8, could be due to the fact

that the high persistence of the AR(1) makes di¢ cult to distinguish a unit root from long

memory for high values of d and relatively small sample sizes.

5 Conclusions and Further Research

In this article we have introduced e¢ cient Wald tests for fractional unit roots by using a

model based auxiliary regression. The proposed tests are locally asymptotically equivalent

to the locally optimal LM tests of Robinson (1991, 1994a). In addition, the �rst order

asymptotic properties of the proposed tests are not a¤ected by the estimation of short or

long memory parameters. We �nish with some suggestions on further research. Since our test

presents a clear analogy with the original Dickey-Fuller test, it can be interesting to study

the cases where deterministic trends or structural breaks may appear in the data generating

process. In addition, note that the techniques employed in this paper can also be applied

in a multivariate framework for testing simply and e¢ ciently for (fractional) cointegration.

In this article we have just considered the case where the short range correlation follows an

autoregressive process of known order. An extension of practical interest is to examine the

robustness of these procedures in the presence of short term serial correlation of unknown

form. This analysis entails studying the behavior of these procedures when the order of the

autoregression increases with the sample size. Finally, studying the e¤ects of truncating

the fractional �lter is another area that deserves more attention. In this respect, Robinson

(2005) provides an approach for handling this issue.
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Figure 1. Plot of h(d1). The horizontal line at �=
p
6 � 1:28 corresponds to Robinson�s

LM test.

T = 100 d 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
LM 99.9 99.7 99.1 97.1 92.1 81.5 64.6 44.6 25.8 12.6 4.53
DGM d1 = d 100 99.9 99.6 98.2 93.6 82.1 64.2 43.0 24.5 11.9 5.27
EFF-W d2 = d 100 100 100 99.9 98.3 91.8 76.8 53.6 30.7 13.7 5.59

Table I. Monte Carlo size (d = 1) and (size adjusted) power (d < 1) of Robinson�s time

domain LM test, DGM�s test and the new e¢ cient Wald test: Percentage of rejections based

on 5% nominal level. Series follow a pure Gaussian fractionally integrated process with

parameter d. Sample size is 100. The number of replications is 50,000.

T = 500 d 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1
LM 100 99.9 99.1 95.9 83.9 62.5 35.8 15.1 5.50
DGM d1 = d 99.9 99.3 96.4 88.6 73.0 51.4 29.0 13.2 4.86
EFF-W d2 = d 100 100 99.7 97.5 87.9 66.5 38.8 16.3 5.12

Table II. Monte Carlo size (d = 1) and (size adjusted) power (d < 1) of Robinson�s time

domain LM test, DGM�s test and the new e¢ cient Wald test: Percentage of rejections based

on 5% nominal level. Series follow a pure Gaussian fractionally integrated process with

parameter d. Sample size is 500. The number of replications is 10,000.
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d 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
�1 T = 100

ADGM 100 99.9 99.3 97.4 91.1 78.5 60.1 40.0 22.8 11.3 6.81
-0.5 2S 100 100 99.8 98.1 92.3 79.8 61.3 40.5 23.1 11.7 6.80

2SSP 100 99.9 99.3 97.0 90.2 76.7 57.7 37.9 21.5 11.0 7.70
ADGM 99.4 97.9 92.7 84.8 71.9 55.9 39.7 26.1 16.0 8.9 6.91

0 2S 99.8 98.7 95.0 87.0 74.2 58.0 41.4 27.1 16.5 9.4 6.73
2SSP 99.3 97.3 93.1 84.2 70.8 54.7 38.8 25.3 15.5 9.0 7.67
ADGM 94.2 86.9 75.9 62.5 48.7 35.9 25.4 17.3 11.3 7.5 6.87

0.3 2S 95.9 89.5 79.3 65.9 51.6 38.1 26.7 18.1 12.1 8.0 6.86
2SSP 93.3 86.4 76.2 63.4 49.7 37.0 26.1 17.9 11.8 7.8 7.33
ADGM 56.8 44.4 33.6 24.9 18.5 13.6 10.4 8.2 6.5 5.5 7.11

0.6 2S 63.1 50.3 38.5 28.9 21.4 15.7 11.9 9.1 7.3 6.2 6.95
2SSP 57.9 47.2 37.0 28.4 21.6 16.1 12.1 9.3 7.4 6.1 6.79
ADGM 11.1 8.1 5.9 4.5 3.6 3.1 2.9 3.0 3.2 3.9 7.36

0.8 2S 15.3 10.9 8.1 6.2 5.0 4.3 3.9 3.9 4.0 4.5 7.20
2SSP 12.3 9.3 7.1 5.7 4.6 4.0 3.7 3.6 3.7 4.2 6.45

T = 500
ADGM 100 100 100 100 100 100 99.9 96.8 73.6 28.9 5.79

-0.5 2S 100 100 100 100 100 100 100 97.6 75.0 29.4 5.74
2SSP 100 100 100 100 100 100 99.9 96.9 73.2 28.7 6.63
ADGM 100 100 100 100 100 99.8 97.6 83.7 51.2 19.9 5.73

0 2S 100 100 100 100 100 100 98.7 86.6 53.5 20.9 5.54
2SSP 100 100 100 100 100 99.9 97.9 84.4 51.6 20.5 6.49
ADGM 100 100 100 100 99.5 97.3 84.0 59.2 32.1 14.2 5.55

0.3 2S 100 100 100 100 99.9 98.5 88.8 64.6 35.8 15.6 5.43
2SSP 100 100 100 100 99.9 97.7 86.7 63.0 34.6 15.2 6.27
ADGM 100 99.6 98.0 90.4 75.0 54.1 35.2 21.4 12.6 7.6 5.61

0.6 2S 100 100 99.8 96.4 85.2 65.2 43.8 26.5 15.4 8.6 5.41
2SSP 100 99.9 98.7 93.7 82.1 63.3 43.6 26.9 15.8 8.9 6.18
ADGM 63.7 40.4 22.8 12.5 7.0 4.1 3.0 2.7 2.8 3.5 6.01

0.8 2S 85.4 64.4 41.9 24.6 14.5 8.6 5.8 4.6 4.2 4.3 5.97
2SSP 68.9 51.9 36.1 23.9 15.0 9.5 6.2 4.8 4.4 4.5 6.22

Table III. Monte Carlo size (d = 1) and (size adjusted) power (d < 1) of the unfeasible

augmented DGM�s test, the unfeasible e¢ cient two step Wald test (2S) and the feasible two

step test based on a semiparametric estimator of d (2SSP). Percentage of rejections based

on 5% nominal level. Series follow an ARFIMA(1,d,0) with Gaussian errors. The autore-

gressive parameter is �1: The number of lags of �yt included in the augmented regression

is 1. The number of replications is 50,000 when T = 100 and 10,000 when T = 500.

14



Appendix 1

We provide here the proof of Theorem 1. The proof of b) is omitted because it is

easily obtained using the same methods as DGM�s Theorem 3. In addition, since a) is a

particular case (� = 0) of c), we just report the proof for c). For simplicity, and without

loss of generality, in this appendix we assume that the variance of "t is one. We start by

considering the case where the input of zt�1; d2; is �xed. The case where it is stochastic

(and consistent for some �xed value under (10)) is discussed at the end of this appendix.

We begin by introducing some notation. Let the t-test statistic for �2 = 0 and be

t� = t�(d2) =

PT
t=2�ytzt�1(d2)bST (d2)qPT

t=2 (zt�1(d2))
2
;

where bS2T (d2) = T�1
PT

t=2(�yt � b�2zt�1(d2))2 and b�2 denotes the OLS estimator of �2 in
(7). Under local alternatives we have that

�yt = �
��T "t1ft > 0g = "t +

t�1X
i=1

�i(��T )"t�i;

where �T := ��T�1=2; �1(��T ) = �T , �2(��T ) = 0:5�T (1+ �T ), and Taylor expanding �i(�)
around �i(0) = 0; i > 0; it is obtained that

T 1=2�i(��T ) = �i�1� +O
�
T�1=2i�1 log2 i

�
; i = 1; 2; : : : ; T;

see Delgado and Velasco (2005, Lemma 1) and Robinson and Hualde (2003, Lemma D.1).

When d2 6= 1, note that

zt�1(d2) =
���T ����T

1� d2
"t1ft > 0g = "t�1 +

t�1X
i=2

 i(�T ; �T )"t�i;

where �T = 1� d2 � �T�1=2 and  i( �T ; �T ) = (�i(��T )� �i(��T )) =(1� d2):

First, consider the numerator of t�(d2) scaled by T�1=2,

QT (d2) := T�1=2
TX
t=2

�ytzt�1(d2)

= T�1=2
TX
t=2

 
"t +

t�1X
i=1

�
��
i
p
T

�
"t�i

! 
"t�1 +

t�1X
i=2

 i(�T ; �T )"t�i

!
(17)

+T�1=2
�2

2T

TX
t=2

 
t�1X
i=1

�
(2)
i (���)"t�i

! 
"t�1 +

t�1X
i=2

 i(�T ; �T )"t�i

!
; (18)

where �(2)i is the second derivative of �i (�) and �� is some point between 0 and �T : Note
that

����(2)i (���)��� � Ci�1 log2 i, i = 1; : : : ; T by Lemma 1(b) of Delgado and Velasco (2005).

Since (17) is Op(1); as it is showed next, it is straightforward to show that (18) is op(1):
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The leading term (17) of QT (d2) can be written as

T�1=2
TX
t=2

 
"t �

�p
T
"t�1 �

t�1X
i=2

�

i
p
T
"t�i

! 
"t�1 +

t�1X
i=2

 i(�T ; �T )"t�i

!

= �T�1=2
TX
t=2

 
�p
T
"2t�1 +

t�1X
i=2

�

i
p
T
 i(�T ; �T )"

2
t�i

!
(19)

+T�1=2
TX
t=2

"t

 
"t�1 +

t�1X
i=2

 i(�T ; �T )"t�i

!
(20)

�T�1=2
TX
t=2

�
�p
T
"t�1

� t�1X
i=2

 i(�T ; �T )"t�i

!
(21)

�T�1=2
TX
t=2

"
t�1X
i=2

�

i
p
T
"t�i

 
"t�1 +

t�1X
j=2;j 6=i

 i(�T ; �T )"t�j

!#
: (22)

The last two terms, (21) and (22), in the previous expression are op(1) using arguments

similar to those in the proof of Theorem 4 in DGM. Using the properties of the fractional

di¤erence �lter, and a weak law of large numbers, see for instance, the proof of Lemma 1 in

DGM, the term (19) converges in probability to ��K(d2) , where

K(d2) = lim
T!1

1

T

TX
t=2

 
1 +

t�1X
i=2

1

i
 i(�T ; �T )

!

= lim
T!1

1

T

TX
t=2

 
1 +

t�1X
i=2

�i(��T )
i(1� d2)

!
=

1X
i=1

�i(d2 � 1)
i(1� d2)

:

Using a standard central limit theorem for martingale di¤erence sequences, the term (20)

converges in distribution to a N(0; V ); where

V = lim
T!1

1

T

TX
t=2

E

 
"t"t�1 +

t�1X
i=2

 i(�T ; �T )"t"t�i

!2

= lim
T!1

1

T

TX
t=2

E

 
t�1X
i=1

�i(d2 � 1)
(1� d2)

"t"t�i

!2
=

P1
i=1 �i(d2 � 1)2
(1� d2)2

<1;

because 1�d2 < 0:5 and d2 6= 1. Hence, QT (d2)!d N(��K(d2);
P1

i=1 (�i(d2 � 1)=(1� d2))
2):

Second, consider the denominator of t�(d2) scaled by T�1=2. It is straightforward to show

that bS2T (d2)!p 1, and, given the above expression for zt�1(d2), by a law of large numbers it

is simple to see that the limit in probability of T�1
PT

t=2 (zt�1(d2))
2 is given by

lim
T!1

1

T

TX
t=2

E

 
"t�1 +

t�1X
i=2

 i(�T ; �T )"t�i

!2
=

P1
i=1 �i(d2 � 1)2
(1� d2)2

:
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So far we have considered the case where d2 6= 1. The case d2 = 1 follows similarly as above,
the di¤erence is that under the local alternative zt�1(1) is now expressed as

zt�1(1) = J(L)���T "t1ft > 0g:

Note that the �lter  �T (L) := J(L)���T can be expressed as  �T (L) =
P1

j=1  
�
T;iL

i where

 �T;i =
iX
j=1

1

j
�i�j(��T ), i = 1; 2; 3; :::;

so that  �T;i = i�1
�
1 +O(log T=

p
T )
�
uniformly in i = 1; :::; T: Using this de�nition of

zt�1(1); all the previous results can be easily adapted. For instance, we have that K (1) =

limT!1 T
�1PT

t=2

�
1 +

Pt�1
i=2 i

�1 �T;i
�
=
P1

i=1 i
�2 = �2=6:

Next, we analyze brie�y the case of an stochastic input bd2 that satis�es condition (10) in
the text. To show that t�

�bd2�!p t� (d2), we just analyze here the most critical component

of t� (d2) ; which is the scaled numerator, QT (d2) ; the analysis for the denominator is similar

but simpler. Note that under the null, for d2 6= 1, QT (d2) simpli�es to

QT (d2) = T�1=2
TX
t=1

"t

�
�d2�1 � 1
1� d2

�
"t =

T�1=2

1� d2

TX
t=1

"t

t�1X
j=1

�j (d2 � 1) "t�j:

For d2 > 0:5; QT (d2) converges to a zero mean normal variate in distribution, as we have

seen above. Then, proceeding as in Robinson and Hualde (2003, Proposition 9), we just

need to prove that, for d2 6= 1;

(1� d2)QT (d2)�
�
1� bd2�QT �bd2� (23)

= T�1=2
TX
t=1

"t

t�1X
j=1

n
�j (d2 � 1)� �j

�bd2 � 1�o "t�j (24)

is op (1) : Note that, for j = 1; 2; : : : ; T; the expression
n
�j (d2 � 1)� �j

�bd2 � 1�o equals
R�1X
r=1

1

r!

�
d2 � bd2�r �(r)j (d2 � 1) +

1

R!

�
d2 � bd2�R �(R)j

�
�d2 � 1

�
; (25)

where �d2 is an intermediate point between d2 and bd2. Using (25), (24) can be written as
T�1=2

TX
t=1

"t

t�1X
j=1

(
R�1X
r=1

1

r!

�
d2 � bd2�r �(r)j (d2 � 1)

)
"t�j (26)

+T�1=2
TX
t=1

"t

t�1X
j=1

�
1

R!

�
d2 � bd2�R �(R)j

�
�d2 � 1

��
"t�j: (27)
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Since j�(r)j (d2 � 1) j � Cj�d2 logr j; j = 1; 2; : : : ; T; see Robinson and Hualde (2003, Lemma

D1), it is straightforward to check that

T�1=2
TX
t=1

"t

t�1X
j=1

�
(r)
j (d2 � 1) "t�j = Op (1) ; r = 1; 2; : : : ; R� 1;

because it has zero mean and �nite variance since the sequence �(r)j (d2 � 1) is square sum-
mable when d2 > 0:5: Then, using condition (10), we derive that (26) is op(1): In order to

analyze (27), note that j�(R)j

�
�d2 � 1

�
j � Cj�

�d2 logR j � Cj�1=2; j = 1; 2; : : : ; T; because
�d2 > 0:5: Therefore, the remainder term

T�1=2
TX
t=1

"t

t�1X
j=1

�
(R)
j

�
�d2 � 1

�
"t�j (28)

has �rst absolute moment bounded by

T�1=2
TX
t=1

�
Ej"tj2

�1=28<:E
24 t�1X

j=1

�
(R)
j

�
�d2 � 1

�
"t�j

!2359=;
1=2

� CT�1=2
TX
t=1

(
t�1X
j=1

t�1X
k=1

Ej�(R)j

�
�d2 � 1

�
�
(R)
k

�
�d2 � 1

�
"t�j"t�kj

)1=2

� CT�1=2
TX
t=1

(
t�1X
j=1

t�1X
k=1

(jk)�1=2Ej"t�j"t�kj
)1=2

� T�1=2
TX
t=1

t1=2 � CT:

Therefore (28) is Op (T ) ; and if we choose R such that R� > 1, so that
�
d2 � bd2�R =

op (T
�1) ; (27) is of order op (1) and Theorem 1 follows.

Appendix 2

In this appendix we give a sketch of the proof of Theorem 2.c. The proof of part b) is

omitted because it can be easily derived using the same methods as DGM�s Theorem 7. We

assume that the true d is known, the proof when d is consistently estimated is similar but

lengthier and employ similar techniques as those explained at the end of Appendix 1.

The key idea is to use the basic equation of multivariate regression

t� =
p
T

RTp
1�R2T

; (29)

where RT denotes the sample partial correlation coe¢ cient between Yt := �yt and Xt :=

�(L)zt�1(d) given the p lags of �yt, Zt := (Zt;1; :::; Zt;p)
0 with Zt;k = �yt�k; k = 1; :::; p,
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to derive the drift of the asymptotic distribution of t�: Note that the denominator in (29)

tends to 1 in probability under local alternatives for which the DGP is given by

�yt = �(L)�1��=
p
T "t;

and where the operator ��=
p
T can be written as

��=
p
T = 1� �p

T
J (L) +

1

T
HT (L) ;

with HT (L) =
P1

j=1 hT;jL
j; so that jhT;jj � Cj�1 log2 j, j � 1, uniformly in T: Then,

we can write the series involved in t� in terms of the i.i.d. variables "t, as follows: Yt =

�(L)�1��=
p
T "t, Xt = [� (L) J (L)]�yt = J (L)��=

p
T "t, and Zt;k = �(L)�1��=

p
TLk"t; k =

1; : : : ; p.

Next, we obtain the residuals Y �
t and X

�
t of projecting Yt and Xt; respectively, on the

vector Zt. It is simple to show that Y �
t = �

�=
p
T "t, plus a term due to the estimation of the

projection on Zt that contributes to the drift of t� at a smaller order of magnitude because

it is orthogonal to the residuals X�
t . In order to study X

�
t , notice that

plim
T!1

1

T

TX
t=1

XtZt;k = E
�
J (L) "t � �(L)�1"t�k

�
=

1X
j=k

j�1cj�k = �k; k = 1; : : : ; p;

whereas

plim
T!1

1

T

TX
t=1

Zt;kZt;j = E
�
�(L)�1"t�k � �(L)�1"t�j

�
=

1X
t=0

ctct+jk�jj = �k;j; k; j = 1; : : : ; p:

Then, the (population) least squares projection coe¢ cients of Xt onto Zt are given by ��1�;

and, therefore, X�
t = J (L) "t � �0��1�(L)�1"t;p; "t;p = ("t�1; : : : ; "t�p)

0 ; plus smaller order

terms. Next, we have that

plim
T!1

p
T
1

T

TX
t=1

Y �
t X

�
t = E

�
��J (L) "t �

�
J (L) "t � �0��1�(L)�1"t;p

	�
= ��

 1X
j=1

j�2 � �0��1�

!
= ��!2;

and, also plimT!1 T
�1PT

t=1 (Y
�
t )
2 = V ar ["t] = 1. Therefore, plimT!1 T

�1PT
t=1 (X

�
t )
2 is

given by

V ar
�
J (L) "t � �0��1�(L)�1"t;p

�
= V ar (J (L) "t) + V ar

�
�0��1�(L)�1"t;p

�
� 2Cov

�
J (L) "t; �

0��1�(L)�1"t;p
�

= �2=6 + �0��1�� 2�0��1� = !2;

so that, the drift of t� is given by ��!; and the theorem follows.
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