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CHAPTER 2 

THE TOOLBOX 

 

2.1  Preamble 

 In this chapter we present the tools used to construct the theoretical structure of the 

model presented in Chapter 3.  The theory of the model is highly nonlinear but is specified 

in linearised form.  In deriving the linearised form of the nonlinear functions, we make 

explicit the optimising behaviour that underlies the tools and their properties.  We use the 

notational convention of expressing the levels form of a variable in capital letters and the 

percentage-change equivalent in lower case letters.  We also discuss how the tools can be 

combined by assuming separability between functions.  

 

2.2  Differentiation rules 

 In deriving linearised or percentage-change functional forms we apply some of the 

rules of differentiation; the rules are derived by totally differentiating the levels expression.  

The rules are presented below.  

 Imagine the simple function Y K=  where the independent variable Y is the 

function of the constant variable K.  The percentage-change form of this function is 0y = , 

where y is the percentage in Y.  This is the constant-function rule. 

 Imagine the power function Y KX ν=  where Y is a function of a constant K 

multiplied by the variable X raised to the power of the parameter ν.  Here, the percentage-

change form is y xν= , where x is the percentage change in X.  This is the power-function 

rule. 
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 Imagine the product function Y KXN=  where Y is the product of the constant K, 

and the variables X and N.  The percentage-change form of the function is  where 

x and n are the percentage changes in X and N.  This is the product rule 

y x n= +

 Imagine the quotient function XY K
N

=  where Y is the product of the constant K, 

and the ratio of the variables X and N.  The percentage-change form of the function is 

.  This is the quotient rule. y x n= −

 Imagine the function  where Y is the product of the constant K, and 

the summation of the variables X and N.  The percentage-change form of the function is 

(Y K X N= + )

X Ny x
Y Y

= + n  or Yy .  This is the sum rule Xx Nn= +

 

2.3  The tools 

 The following subsections derive the linearised form of the nonlinear functions that 

underlie the theory of the model presented in Chapter 3.  We also discuss the application of 

separable functions.  Equation Section 2 

 

2.3.1  The Leontief production function  

 Let Z  be the firm’s activity level, iX  (i = 1,...,n) the inputs used by the firm, and 

 the input-output coefficients, which show the minimum effective input of i required to 

support a unit of activity.  The Leontief production function (Leontief 1937) can then be 

represented as  

iA

 ( )1min ,..., nZ X X= ; (2.1) 

or 
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 1

1

min ,..., n

n

X XZ
A A

⎛ ⎞
= ⎜

⎝ ⎠
⎟ . (2.2) 

With Z  representing the firm’s activity level, equation (2.1) implies that inputs iX  are 

nonspecific to outputs and only provide a general capacity to produce.1  In Leontief 

production technology the minimum of the actual units of the n inputs, 1,..., nX X  in 

equation (2.1), or the effective units of the n inputs, 1

1

,..., n

n

XX
A A

 in equation (2.2), is chosen 

in finding the cost minimum.   

 The percentage-change forms of (2.1)–(2.2) are  

 iz x= , (2.3) 

and 

 iz x ai= −  or ii xaz =+ . (2.4) 

Equations (2.3) and (2.4) state that demand for composite input i will move exactly with 

industry activity levels, or with industry activity levels plus any change in technology in the 

use of input i.  With  = 0, the share of each of the n inputs in total inputs will remain 

fixed.  For this reason, Leontief production technology is also known as fixed-coefficients 

or fixed-proportions technology.  

ia

 

2.3.2  The CES production function  

 The CES (constant elasticity of substitution) production function (Arrow et al. 

1961) can be represented as2

                                              
1 This point should be noted for all production functions discussed here where activity level, rather than 

output, appears as the independent variable. 
2 The above derivation of the percentage-change form of the input demand functions from a CES production 

function generally follows Dixon et al. (1982), Chapter 3, Section 12.1; Dixon et al. (1992), Chapter 3, 
Section C; and Horridge et al. (1993), Appendix A. 
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1/

1

n
i

i
i i

XZ
A

ρρ

δ

−−

=

⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
∑ , 0 1, 1; 1, 0i ii

δ δ ρ ρ≥< < = − ≠∑  (2.5) 

where Z ,  and  (i = 1,...,n) are as previously defined, and iX iA iδ  and ρ  are parameters.  

For use below, we note the percentage-change form of (2.5) as 

 ( )i i ii
z S x a= −∑ , 1,...,i n=  (2.6) 

where  

 

1

i i
i n

k k
k

XS
X

ρ

ρ

δ

δ

−

−

=

=
∑

, , 1,...,i k n= . (2.7) 

 Assume each firm operates in a perfectly competitive environment and is efficient.  

Perfect competition means firms face given input prices, ; efficiency means that for 

any given activity level firms choose each i input so as to minimise total costs, .  

Also assume that 

nPP ,...,1

∑ =

n

i ii XP
1

1ρ > −  so that corner solutions are avoided.  

 Setting i
i

i

XX
A

=  and iii APP = ,3 alternatively, in percentage-change form 

 iii axx −=  and i i ip p a= + , (2.8) 

the first-order conditions for cost minimisation are  

 

 
(1 ) /

(1 )

1
0

n

i i k k i i
ki

ZP P X X
X

ρ ρ
ρδ δ

− +
− − +

=

∂ ⎡ ⎤
− Λ = −Λ =⎢ ⎥∂ ⎣ ⎦

∑ ρ

                                             

, (2.9) 

and  

 

 
3 Here, iX  and iP  are the effective demand and price of input i. 
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1/

1
0

n
i

i
i i

XZ
A

ρρ

δ

−−

=

⎡ ⎤⎛ ⎞
⎢ ⎥− =⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
∑ ,  (2.10) 

where  is the Lagrange multiplier.  We can use Λ (2.5) to replace (2.9) with 

 ( )1 (1 ) 0i i iP Z Xρ ρδ+ − +− Λ = . (2.11) 

The percentage-change form of (2.11) is 

 ( ) ( )1 1 0i ip z xλ ρ ρ− − + + + =  or ( ) ( )1 1i ip z xλ ρ ρ= + + − + , (2.12) 

where ip , λ , z  and ix  are percentage changes in iP , Λ , Z  and iX .  

 Dixon et al. (1982), pp. 80-1, show that equation (2.11) implies  

 

1 1

i i i i
n n

k k k k
k k

P X X

P X X

ρ

ρ

δ

δ

−

−

= =

=

∑ ∑
. (2.13) 

Therefore  is the share of input i in total costs.  iS

 If we define a positive parameter 
( )

1
1

σ
ρ

=
+

, then we can rewrite (2.12) as 

 i ix pσ σλ z= − + + . (2.14) 

Using (2.8), (2.6) can be rewritten as 

 i ii
z S x∑ , = 1,...,i n= . (2.15) 

Then, substituting (2.14) into (2.15) we get 

 ( )i ii
z S pσ σλ= − + + z∑  or i ii

S pλ =∑ , (2.16) 

and substituting (2.16) into (2.14) and rearranging, we get 

 
1

n

i i
k

k kx z p S pσ
=

⎡ ⎤= − −⎢ ⎥
⎣ ⎦

∑ , (2.17) 

which is the percentage-change form of the input demand functions.  Note that the 

summation term on the right-hand side (RHS) of (2.17) is the Divisia price index for inputs 
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(or the price of composite inputs).  Equations (2.17) state that the demand for any input i is 

a function of an expansion effect and a substitution effect.  If we set the change in relative 

prices, 
1

n
i kk kp S p

=
⎡ −⎣ ∑ ⎤

⎦ , to zero, then demand for input i will move exactly with the firm’s 

activity level, ; i.e., the expansion effect.  This reflects the constant nature of returns to 

scale in the production function 

z

(2.5).  Alternatively, if we set 0z =  then demand for input 

i will be a function of the change in price of input i relative to the change in the price of 

composite inputs, and the size of the (constant) elasticity of substitution between any pair 

of inputs, σ .  So that if the price of input i rises relative to the price of composite inputs, 

demand for input i will fall relative to the firm’s activity level, i.e., the substitution effect.  

The size of the substitution effect is determined by the size of σ . 

 As the production function (2.5) includes technical change terms, we can replace kx  

and kp  in (2.17) with (2.8), yielding 

 
1

(
n

i i i i k k k
k

)x a z p a S p aσ
=

⎡ ⎤− = − + − +⎢ ⎥
⎣ ⎦

∑ . (2.18) 

Equations (2.18) contain technical change terms, and thus they are written in terms of 

effective input quantities and prices.  Therefore, the term on the left-hand side (LHS) of 

(2.18) is the effective demand for input i.  Equivalently, the summation term on the RHS of 

(2.18) is the Divisia price index of effective inputs (or the price of effective composite 

inputs).  Note that a reduction in the input-output coefficient, 1<ka , represents an 

improvement in the technology used to apply input i, thus reducing the demand for input i.  

 In comparing equation (2.5) with its linearised counterpart (2.18), it is obvious that 

the latter are much simpler than former.  This provides a significant computational saving 

in applying the linearised version.  Furthermore, even though both (2.5) and (2.18) imply 

the same behaviour with respect to demand for inputs by firms, equations (2.18) are more 

 30



intuitive than (2.5) as they are in elasticity form.4  Also, by using (2.18) instead of (2.5) 

there is no need to calculate initial values of quantities, prices and substitution parameters.  

This is another significant saving in analytical and computational processes.  By using 

(2.18), the only data we require in levels are cost shares, i.e., values, which is extremely 

convenient as the benchmark equilibrium data are most naturally available in value terms 

(Hertel et al. 1992).  

 Note that in deriving equations (2.18) from (2.5), we have worked with linearised 

versions of the first-order conditions of (2.5).  We could, instead, have derived the levels 

form of the input demand functions from (2.5) and then linearised to get (2.18), but this 

would have been a less simple procedure (Dixon et al. 1992).  

 

2.3.3  The CRESH production function  

 The CRESH (constant ratios of elasticities of substitution, homothetic) production 

function (Hanoch 1971) can be represented as5

 
1

ihn
i i

i i

X Q
Z h

α
=

⎛ ⎞ =⎜ ⎟
⎝ ⎠

∑ , 0 1; 0, 1i i ii
h Q Q< < > =∑ , (2.19) 

where Z  and  are as previously defined, and ,  and iX iQ ih α  are parameters.  α  can take 

either sign but if each of the i

i

Q
h

s has the same sign, then α  must have their common sign.   

 Assume each firm is competitive, i.e., firms face given input prices , and 

efficient, i.e., for any given activity level, firms choose input levels so as to minimise total 

nPP ,...,1

                                              
4 In fact, the CES production function was invented via the elasticity form (see Arrow et al. 1961). 
5 The above derivation of the percentage-change form of the input demand functions from a CRESH 

production function follows Dixon et al. (1992), Chapter 3, Section C. 
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costs, .  The first-order conditions for cost minimisation are that there exists  

(the Lagrange multiplier) such that Λ  and the s satisfy 

1

n
i ii

PX
=∑ Λ

iX (2.19) and 

 
1i

i

h
i

i iQh

XP
Z

−⎡ ⎤
⎢ ⎥
⎣ ⎦

1,...,i n= Λ , = . (2.20) 

The percentage-change equivalents of (2.19) and (2.20) are 

 ( )
1

0
n

i i i
i

h x z W
=

− =∑  (2.21) 

and 

 ( )1i i i ip h x hλ= + − − 1,...,i nz , = , (2.22) 

where ip , λ , z  and ix  are percentage changes in iP , Λ , Z  and iX , and  

 
ih

i i
i

i i

X QW
Z h

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 1,...,i n= . (2.23) 

Multiplying both sides of (2.20) by iX  and rearranging gives  

 
1

i i
in

k kk

hW S
h W

=

=
∑

, 1,...,i n= , (2.24) 

where  is the share of input i in total costs.  Thus, iS (2.21) can be rewritten as  

 
1

n

i i
i

S x z
=

=∑  (2.25) 

 Rearranging (2.22) as 

 (1
1i i

i

)ix p h
h

λ +
⎡ ⎤

= −⎢ ⎥−⎣ ⎦
z , (2.26) 

and substituting into (2.25) gives 

 
( ) (1 1

n i
ii

i

S )iz p h
h

λ
=

+= −
−∑ z

Therefore,  

. (2.27) 
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1

n
i ii

z S pλ
=

= +∑ , (2.28) 

here  w

( )
( )1

1

1
i i

i n
k kk

S h
S

S h
=

−
=

−∑
 . (2.29) 

In (2.29), iS  is known as the ‘modified’ cost share.  The percentage-change form of the 

ninput dema d functions is given by substituting (2.28) into (2.26) giving 

 
n

1
i i i k

k
kx z p S pσ ⎛ ⎞= − −⎜ ⎟∑ , 1,...,i n

=⎝ ⎠
= , (2.30) 

where iσ  is a positive parameter defined as  

 
( )

1
1i

ih
σ =

−
. (2.31) 

 CRESH input demand functions [(2.30)] are similar to CES input demand functions 

 [(2.17) or (2.18)] with two differences.  First, the weights used in calculating the average 

movement in input prices are the ‘modified’ costs shares of (2.29) rather than ordinary cost 

shares.  Second, CRESH input demand functions allow the coefficient iσ  to vary across 

inputs whereas CES input demand functions apply a common elasticity of substitution ( )σ ; 

thus, the CES input demand functions are a special case of the CRESH input dem  

functions, the case of i

and

σ σ=  for all i.  This follows from the CRESH production function 

being a generalisation of the CES production function.   

 Note that ix  and ip  in (2.30) could be redefined as effective demands and prices by 

rewriting them as ix  and ip  and then substituting in (2.8).  (2.30) would then be rewritten 

as  

 
1

n

i i i i i k k k
k

x a z p a S p aσ
=

⎛ ⎞− = − + − +⎜ ⎟
⎝ ⎠

∑ , 1,...,i n= . (2.32) 
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2.3.4  Applying separable production functions 

 The model presented in Chapter 3 applies the Leontief, CES and CRESH 

instances, the applications assume the 

n

can be written as7

 

production functions presented above.  In all 

production functions are separable.  The advantages of this assumption are that it reduces 

the number of parameters requiring explicit evaluation that, in turn, simplifies the 

representation of systems of demand equations (Dixon et al. 1992, p. 142).6   

 A function ( ), ,...,g X X  is separable with respect to the partition ,...,N N  if it α β 1

( ) ( ) ( ) ( )1 2
1 2, ,..., , ,..., n

ng X X V f X f X f Xα β
⎡ ⎤= ⎣ ⎦ , (2.33) 

where  are a nonoverlapping coverage of the set 1,..., nN N { }, ,...α β , and kX  is the 

subvector of  formed by the components of ( ), ,...X Xα β Xτ  for which kNτ ∈ .  An 

application of separable production functions follows. 

(2.1) represents the Leontief production function as   Equation 

 ( )1min ,..., nZ X X= ; (2.34) 

iX  (i = 1,...,n) are the inputs used by the firmwhere Z  is the firm’s activity level and .  If 

the n inputs are determined by n CES production functions, then equation (2.34) can be 

rewritten as 

 ( ) ( )1min ,..., nZ CES X CES X⎡ ⎤= ⎣ ⎦ . (2.35) 

                                              
6 The discussion of separability in this section closely follows Dixon et al. (1992), Exercise 3.13. 
7 The definition of separability used here is usually referred to as ‘weak separability’, e.g., see Katzner 

(1970), p. 28; Chung (1994), pp. 188-9.  
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If we define the n inputs as nonoverlapping, then (2.35) is combining n separable CES 

production functions in determining Z .  Thus, we are assuming separability between inputs 

and the activity level, which greatly reduces the number of parameters requiring explicit 

evaluation.  In (2.35), the n CES production functions are nested under the Leontief 

function, which greatly simplifies the representation of the system of demand equations 

implied by (2.35). 

 Equation (2.35) is only one example of how to apply separable production 

functions: it could be rewritten as  

 ( ) ( )1min ,..., nZ CRESH X CRESH X⎡ ⎤= ⎣ ⎦ . (2.36) 

In (2.36), CRESH production functions are nested under a Leontief production function.  

Both (2.35) and (2.36) are two-level nested production structures with a Leontief function 

at level 1 and CES or CRESH functions at level 2.   

 A further example is  

 ( ) ( ){ }1 11 12 1min , ,..., ,n n nZ CES X CRESH X X X CRESH X X⎡ ⎤= ⎣ ⎦2 , (2.37) 

where nsX  (i = 1,...,n; s = 1,2) are the n inputs used by the firm from the s sources, where 

source 1 represents domestically-produced inputs and source 2 represents imported inputs.  

Thus,  says that ( 1 2,i iCRESH X X ) 1iX  and 2iX  are to be combined according to the 

CRESH production function (2.19).  (2.37) represents a three-level nested production 

structure with a Leontief function at level 1, CES functions at level 2 and CRESH functions 

at level 3.   
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2.3.5  The CET production possibilities frontier  

 The CET (constant elasticity of transformation) production possibilities frontier 

(PPF) (Powell and Gruen 1968) can be represented as8

 
1

1

m

i i
i

Z B Y
ρ

ργ
−

−

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑ , 0;0 1, 1; 1i ii

B γ γ ρ ≤> < < = −∑ , (2.38) 

where Z  is as previously defined, B  is a technology parameter, iγ  is a share parameter,  

(i = 1,...,m) are the m outputs that the firm produces, and 

iY

ρ  is a substitution parameter.  

The CET functional form is identical to the CES functional form except for the restrictions 

placed on ρ ; with the CES form 1ρ ≥ − , with the CET form 1ρ ≤ − .   

 Assume Z  is exogenous to the choice of the s.  Thus, the composition of the 

firm’s outputs is assumed to be determined independently of the firm’s inputs.  This 

assumption is appropriate where inputs are of a general-purpose nature and only provide 

the firm with a capacity to produce.   

iY

 As before, we assume the firm is competitive so that the output prices, , it 

faces are given, and that it is a profit maximiser, so that it attempts to maximise revenue, 

.  We also assume 

mPP ,...,1

1

m
i ii

PY
=∑ 1ρ < −  to avoid corner solutions.  The first-order conditions for 

revenue maximisation are then 

 , 
(1 ) /

(1 )

1
/ 0

m

i i i k k i i
k

P Z Y P B Y Y
ρ ρ

ρ ργ γ
− +

− − +

=

⎡ ⎤
− Λ∂ ∂ = −Λ =⎢ ⎥

⎣ ⎦
∑ , 1,...,i k m= , (2.39) 

and 

 , i
1/

1
0

m

i i
i

Z B Y
ρ

ργ
−

−

=

⎡ ⎤
− =⎢ ⎥

⎣ ⎦
∑ 1,..., m= . (2.40) 

                                              
8 The above derivation of the percentage-change form of the output supply functions from a CET PPF follows 

Dixon et al. (1992), Chapter 3, Section C. 
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By following a procedure similar to that used above to go from (2.9) and (2.10) to (2.17), 

we can use (2.39) and (2.40) to arrive at 

 
1

m

i i k k
k

y z p S pθ
=

⎡ ⎤= − −⎢ ⎥
⎦

∑ 1,...,i m, = , (2.41) 
⎣

where 

 
( )

1 0
1

θ
ρ

= <
+

,  (2.42) 

and 

 
1

i i
i m

k kk

P YS
PY

=

=
∑

, 1,...,i m= . (2.43) 

Equations (2.41) are CET output supply functions in percentage-change form, and iy  and 

ip  are the percentage-change forms of  and .  Note that the s are revenue shares, and 

that the summation term on the RHS of 

iY iP iS

(2.41) is the Divisia index of output prices (or the 

price of composite outputs).  

 Equations (2.41) state that the supply for any output i is a function of an expansion 

effect and a transformation effect.  If we set the change in relative prices, 
1

m
i kk kp S p

=
⎡ ⎤−⎣ ⎦∑ , 

to zero, then supply for output i will move exactly with the firm’s activity level, ; i.e., the 

expansion effect.  This reflects the constant nature of returns to scale in the PPF 

z

(2.38).  

Alternatively, if the change in the firm’s activity level is set to zero, then supply of input i 

will be a function of the price of output i relative to the price of composite outputs and the 

size of the (constant) elasticity of transformation between any pair of outputs, θ .  So that if 

the price of output i rises relative to the price of composite outputs, supply of output i will 

rise relative to z, i.e., the transformation effect.  The size of this effect is determined by the 

size of the coefficient θ . 
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2.3.6  The CRETH production possibilities frontier  

 The CRETH (constant ratios of elasticities of transformation, homothetic) PPF 

(Vincent et al. 1980) can be represented as9

 
1

ihm
i i

i i

Y V
Z H

β
=

⎡ ⎤ =⎢ ⎥⎣ ⎦
∑ , 1; , 0; 1i i ii

h V Vβ> > =∑ , (2.44) 

where ,  and iV ih β  are parameters.  The CRETH PPF is identical to the CRESH 

production function except for the restrictions on the s; the CRESH form requires 

 whereas the CRETH form requires .

ih

0 ih< <1 1ih > 10   

 Applying the method used in going from (2.19) to (2.30), we can derive the 

following output supply functions from (2.44), 

 ( )k1

m
i i i kk

y z p R pθ
=

= − −∑ 1,...,i m, = , (2.45) 

where kθ  is a negative parameter defined as  

 
( )

1
1i

ih
θ =

−
, (2.46) 

and the iR s are ‘modified’ revenue shares defined as 

 ( )
( )1

1

1
i i

i m
k kk

R h
R

R h
=

−
=

−∑
. (2.47) 

The iR s in (2.47) are revenue shares.   

 CRETH output supply functions (2.45) are similar to CET output supply functions 

(2.41) with two differences.  First, the weights used in calculating the average movement in 

output prices are the ‘modified’ revenue shares in (2.45) rather than ordinary revenue 

                                              
9 The above derivation of the percentage-change form of the output supply functions from a CRETH PPF 

follows Dixon et al. (1992), Chapter 3, Section C. 
10 As before, with Z  representing the firm’s activity level equation (2.44) implies that the composition of 

outputs are nonspecific to inputs; therefore, inputs only provide a general capacity to produce.   
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shares.  Second, CRETH output supply functions allow the coefficient iθ  to vary across 

outputs whereas CET output supply functions apply a common elasticity of transformation 

( )θ ; thus, the CET output supply functions are a special case of the CRETH output supply 

functions, the case of iθ θ=  for all i.  This follows from the CRETH PPF being a 

generalisation of the CET PPF.  

 

2.3.7  The implicit utility function 

 Imagine the consumer’s problem is to choose the inputs 1,..., nX X  so as to 

maximise11  

 ( )1,..., nU X X  (2.48) 

subject to  

 
1

n
i ii

PX M
=

=∑ , (2.49) 

where U is utility, 1,..., nX X  are the consumer’s inputs to utility maximisation,  are 

the (given) prices of 

1,..., nP P

iX  faced by the consumer, and M is the consumer’s total budget.  We 

assume that the function (2.48) is differentiable and that there is no satiation, so that each 

marginal utility is positive but diminishes as  continues to increase.  iX (2.48) is an implicit 

utility function because it does not explicitly state how the n inputs are transformed into U, 

i.e., it does not have an explicit functional form.  

 In order to maximise (2.48) subject to (2.49) we form the Lagrangian expression  

 , (2.50) ( )1
1

,...,
n

n i i
i

U X X PX M
=

⎛ ⎞− Λ −⎜
⎝ ⎠
∑ ⎟

                                              
11 This section draws on Clements et al. (1995), Theil (1980), Theil and Clements (1987), and Dixon et al. 

(1992).  
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where  is, as previously, the Lagrange multiplier.  The first-order conditions for 

maximising 

Λ

(2.48) subject to (2.49) are 

 ii PXU Λ=∂∂  or ( ) Λ=∂∂ ii XPU , ni ,...,1= . (2.51) 

The rearranged form of (2.51) shows that Λ  is the marginal utility of income.  

 The first-order conditions (2.49) and (2.51) are of size n+1, and with n+1 

unknowns,  and , we are able, in principle, to solve these conditions.  If we 

assume that the resulting quantities are unique and positive for relevant values of prices and 

income, then we can write demand equations of the form 

nXX ,...,1 Λ

 , ( ), ,...,i i i nX X M P P= ni ,...,1= . (2.52) 

 Totally differentiating (2.52) gives 

 
1

n
i i

i j
j j

X XdX dM dP
M P=

∂ ∂
= +
∂ ∂∑ 1,...,n, i = . (2.53) 

or, in percentage-change form,  

 
( ) ( )1. .

n
ji i

i
ji j

j

PX M X

i

m
M X P X=

∂ ∂
= +
∂ ∂∑ 1,...,i np , x = , (2.54) 

where ix , ip  and m are the percentage-change equivalents of iX ,  and M.  The 

expressions 

iP

( ).
i

i

X M
M X
∂
∂

 and 
( ).
ji

j i

PX
P X

∂
∂

 represent the i-th income elasticity and the (i,j)-th 

uncompensated price elasticity.  Thus, we can rewrite (2.54) as 

 j
1

n

i i ij
j

x m pη ε
=

= +∑ n, 1,...,i = , (2.55) 

where iη  and ijε  are the i income elasticities and (i,j) uncompensated price elasticities.   

 The elasticities iη  and ijε  satisfy Engel’s aggregation, i.e., 

 
1

1n
i ii

Sη
=

=∑ , (2.56) 
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homogeneity, i.e., 

 
1

n
ij ij
ε η

=
= −∑ , (2.57) 

and symmetry, i.e.,  

 ( ) ( )i ij i j j ji j iS S S Sε η ε η+ = + i j, ≠ , (2.58) 

where  is the share of good i in the consumer’s budget.   iS

 Equations (2.55)–(2.58) are written in terms of uncompensated price elasticities.  

We can rewrite the equations in terms of compensated price elasticities using the Slutsky 

decomposition, which says 

 ij ij j iSε ε η= − , i j≠ . (2.59) 

where ijε  are the (i,j) compensated price elasticities.  Thus, (2.59) decomposes ijε  into 

substitution ( )ijε  and income ( )j iS η  effects.  Using (2.59) to replace ijε  in (2.55) gives  

 ( )1

n
i i ij j i jj

x m Sεη
=

= + − pη∑ , 1,...,i n= . (2.60) 

Expanding (2.60) and rearranging gives 

 ( )1 1

n n
i i j j ij jj j

m S p εη
= =

= − +∑ ∑ 1,...,i np , x = . (2.61) 

The term in parentheses on the RHS of (2.61) is the percentage change in real income (or 

expenditure) (i), and so can be rewritten as 

 
1

n
i i ij jj

x i pεη
=

= +∑ , 1,...,i n= . (2.62) 

 By substituting the Slutsky decomposition (2.59) into (2.57) and (2.58), the 

homogeneity and symmetry restrictions for the compensated price elasticities are modified 

to  

 
1

0n
ijj
ε

=
=∑ , (2.63) 

and  
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i ij j jiS Sε ε= , i j≠ . (2.64) 

.3.8  The differential demand system  

eories, the differential approach to consumption 

 

2

 Unlike other consumer demand th

theory (Theil 1980) is not developed from an explicit utility function.  Instead, it is derived 

from implicit utility function such as (2.48), reproduced below:12

 ( )1,..., nU U X X= , (2.65) 

here  is the quantity consumed of good i.  As a

ns t is 

w bove, we assume that the function is iX

differentiable and that there is no satiation, so that each marginal utility is positive but 

diminishes as iX  continues to increase. 

 The co umer’s budget constrain

1

n
i ii

PX
=

=∑I , (2.66) 

here I is the income of the consumer, and arew  the prices paid for the n goods in the iP  

consumer’s budget.13  We know from Section 2.3.7 that if we maximise the implicit utility 

function (2.65) subject to the budget constraint (2.66), we derive the first-order conditions  

 ii PXU Λ=∂∂  or ( ) Λ=∂∂ ii XPU , ni ,...,1= , (2.67) 

w ange e conditions and, again, here  is, as previously, the Lagr  multiplier.  Solving thes

g

                                             

Λ

assumin  that the resulting quantities are unique and positive for relevant values of prices 

and income, gives the demand equations of (2.52), reproduced below: 

 
12 The following derivation of the differential demand system draws on Theil and Clements (1987), Chapters 

1 and 4.  
13 (2.66) assumes that consumer spends all of their income on consumption.  Where this is not the case, we 

replace income with total consumption expenditure.  
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 ( )niii PPIXX ,...,,= , ni ,...,1= . (2.68) 

 Taking the differential of the budget constraint (2.66), we get 

 . (2.69) ∑∑
==

+=
n

i
ii

n

i
ii dPXdXPdI

11

Define budget shares as  

 IXPW iii =  or i i iI P X W= . (2.70) 

Dividing (2.69) through by I  and multiplying through by 100, gives  

 , ∑∑
==

+=
n

i
ii

n

i
ii pWxWi

11
ni ,...,1= , (2.71) 

where i, ix  and ip  are percentage changes in I, iX  and .  iP (2.71) can also be written as 

 pxi += , (2.72) 

where x and p are percentage-change Divisia indices in consumption (X) and prices (P), 

both defined using the budget shares, , as weights.  iW

 Totally differentiating (2.68) gives 

 j

n

j j

ii
i dP

P
XdI

I
XdX ∑

= ∂
∂

+
∂
∂

=
1

, 1,...,i n= . (2.73) 

Multiplying both sides of (2.73) by IPi  and 100, and using (2.70), gives 

 ( ) ∑
= ∂

∂
+

∂
∂

=
n

j
j

j

ijiii
ii p

P
X

I
PP

i
I
XPxW

1

, 1,...,i n= , (2.74) 

which is the percentage-change form of (2.73).  Thiel and Clements (1987), p.19, show that  

 i
ijiij

j

i X
I

X
I

X
I

X
I

U
P
X

∂
∂

−
∂
∂

∂
∂

∂Λ∂
Λ

−Λ=
∂
∂ , nji ,...,1, = , (2.75) 
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where  is the (i, j)-th element of , which is the inverse of the Hessian matrix of the 

utility function 

ijU 1−U

(2.65).14

 We can use (2.75) to replace 
j

i

P
X
∂
∂  in (2.74), which after rearranging becomes 

 
( ) ( ) ( )

1 1

ijn n
j ji ji i i i

i i i j j
j j

P XPPUP X P XIW x i W p p
I I I I= = I

⎡ ⎤∂Λ⎡ ⎤∂ ∂Λ⎢ ⎥= − + −⎢ ⎥∂ ∂Λ ∂ ∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑ , 

 1,...,i n= . (2.76) 

The term ( ) IXP ii ∂∂  in (2.76) is the marginal budget share for the i-th good, which we set 

equal to iθ , where ∑   The first term in the first set of square brackets on the RHS of 1ii
θ = .

(2.76) is the Divisia volume index, x, defined in (2.71) and (2.72).  We can use iθ  d x to 

rewrite 

an

(2.76) as 

 
( ) ( )

1

ijn
j ji j i i

i i i j
j

P XPPU PXIW x x p
I I I I

θ
=

⎡ ⎤∂Λ ∂Λ
⎢ ⎥= + −

∂Λ ∂ ∂ ∂⎢ ⎥⎣ ⎦
∑ , nji ,...,1, = . (2.77) 

 We define the reciprocal of the income elasticity of the marginal utility of income, 

φ , as 

 
1

0I
I I I

φ
−

⎛ ⎞Λ ∂Λ Λ
= = ⎜ ⎟∂Λ ∂ ∂⎝ ⎠

< . (2.78) 

φ  is usually referred to as the income flexibility.  We also define  

 ij
ij i jPPU

I
θ

φ
Λ

= , . (2.79) 
1

; , 1,...,
n

ij i
j

i j nθ θ
=

= =∑

We can use iθ , φ  and ijθ  to rewrite (2.77) as 

 
1

n

i i i ij j
j

W x x p pθ φ θ
=

′⎡ ⎤= + −⎣ ⎦∑ , 1,...,i n= , (2.80) 

                                              
14 The Hessian matrix tells us the values of the second-order partial derivatives of the utility function (2.65). 
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where 
1

n

i i
i

p pθ
=

′ = ∑ .  Thus p′  is the Frisch price index, which differs from the Divisia price 

index, p, in that the former uses marginal shares as weights and the latter uses budget shares 

as weights.  The term on the LHS of (2.80) can be interpreted in two ways: (i) as the 

quantity component of the i-th budget share; or (ii) as the contribution of good i to the 

Divisia volume index x.   

 Whichever interpretation of  is applied, it is made up of two effects; an income 

(or expenditure) effect and a substitution effect.  The first term on the RHS of 

ii xW

(2.80) says 

that  will increase as real income (or consumption) rises, adjusted by the marginal 

share for the i-th good – the income (expenditure) effect.  The second term on the RHS of 

ii xW

(2.80) says that if the price of the j-th good rises relative to the Frisch price index of the 

basket of all goods consumed, then  will increase adjusted by the term ii xW ijφθ  – the 

substitution effect.  The term ijφθ  is the (i, j)-th price coefficient, consisting of the income 

flexibility ( )φ  and the normalised price coefficients ( )ijθ .15  Note that φ  is always 

negative.  Thus, if ijθ  is negative then ijφθ  will be positive.  In this case, as 0ijθ <  goods i 

and j are specific substitutes.  But if ijθ  positive then ijφθ  will be negative.  In this case, as 

0ijθ >  goods i and j are specific complements (Houthakker 1960).  

 The differential approach allows us to derive demand equations of the form (2.80) 

from a utility function with no explicit functional form; equation (2.65).  Thus the 

coefficients of the demand equations can vary, e.g., they can be functions of income and 

prices.  

 

                                              
15  are normalised as 1iji j

θ =∑ ∑  is symmetric in i and j.  ijθ .  Also note that ijθ
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2.3.9  The differential demand system for additive preferences 

 Equations (2.80) have been derived from a utility function with no restriction on the 

nature of preferences.  We can adapt equations (2.80) to model demands for goods the 

preferences for which are additive.   

 Imagine the representative household’s utility function is 

 , ( )i
n

i
i XUU ∑

=

=
1

1,...,i n= . (2.81) 

In (2.81) the utility function is additive; thus marginal utility of good i is independent of the 

consumption of good j for ji ≠ .  This characteristic is known as preference independence.  

With (2.81) the Hessian matrix and its inverse are both diagonal, consequently, given (2.79) 

 for , and 0ijθ = i ≠ j ii iθ θ= ; all cross-price coefficients are zero.  Equations (2.80) can 

then be rewritten as 

 [ ]i i i i iW x x p pθ θφ ′= + − , 1,...,i n= . (2.82) 

With all cross-price coefficients zero, equations (2.82) say that no pair of goods is a 

specific substitute or complement – an intuitive result given the assumption of preference 

independence.16   

 The above result seems unnecessarily strong.  A weaker version of preference 

independence is block independence.  Here the additive nature of (2.81) is applied to groups 

of goods rather than individual goods.  If we divide the n goods into G<n groups, , 

and the members of each group are non-overlapping, we can then write the utility function 

as  

GSS ,...,1

( )*

1
g

G

g
g XUU ∑

=

= , Gg ,...,1= , (2.83) 

                                              
16 Although no pair of goods is a specific substitute or complement in (2.82), all pairs are still general 

substitutes. 
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w nction of gX  – the vector of iX s here  are the G utility functions, each of which is a fu

within .  Under (2.83), the marginal utility of a good only depends on the consum

of goods belonging to the same group.  If the goods are numbered appropriately, the 

 gU *

GS ption 

Hessian matrix of the utility function and its inverse become block diagonal.  In this case, 

equation (2.83) is known as block-independent preferences.  

 Given (2.79), block independence implies that ijθ  is block-diagonal, so that if good 

i is part of group , equations (2.80) and (2.79) can be written as  

 W x x p pθ φ θ

gS

gj S∈

′i i i ij j⎡ ⎤= + −⎣ ⎦∑ , gSi∈ , (2.84) 

 
g

ij i
j S

θ θ
∈

=∑ , gSi∈ . (2.85) 

tion term in (2.84) implies that demand for good 

of good i relative to the (Frisch) price index.  Also, (2.85) implies that no good is a specific 

 

The substitu i is dependent upon the price 

substitute or complement of any good that is not in the same group, i.e., 0ijθ =  for i and j in 

different groups.  

 If we sum over Si∈  for equations g (2.84), we get the demand equations for each of 

the  groups,  GS

g g

g g g ij j
i S j S

W x x p pθ φ θ
∈ ∈

′⎡ ⎤= + −⎣ ⎦∑ ∑ , Gg ,...,1= , (2.86) 

where  and gW gθ  are the budget shares and marginal shares of group g, defined as 

 ∑ ∑
∈ gSi

= ig WW  and 
∈ gSi

= ig θθ , (2.87) 

and  is the demand for group g as a whole, defined as  

 

gx

g

i
g i

i S g

W x= ∑W∈

x , Gg ,...,1= . (2.88) 
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Given that ijθ  is symmetric in i and j, (2.85) ca be written

 

n  as 

gi S
ij jθ θ

∈
∑ = , gSj∈ . (2.89) 

(2.89) and (2.87), (2.86) can be written as 

 

 Using 

g g g g gW x x p pθ φθ ′ ′⎡ ⎤= + −⎣ ⎦ , Gg ,...,1= , (2.90) 

where  

 
g

i
g i

i S g

p pθ
θ∈

′ = ∑ , Gg ,...,1= , (2.91) 

o  is the percentage change in the Frisch p ce index 

the demand equations for the g groups.  Thus the (budget-share adjusted) demand for group 

s ri for group g.  Equations (2.90) are  gp′

g, g gW x , is a function of real income (consumption), x, and the Frisch price index for the 

group relative to the Frisch price index for total consumption gp p′ ′⎡ ⎤−⎣ ⎦ , adjusted by gθ  

.  Moving  to the RHS of (2.90), we note that gW g

gW
θ

and gφθ  is the income (expenditure) 

city aelasti  of the dem nd for group g, and gφ

gW
θ

group g.  

 The differential demand system with block independence can be extended to 

ies within groups; the resulting demand equations are known as the conditional 

 

 is the own-price elasticity of demand for 

commodit

demand equations.  To derive these demand equations we rearrange (2.90) as  

g

g

W
g gx x p pφ

θ
′ ′⎡ ⎤= − − ⎦ , Gg ,...,1=⎣ , (2.92) 

The RHS of (2.92) is then substituted into (2.84) giving 
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 ( ) ( )
g

g
i i i g g ij j

j Sg

W
W x x p p p pθ φ φ θ

θ ∈

⎡ ⎤
′ ′ ′= − − + −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ 1,..., ;, gg G i S∈ , (2.93) =

which expands to  

 ( ) ( )
g

g
i i i g i g ij j

j Sg

W
W x x p p p pθ θ φ φ θ

θ ∈

′ ′ ′= − − + −∑ 1,..., ;, gg G i S∈ . (2.94) =

Using (2.89), the second appearance of iθ  on the RHS of (2.94) can be replaced with 

g
ijj S

θ
∈∑  due to symmetry in i and j, giving 

 ( ) ( )
g g

g
i i i g ij g ij j

j S j Sg

W
W x x p p p pθ φ θ φ θ

θ ∈ ∈

′ ′ ′= − − + −∑ ∑ 1,..., ;, gg G i S= ∈ . (2.95) 

The second and third terms on the RHS of (2.95) use p′  as a deflator, and are multiplied by 

the same group of variables but of opposite sign, thus the two appearances of p′  cancel, 

giving 

 ( )
g

g
i i i g ij j g

j Sg

W
W x x p pθ φ θ

θ ∈

′= + −∑ , 1,..., ; gg G i S= ∈ . (2.96) 

 Equations (2.96) apply for all gSi∈ , and say that demand for good i depends on 

demand for the group , gS gx , and the price of good i relative to the Frisch price index for 

the group , gS ( )j gp p′− .  Notice that the demands and prices for  do not appear in gSi∉

(2.96).  As ijθ  is a symmetric matrix in i and j, then ij jiθ θ=  where .  This form of 

the differential demand equation is known as the conditional demand equation, whereas 

gSji ∈,

(2.84) is known as the unconditional demand equation.  
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2.3.10  The CES utility function 

 The CES utility function (Burk 1936) can be represented as17

 
1/2

1i is iss
U X

ρ
ρδ

−
−

=
⎡ ⎤= ⎣ ⎦∑ , 0 1, 1; 1, 0is iss

δ δ ρ ρ≥< < = − ≠∑  (2.97) 

where  is utility from good i (i = 1,...,n) of the representative household, iU isX  (s = 

domestic, imported) are the goods consumed by the household differentiated by place of 

production, and isδ  and ρ  are parameters.  Here we are assuming that the s are 

determined elsewhere.

iU

18  

 For given prices of isX , i.e., , and assuming the absence of corner solutions, i.e., isP

1ρ > − , the household chooses the isX s so as to maximise utility subject to the budget 

constraint 

 2

1 1

n
is isi s

P X M
= =

=∑ ∑ , (2.98) 

where M is the household’s budget.   

 We know from Section 2.3.2 that in solving the cost minimising problem subject to 

a CES production function yields the percentage-change input demand equations (2.17), 

reproduced below 

 
1

n
i i k kk

z p S pσ
=

⎡= − −⎣ ∑ 1,...,i n⎤
⎦ , x = . (2.99) 

Equations (2.99) state that the (effective) demand for any input i, ix , is a function of the 

firm’s activity level, , (the expansion effect) and the change in price of (the effective) 

input i relative to the change in the price of (effective) composite inputs, and the size of the 

elasticity of substitution between any pair of inputs, 

z

σ , (the substitution effect).   

                                              
17 There exists a symmetry between the CES production and utility functions (Chung 1994).   
18 The summation operator in (2.97) suggests that the function is additive, but it is not, as 2 0i is irU X X∂ ∂ ∂ ≠  

(Chung 1994, p. 58).   
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 The CES utility maximisation problem (2.97) subject to the budget constraint (2.98) 

is similar to the cost minimisation problem subject to a CES production function.  Thus, we 

can adapt equations (2.99) to the current problem, giving percentage-change household 

demand functions for inputs by source of the form 

 2

1is i i is is iss
x x p S pσ

=
⎡ ⎤= − −⎣ ⎦∑ , 1,..., ; ,i n s imported domestic= = , (2.100) 

where isx  and isp  are the percentage-change equivalents of isX  and , isP ix  is the 

percentage-change in the demand for good i, iσ  is the elasticity of substitution between 

alternative types of good i defined as 
( )

1 0
1

σ
ρ

= >
+

, and  is the share of the 

household’s expenditure on good i which is devoted to good i from source s and 

.  Like equations 

isS

2

1
1iss

S
=

=∑ (2.99), (2.100) are subject to expansion and substitution 

effects.  

 

2.3.11  Applying separable utility functions  

 The model presented in Chapter 3 applies the utility theories presented in Sections 

2.3.7–2.3.10.  In all instances, the applications assume the utility functions are separable.  

Here we illustrate the application of separable utility using the utility functions presented 

earlier.19   

 Imagine the consumer’s problem is to choose the inputs 1,..., nX X  so as to 

maximise 

 ( )1,..., nU X X , (2.101) 

                                              
19 For a definition of separability and its advantages, see Section 2.3.4.   
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where U is utility.  (2.101) is the implicit utility function.  Section 2.3.7 shows how 

consumer demand equations can be derived from the implicit utility function (2.65).  Thus, 

we able to rewrite (2.101) as 

 ( ) ( )1 ,..., nU U Imp X Imp X⎡= ⎣ ⎤⎦ , (2.102) 

where ( )iImp X  says that the i inputs are determined by the demand equations derived from 

the implicit utility function (2.101).   

 Equation (2.102) is one example of how to apply separable utility functions: it 

could be rewritten as  

 
1

1 ,...,
n

k n
k S k S

U U Imp X Diff X Imp X Diff X
∈ ∈

⎧ ⎫
k

⎡ ⎤⎡ ⎤ ⎛ ⎞⎛ ⎞⎪ ⎪= ⎢ ⎥⎢ ⎥ ⎜⎜ ⎟⎨ ⎬
⎢ ⎥

⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∑ ∑ , (2.103) 

where 1,..., nX X  now represent 
1
,...,

nS SX X  groups of goods whose elements are 

nonoverlapping.  Here, 
n

n
k S

X Diff X
∈

⎛ ⎞
⎜
⎝ ⎠
∑ k ⎟

S

 says that the elements in each of the n groups 

are determined by the differential demand system.  This represents a two-level utility 

structure with the implicit utility function demand system at level 1 and the differential 

demand system at level 2.   

 We could imagine that the elements in each of the 
1
,...,

nSX X  groups are sourced 

from domestic and imported sources.  In this case, each of the elements in the n groups may 

be a CES combination of the domestic and imported versions of the good.  This would add 

a third level to the nested utility structure of (2.103).   
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