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Abstract 
 
Capacity utilization has been a valuable indicator of inflationary pressure. Yet recent 
technological changes have made relationships between inputs and outputs more flexible, 
possibly eroding the predictive value of the utilization rate. This paper shows that, conceptually, 
technological change could either lower average utilization by making it cheaper to hold excess 
capacity, or raise utilization by making further changes in capacity less costly. Using data on 111 
manufacturing industries from 1974 to 2000, we find that, for the average industry, technological 
change has had a modest but appreciable effect, shaving 0.2 to 2.3 percentage points off the 
utilization rate.   
 
 
JEL codes: D24, E22, E31. 
 
_____________________________________________________________________________ 
 
Please address correspondence to: Martha Starr, American University, Department of 
Economics, 4400 Massachusetts Ave., NW, Washington, D.C. 20016. Phone: (703) 283-0054. 
Email: mstarr@american.edu. We are grateful to James Adams, Ana Aizcorbe, Ed Balsdon, Ernst 
Bernt, Joe Beaulieu, Carol Corrado, Charlie Gilbert, Kusum Mundra, seminar participants at 
American University, and participants at the session on "New Developments in Productivity 
Measurement and Technology" at the 2002 ASSA meetings for valuable comments on earlier 
versions of this paper. All views expressed in this paper are those of the authors and do not 
necessarily reflect those of the Federal Reserve Board of Governors or its staff.  



 2

Introduction 
 

Capacity utilization is a variable of longstanding macroeconomic interest. Many studies have 

found it to be a valuable indicator of inflationary pressure. For example, Cecchetti (1995) finds 

that capacity utilization works as well as or better than other variables in predicting inflation over 

the next year or two. Similarly, in models of the level of resource utilization above which inflation 

accelerates, the utilization rate does as well as, and sometimes better than, the unemployment 

rate in predicting this level.1 This predictive value may reflect capacity utilization’s ability to do 

“double-duty,” picking up the extent of slack in both labor and product markets (Corrado and 

Mattey 1997).  

 

However, recent developments have presented some challenges for the use of capacity 

utilization as a gauge of price pressure. To begin with, the two most prominent measures of 

tightness in resource markets, capacity utilization and the unemployment rate, have diverged in 

the past several years, after moving quite closely together historically (see Figure 1). As a result, 

it is no longer clear which measure or combination of measures of resource utilization best 

predicts inflation pressures. During the 1990s, the unemployment rate fell steadily, while capacity 

utilization remained below 82-83 percent, the rate traditionally thought of as signaling mounting 

price pressures. Indeed, econometric work by Brayton, Roberts and Williams (1999) showed that, 

although the level of unemployment below which inflation accelerates (the NAIRU) declined in 

this period, the analogous level of capacity utilization (the NAICU) apparently held steady.2   

 

Part of this divergence may be due to effects of technology on capacity utilization, as the 1990s 

saw both an investment boom that broadly increased manufacturing capacity and a shift in the 

composition of capacity toward high-tech machinery and equipment. In the 1940s and 1950s, 

manufacturing methods typically involved assembly-line production with large-scale, fixed units of 

machinery and equipment. Relationships between inputs and outputs were relatively fixed, and 

adjustments in capacity were both costly and slow. Modern manufacturing methods, however, 

build considerable flexibility into the management of capacity. Technologies like numerically-

controlled machines, programmable controllers, and modular assembly make it easier to adjust 

the level and composition of output. At the same time, the use of automated design and modular 

tooling lowers the cost and time needed to expand capacity. While the use of advanced 

technologies is far from universal, it is increasingly widespread. For example, about three-

quarters of plants in equipment-producing industries used at least one advanced technology in 

                                                 
1 See McElhattan (1978), Corrado and Mattey (1997), and Brayton, Roberts and Williams (1999).  
2 See also Gordon (1998).  
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1993; about 30 percent used five or more.3 With the investment boom that took place in the 

second part of the 1990s, these shares are likely higher now.  

 

Conceptually, how these advances in technology would affect capacity utilization is not clear a 

priori. On one hand, flexible manufacturing makes it easier to ramp production up and down. This 

may encourage firms to install a broader margin of excess capacity – that is, to operate at lower 

average utilization – in order to be able to handle upswings in demand. Such a strategy would be 

favored by declining prices of high-tech capital, which make excess capacity cheap. On the other 

hand, automated design and modular tooling make it faster and cheaper to for firms to expand 

capacity. This may permit them to reduce the amount of excess capacity they maintain, and to 

operate at higher utilization on average. With these two offsetting forces at work, determining how 

advances in technology affect capacity utilization is ultimately an empirical question.  

 

This paper investigates the relationship between capacity utilization and high-tech investment. 

The next section discusses conceptual considerations in the relationship between technological 

change, capital spending, and capacity utilization. We show how technological change may lead 

either to lower average utilization by making it cheaper to hold excess capacity, or to higher 

utilization by making further changes in capacity less costly and time-consuming. The third 

section discusses the data and specification used for our study. The extent of investment in high-

tech machinery and equipment has varied importantly across industries and over time. Thus, we 

use data on 111 manufacturing industries from 1974 to 2000 and panel data techniques to 

investigate effects of technology on utilization. We find significant negative effects of 

technological change on utilization, controlling for output growth, investment level, and other 

factors. Our estimates suggest that, ceteris paribus, for the average industry, the technological 

change of the past 25 years would shave between 0.2 percentage point and 2.3 percentage 

points off the utilization rate by the time the effects are fully realized. The final section of the 

paper discusses implications and concludes.   

 

Conceptual framework 

 

Recent research on resource utilization emphasizes utilization of capital and labor, rather than of 

capacity (see, for example, Basu, Fernald and Shapiro 2001). This emphasis is clearly important 

for understanding the behavior of productivity. However, the broader notion of capacity utilization 

remains important for understanding connections between resource markets, production costs, 

and inflation (Corrado and Mattey 1997, Gordon 1998).  
                                                 
3 U.S. Census Bureau (1994). ‘Advanced technologies’ included numerically-controlled machines, 
computer-aided design or engineering technologies, programmable controllers, local area 
networks, robotics, and other advanced methods.  
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Existing theoretical and empirical work has tended to view capacity utilization and capital 

investment decisions as independent, with utilization decisions made in the short-run, and capital 

investment decisions made in the long-run. In practice, it is unclear that these decisions are so 

independent: In response to all but the most transitory demand or cost shocks, firms may change 

their utilization of existing capacity, change the level of capacity using existing technology, or 

change capacity and technology at the same time. Especially in an era when new vintages of 

capital equipment offer opportunities for significant efficiency gains, these interrelations between 

capacity, capital investment, and technological change may be particularly important. 

 

To begin to think about relationships between technology and capacity utilization, it is helpful to 

sketch out a simple conceptual framework. The discussion that follows is largely intuitive; we 

hope to develop this framework in our future work. Suppose that firms have a certain amount of 

capacity in place initially. They receive information about demand at the outset of the current 

period; this information may also modify their expectations of future demand. Firms may then 

either: (a) change output without changing capacity, (b) change output and change capacity, 

using existing technology; or (c) change output and change capacity, using new technology. 

Which strategy is chosen depends on expected profitability. We can broadly sketch out the 

factors affecting the choice of strategy. 

 

•  Changing output without changing capacity enables firms to respond quickly to changes 

in demand, and does not involve costs of installing new capacity or reducing its excess. 

However, running at a high rate of utilization persistently may raise unit costs, and 

running at a low rate persistently is wasteful. When firms use this strategy to respond to 

demand shocks, utilization will fluctuate closely with demand.  

 

•  Changing output and changing capacity using existing technology involves fixed costs of 

adjusting capacity and a lag till capacity reaches its new level; adjusting capacity may 

also divert resources from productive use in the short-run.4 However, this strategy 

permits a higher level of output to be sustained without rising costs. Use of this strategy 

in response to a demand shock will set off a dynamic adjustment of utilization: for 

example, if a permanent increase in demand is accommodated by increasing capacity, 

the utilization rate may hold steady or rise initially, fall when new capacity comes online, 

then return to its previous average rate when adjustment is complete.  

 
                                                 
4 For example, see Cooper, Haltiwanger, and Power (1999). In terms of downward adjustments, 
Ramey and Shapiro (2001) document important costs of disposing of redundant capital in the 
aerospace industry.  
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•  Changing output and changing capacity using new technology resembles the previous 

strategy, but involves a change in technique. As above, this strategy involves fixed costs, 

a lag till new capacity comes on line, and lost output in the short-run; however, the levels 

of costs and length of lag may be different. Also as above, this strategy permits a higher 

level of output without rising costs. However, the new technology may provide an 

opportunity to reduce unit costs, making profitability higher than it would be with the old 

technique once new capacity is online. Again, use of this strategy in response to a 

demand shock may set off a dynamic adjustment process. But here the utilization rate 

may not return to its previous average. Depending on capital costs and properties of the 

new technology, firms may want to hold more excess capacity than they did before if 

doing so is cheap; alternatively, they may want to hold less excess capacity on average if 

the new technology makes further changes in capacity less costly and time-consuming.  

 

These considerations point to several factors that would lead one strategy to be favored over the 

others. First, the persistence of the demand shock obviously matters: if upfront costs of adjusting 

capacity are appreciable, a firm would handle temporary changes in demand by increasing 

utilization, and permanent changes by adjusting the capacity level. Second, the extent to which 

capacity changes are favored over changes in utilization depends on the costs involved. Notably, 

capacity changes are more likely to be undertaken when: the loss in output from diverting 

productive resources is small, the lag till new capacity comes online is short, and/or the costs of 

installing new capacity are cheap [or cost savings from reducing capacity are large]. Third, the 

decision to adjust capacity with existing methods, as opposed to with new technology, depends 

on how the costs and lags of implementing each strategy compare, and on differences in 

operating cost once new capacity comes online.  

 

One can suggest several ways in which recent technological changes may have affected the 

relative returns to these strategies. First, automated design and modular tooling have reduced 

fixed costs of expanding capacity and have shortened lags till new capacity can be brought on 

line. This may generally raise the relative attractiveness of capacity adjustments over changes in 

utilization. Second, declining prices of capital goods also improve the profitability of capacity 

expansion over changes in utilization by making additions to capacity cheaper. Third, prices of 

capital goods embodying new technology have fallen disproportionately. This would particularly 

favor capacity changes with a shift in technique. And finally, new technologies provide 
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opportunities to lower unit costs significantly, again favoring capacity changes with a shift in 

technique.5 

 

The high level of investment in the 1990s, especially in high-tech machinery and equipment, is 

consistent with an increase in the relative attractiveness of expanding capacity and changing 

technology, in response to strong demand. Even so, the implications of this shift for capacity 

utilization are less clear. As mentioned, new technologies may make it easier to ramp production 

up and down. Combined with falling prices of high-tech equipment, this may encourage firms to 

install a broader margin of excess capacity -- operating at lower average utilization – to be able to 

handle upswings in demand. But because automated design and modular units make capacity 

expansion faster and cheaper, firms may prefer to operate at higher average utilization, expecting 

to be able to boost capacity should demand turn out to be strong. With these two offsetting forces 

at work, determining how advances in technology affect capacity utilization is ultimately an 

empirical question. Yet as the above analysis indicates, detecting effects of technology may not 

be straightforward, partly because capital spending, utilization, and technology are related in 

complex ways, and partly because effects of technology on utilization may be different in the 

short-run than they are in the long-run. 

 

Data and specification 
 

While many micro studies have examined how new technologies affect productivity,6 there has 

been little direct investigation of effects of flexible manufacturing on capacity utilization. This in 

part reflects data availability. Micro data on capacity and its utilization are collected in the Survey 

of Plant Capacity (SPC), which is conducted annually by the U.S. Census Bureau.7 However, the 

SPC collects only a few variables needed to estimate capacity utilization, and has no information 

on capital spending or technology.8 Capacity data are available for the auto industry, and have 

been analyzed by Van Biesebroeck (2000). He finds that auto-assembly plants using lean 

manufacturing methods have lower fixed and variable costs of adding shifts, compared to plants 

using traditional methods. This is consistent with the idea that costs of adjusting output are lower 

under new technologies.  

 

                                                 
5 It can be noted that firms also cite greater volatility in demand as a reason for adopting flexible 
methods, with increased global competition and downstream adoption of just-in-time methods 
said to be responsible. See for example Abernathy et al (1999) and Dunlop and Weil (1996). 
6 See, for example, Berndt and Morrison (1995) and Ichniowski and Shaw (1995).  
7 See U.S. Census Bureau (2001) for a description of the survey.   
8 For years before 1995, data from the SPC can be linked to the more detailed information 
contained in the Annual Survey of Manufactures.    
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To explore relationships between capacity utilization and technology, we make use of variation 

across industries and over time in adoption of new technologies. Although we think of high-tech 

investment as having picked up appreciably in the 1990s, some technologies like microcomputers 

and programmable automation have been gaining in use since the 1970s.9 Certain industries 

began investing in high-tech machinery and equipment early on; others have been latecomers. In 

some industries, adoption of high-tech methods has been appreciable, while in others there has 

been very little. Figure 2 provides some insight into cross-industry variation in high-tech 

capitalization. The data are for 111 three-digit manufacturing industries from 1974 to 2000. The 

figure shows two important measures of high-tech that we use in our econometric work: 

investment in computer, office and communication equipment as a share of total investment, and 

capital in computer, office and communication equipment as a share of total capital.10 These 

variables are taken from Federal Reserve data sources, as described in detail in the Appendix. 

Investment in computers is clearly an important component of automated design and flexible 

methods, and is likely well correlated with adoption of such practices. However, it does not 

capture the full range of high-tech machinery and equipment used in manufacturing. Notably, 

some high-tech items (e.g. pick and place robots) fall into other categories of investment, such as 

industrial machinery, that contain both high-tech capital and other types. Nonetheless, given the 

importance of computers in making use of such items, we suspect that variation in the computer 

series will capture variation in use of related items reasonably well.  

 

As the top panel of the chart shows, the average industry had 4% to 6% of its investment in high-

tech equipment in the mid-1970s. This share rose to almost 10% in the mid-1980s, dropped back 

as that decade went on, then picked back up in the 1990s, reaching almost 12% by 2000. 

However, there was an appreciable spread around the average: for example, during this period, 

the investment share at the 25th percentile held steady at or below 5%, while at the 75th percentile 

it has been as high as 14%. At the lower-end of the range are industries processing raw 

materials, largely ‘old’ manufacturing sectors (e.g. fabric mills, yarn and thread, logging, saw 

mills, miscellaneous primary metals, etc.). At the high-end of the range are industries that 

themselves produce high-tech goods (e.g. computers and office equipment, communications 

                                                 
9  See U.S. Congress, Office of Technology Assessment (1984).  
10 The computer and office equipment category is comprised of mainframes, personal computers 
and integrated devices, storage devices, printers, computer displays (monitors), and office and 
accounting machinery. The communications category includes telephone, telegraph, fax, 
modems, fiber optics, mobile communications, radio, television, aeronautical, and broadcast 
equipment.  
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equipment, electrical industrial apparatus, guided missiles and space vehicles). As shown in the 

lower panel of the chart, results are qualitatively similar for the high-tech share of capital stock.11  

 

We use this variation across industries and over time to investigate relationships between 

capacity utilization and technological change. The basic specification estimated in our work is as 

follows: 

          CU jt  =  α +  β1 CU jt-1  +  β2 ∆ IP jt-1  +  β3 I/K jt -1  +  β4  STDEVjt-1    +  

                                            β5   ∆ AGE jt-1 x.ht    +   β6   ∆ AGE jt-1 ht    +  δ89 D89 t +   δ95 D95 t  + 

                                        Z jt-1 φ   +  ε jt 
 

where the subscript j refers to sector j = 1 to 111 and t refers to years t = 1974 to 2000 and the 

other variables are defined as follows: 

                CU jt        = capacity utilization   

               ∆ IP jt         = change in industrial output  

                I/K  jt        = ratio of investment to capital  

           STDEV jt      = standard deviation of IP [10-year moving average] 

        ∆ AGE jt x.ht        = change in average age of capital equipment, excluding high-tech 

        ∆ AGE jt ht          =  change in average age of the high-tech capital equipment 

               D89 t     = dummy variable equal to 1 for years 1989 and after; 0 otherwise  

               D95 t       = dummy variable equal to 1 for years 1995 and after; 0 otherwise  

                  Z jt           = some measure or set of measures of high-tech capital or investment 

 

The data on capacity utilization are industry averages tabulated from the SPC.12 The lagged 

dependent variable is included to address the presence of autocorrelated errors. The variables 

                                                 
11 Note that there is a fair amount of persistence over time in industries’ investment and capital 
shares. For example, over our sample period, correlations in five-year averages of investment 
shares are 0.80-0.90 from one five-year period to another; e.g. there is a correlation of 0.93 in 
industries’ average investment shares for 1976-80 and 1981-85. But the correlation declines for 
periods farther apart; e.g. the correlation in average investment shares for 1976-80 and 1996-
2000 is 0.68. 
12 In that survey, a panel sample of manufacturing establishments is asked a brief set of 
questions about actual production and production at capacity. The sample is re-drawn every five 
years. Although the survey questions have changed somewhat over time, in general they are 
intended to measure the notion of ‘capacity’ underlying Federal Reserve statistics on capacity 
utilization, namely the “maximum level of production [a plant] could reasonably be expected to 
attain under normal and realistic operating conditions,” assuming normal downtime for 
maintenance and repair, a representative product mix, and sufficient availability of inputs to 
operate capital in place. The survey data are used as inputs into Fed statistics on capacity 
utilization for sectors for which physical product measures are not available. 
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∆IP, I/K, and STDEV are intended to capture effects on utilization of output growth, investment 

level, and output volatility respectively; they are included in lagged form to avoid problems with 

simultaneity. We include two measures of the change in average age of capital stock: one for 

capital excluding high-tech equipment and structures, and the other for high-tech equipment.13 

These variables will reflect changes in utilization that may be associated with aging or with 

vintage effects. The dummy variables D89 and D95 are included because survey questions and 

methods were revised appreciably in 1989 and again in 1995, potentially affecting measured 

utilization.14 To measure variation in the prevalence of new technologies, we rely primarily on two 

variables: the share of high-tech equipment in total investment, and the share of high-tech 

equipment in the capital stock. For each of these variables, we run the above regression using 

the lagged variable, the lagged change in the variable, and both the lagged variable and its 

lagged change. Details of variable definitions and data sources are given in the appendix.  

To accommodate the panel aspect of the data, we ran the model using both fixed- and random-

effects. The fixed-effects version estimates separate intercepts that vary across industries; the 

random-effects version takes variation across industries to be normally distributed.15 Accounting 

for this variation is clearly important, as there are persistent differences in average utilization 

across industries.16 However, both the fixed- and random-effects models will be biased in the 

presence of a lagged dependent variable (Greene 2002). In the fixed effects model, Nickell 

(1981) has shown that, while this bias is appreciable when the time dimension of the panel is 

small, it declines as the time dimension increases, approaching zero as T approaches infinity 

(see also Anderson and Hsiao 1982). As we have 26 years of data, we expect the size of the bias 

to be relatively small, although some studies have suggested that it may still be appreciable in a 

panel of such length.17  

                                                 
13 Structures are omitted since our interest is in productive capital, for which aging would be 
overstated by including buildings.     
14 See the appendix for details. In brief, the wording of the questions on capacity was changed in 
1989, and in 1995 the sample was expanded considerably.   
15 In general, the fixed-effects model is more appropriate when the units of observation constitute 
the population or a large part of it, rather than a random sample of units drawn from it (Hsiao 
1986, Greene 2002). The units of observation in our data constitute virtually all 3-digit 
manufacturing sectors; only a few very small ones are not covered. The random-effects model 
relies on the assumption of no correlation between the regressors and the unobserved individual 
effects. Estimated effects will be inconsistent if this assumption is violated.  
16 In our data, average capacity utilization rates range from the 60s to the mid-80s. Those on the 
lower end include transportation industries, while those on the upper end include many 
‘continuous processors’ like pulp, paperboard, and petroleum manufacturing. See Mattey and 
Strongin (1995). 
17 Judson and Owen (1996) find that even in panel data with the time dimension as large as 30, 
the bias can be significant – on the order of 3% to 20% of the value of the true coefficient on the 
lagged dependent variable. However, the estimate of this coefficient would still have the right 
sign, and the bias in estimated coefficients on other variables would be relatively small.  
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To address the potential bias in the fixed effects model from lagged dependent variables, we 

utilized the GMM estimator proposed by Arellano and Bond (1991). The Arellano-Bond estimator 

(hereafter A-B) uses as instruments the lagged levels of the lagged dependent variable and 

predetermined variables and first differences of strictly exogenous variables. In principle, this 

method results in a potentially very large instrument matrix; in practice, this can make the 

problem to impractical to estimate, in which case a maximum number of lags on the 

predetermined variables can be specified (in our case 4). As predetermined variables, we used 

the change in IP, the ratio of investment to capital, and the standard deviation of IP.18 In one-step 

estimation, the Sargan test of overidentifying restrictions rejected the null hypothesis that the 

over-identifying restrictions were valid. However, the Sargan test is known to overreject in the 

presence of heteroskedasticity, in which case there may be large efficiency gains from using the 

two-step estimator. The two-step Sargan test could not reject the null hypothesis that the over-

identifying restrictions were valid. Following the recommendation of Arellano and Bond, we use 

the one-step results for inference, with standard errors estimated robustly. In both one- and two- 

two-step estimation, it was not possible to reject the null of no second-order autocorrelation in the 

differenced residuals, which would render the estimates inconsistent.19 Selected diagnostic 

statistics from the A-B models are presented in Appendix Table A2. As will be seen below, results 

from the A-B models turned out to be qualitatively very similar to those of the fixed- and random-

effects models.   

Table 1 shows results for the specifications using the high-tech share of total investment as the 

measure of new technology, while Table 2 uses the high-tech share of total capital as this 

measure. Not surprisingly, in all versions of the regression, higher output growth is associated 

with increased capacity utilization, ceteris paribus. Also as one would expect, the investment-to-

capital ratio has a significant negative effect. Greater volatility of output is associated with lower 

utilization, although there are a few cases in which the effect is not significant. Aging of the non-

high-tech capital stock is associated with significantly lower utilization; aging of the high-tech 

capital stock does not have significant effects in most specifications. The dummy variables 

suggest that, other things being equal, average utilization rates were significantly lower from 1995 

on. While this effect may partly capture differences in aggregate economic conditions, it probably 

primarily reflects the changes in survey methods mentioned earlier. This is suggested by 

comparisons of survey and physical-product data on utilization for the sectors that have both 

types of data. Notably, after 1995, survey-based rates often had flatter profiles than rates based 

                                                 
18 We also tried other sets of predetermined variables, of which some did not appear to be valid 
based on the Sargan statistic testing the null that the overidentifying restrictions are valid, and/or 
there was evidence of second-order autocorrelation in which case the estimates would be 
inconsistent (see Arellano and Bond 1991: 281-282).  
19 The null of no first-order autocorrelation is rejected, although this does not imply that the 
estimates are inconsistent (Arellano and Bond 1991: 281-282).  
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on physical-product data. Considering that the later 1990s were also years of strong high-tech 

investment, failing to adjust for the change in survey method risks attributing too much of the 

flatness in measured utilization rates to technological change.  

 

Turning to results on technological change, our results provide fairly robust evidence of a 

negative association between use of new technologies and capacity utilization. As shown in Table 

1, having a relatively high share of investment in high-tech was associated with a lower utilization 

rate in the random-effects and A-B models, although not in the fixed-effects model (column 1). An 

increase in this share was also associated with lower utilization, whether or not we control for the 

level of the share (columns 2 and 3). As shown in Table 2, having a high share of capital stock in 

high-tech had a negative effect on the capacity utilization rate, ceteris paribus (column 1). An 

increase in the high-tech share of capital also had a negative effect, with or without controlling for 

the level of this share (columns 2 and 3).  

 

Thus, by most measures our results show that increased use of technology is associated with a 

reduction in capacity utilization, controlling for output growth, investment, and other factors. 

Above we suggested that a change in technology may reduce utilization in the short-run, possibly 

in part because of diversion of resources from productive use. However, in the long-run, it could 

lead either to lower utilization by making it cheaper to hold excess capacity, or to higher utilization 

by making further changes in capacity less costly and time-consuming. Drawing the implications 

of our results in this respect requires understanding the dynamic properties of capacity utilization.  

 

As can be seen in Tables 1 and 2, the coefficients on lagged capacity utilization are about 0.50 to 

0.60.20 Thus, although a temporary increase in a technology measure would lead to lower 

utilization in the short-run, the effect would dwindle over time, and utilization would return to its 

original level in the long run. But important technological changes, such as automated design and 

flexible methods, are more likely to involve persistent increases in the technology measures. In 

the case of a permanent change in a technology measure (or set of measures) of ∆ Z , the long-

run effect on capacity utilization would be given by:         

         ∆ CU  =  [ 1 / ( 1 - β1 ) ]  ∆ Z  φ   

Our estimates imply that, with the term in brackets equal to about 2, utilization would decline in 

the long run, with the magnitude of the decline eventually about twice what it is in the short-run. 

                                                 
20 Using the Levin, Lin and Chu (2002) panel unit root tests, we strongly reject the unit-root null 
hypothesis in the panel of utilization rates. 
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This finding is consistent with the notion that new technologies make it cheaper to keep excess 

capacity on hand.21 

 

The question arises, by how much has technological change held down utilization, other things 

being equal? To provide some estimates relevant to this question, we make use of the fact that, 

between 1974-79 and 1995-2000, for the average industry, the computer share of investment 

rose by 5.1 percentage points, while that of the capital stock rose about 4.4 percentage points. 

Both shares rose by an average of 0.3 percentage point per year. Table 3 uses our estimated 

coefficients to compute effects of these changes on utilization, assuming that these changes are 

permanent. The fixed- and random-effects estimates suggest that, for the average industry, the 

technological change that occurred in the last 26 years will shave between 0.2 percentage point 

and 1.4 percentage points off the utilization rate, by the time the effects are fully realized. 

Estimated effects for the A-B models are somewhat larger, including estimated declines of about 

5 percentage-points in the models using the high-tech share of capital stock as the technology 

measure. Thus, while our estimates leave some uncertainty about the magnitude of the effect, 

they consistently suggest that technological change has led to declines in the utilization rate, of 

modest but appreciable magnitudes.  

 

Discussion and concluding remarks 

 

In sum, our results suggest significant negative effects of technological change on utilization, 

controlling for output growth, investment level, and other factors. This is consistent with the notion 

that flexible manufacturing encourages firms to install a broader margin of excess capacity, in 

order to be able to handle upswings in demand. As we have pointed out, this strategy has also 

been favored by declining prices of high-tech capital, which reduce the costs of holding excess 

capacity. Nonetheless, our current estimates suggest that effects of technology on utilization have 

been relatively modest, with most estimates placing the effect of technological change of the 

1974-2000 period on the utilization rate of the average industry in the 0.2 to 2.3 percentage-point 

range.  

 

Changes in the relationships between technology and utilization may in turn imply changes in the 

relationship between utilization and inflation. While this paper has not specifically examined the 

                                                 
21 Conceivably, our results may substantially reflect the unusual declines in prices of capital 
goods in the 1990s. To test the importance of the 1990s experience in accounting for our results, 
we re-ran the models on data from the 1970s and 1980s only. The results were qualitatively 
similar; if anything, the negative influence of technology on utilization was somewhat larger in 
magnitude with the 1990s left out. This suggests that the negative influence is not a unique 
function of that decade.   
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full set of interrelations between technology, utilization and inflation,22 our findings may shed 

some light on widely-noted changes in relationships between growth and inflation in the second 

half of the 1990s. Notably, our results suggest that technological change has permitted firms to 

maintain wider margins of excess capacity. If this is indeed the case, the average firm may be 

better able to handle a period of strong demand, without moving onto a steeply-sloped part of the 

marginal cost curve. This may in part explain why manufacturing output grew strongly in the later 

1990s with little appreciable increase in inflation. Other factors were also involved though, 

including the broad-based expansion of manufacturing capacity.  

 

Finally, while our results suggest that technological advances have so far, on balance, favored 

installation of wider margins of extra capacity, we have pointed out that such changes as 

automated design and modular tooling make it faster and less costly to add to capacity. This may 

make it easier for firms to respond to a period of strong demand by boosting capacity in a timely 

way, again rather than increasing utilization into the region of rising marginal costs. Conceivably, 

this may imply that, at any given level of capacity utilization, the degree of inflationary pressure 

may be lower than it was in the past. Indeed, improved ability to use capacity expansion to 

respond to strong demand may have helped keep utilization and inflation moderate in the later 

1990s, even while output grew strongly. Further evidence would be needed, however, to establish 

this link.  

                                                 
22 See Shapiro (1989) and Gordon (1989) for discussion of the relationship between utilization 
and inflation. 
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Table 1. Results using High-Tech Share of Investment 
 
       
       
 (1) (2) (3) 

 Coeff. SE Coeff. SE Coeff. SE 
FIXED EFFECTS       

CU{t-1} .52* .02 .52* .02 .52* .02 
∆ IP{t-1} .09* .01 .09* .01 .09* .01 
I/K{t-1} -.52* .11 -.51* .11 -.51* .11 
STDEV{t-1} -.16* .05 -.17* .05 -.17* .05 
∆ age cap x HT{t-1} -3.77* 1.03 -3.16* 1.01 -3.07* 1.04 
∆ age cap HT{t-1}            .04 .48          -.77 .53          -.76 .53 
Dummy89           .47 .31           .45 .30            .47 .31 
Dummy95 -2.89* .33 -2.99* .32 -2.97* .33 
Tech{t-1}          -.02 .03            -.01 .03 
∆ Tech{t-1}   -.32* .08 -.32* .08 
       

RANDOM EFFECTS       
CU{t-1} .58* .02 .58* .02 .58* .02 
∆ IP{t-1} .08* .01 .08* .01 .08* .01 
I/K{t-1} -.32* .08 -.36* .08 -.32* .08 
STDEV{t-1} -.16* .04 -.18* .04 -.17* .04 
∆ age cap x HT{t-1} -1.82* .83 -1.75* .80 -1.33 .84 
∆ age cap HT{t-1}            .36 .48          -.42 .52          -.39 .52 
Dummy89           .48 .30           .36 .29            .48 .30 
Dummy95 -2.74* .32 -2.87* .32 -2.80* .32 
Tech{t-1}          -.05* .03            -.04 .03 
∆ Tech{t-1}   -.31* .08 -.30* .08 
       

ARELLANO-BOND       
CU{t-1} .51* .04 .51* .03 .51* .04 
∆ IP{t-1}           .05* .02 .05* .02 .05* .02 
I/K{t-1} -1.14* .27 -1.21* .27 -1.17* .27 
STDEV{t-1} -.18* .08 -.26* .08          -.23* .08 
∆ age cap x HT{t-1} -7.48* 1.78 -6.97* 1.85 -6.57* 1.81 
∆ age cap HT{t-1}          -.92  .70         -2.13* .75         -2.18* .74 
Dummy89 -0.68* .78          -.17 .75          -.28  .76 
Dummy95 -2.87* .43 -2.71* .41 -2.78* .42 
Tech{t-1}          -.22* .10            -.09  .09 
∆ Tech{t-1}   -.50* .11 -.46* .10 
       
 
 
* = significant at 5% level. 
+ = significant at 10% level. 
 

Notes: All models included constants. Standard errors in the AB models were estimated robustly. 
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Table 2. Results using High-Tech Share of Capital 
 
       
       
 (1) (2) (3) 

 Coeff. SE Coeff. SE Coeff. SE 
FIXED EFFECTS       

CU{t-1} .51* .02 .52* .02 .51* .02 
∆ IP{t-1} .09* .01 .09* .01 .09* .01 
I/K{t-1} -.42* .11 -.45* .11 -.36* .11 
STDEV{t-1} -.15* .05 -.14* .05 -.13* .05 
∆ age cap x HT{t-1} -3.53* .99 -3.52* .99 -3.23* .99 
∆ age cap HT{t-1}            .55 .51          -.87 .54          -.35 .57 
Dummy89           .58+ .31           .46 .30 .59+ .30 
Dummy95 -2.75* .33 -2.83* .32 -2.70* .33 
Tech{t-1}          -.13* .04   -.10* .04 
∆ Tech{t-1}   -.55* .14 -.48* .14 
       

RANDOM EFFECTS       
CU{t-1} .58* .02 .59* .02 .58* .02 
∆ IP{t-1} .08* .01 .08* .01 .09* .01 
I/K{t-1} -.22* .09 -.31* .08 -.19* .09 
STDEV{t-1} -.16* .04 -.16* .04 -.15* .04 
∆ age cap x HT{t-1} -1.71* .80 -2.14* .78 -1.59* .80 
∆ age cap HT{t-1}           .82+ .49          -.62 .53          -.11 .55 
Dummy89           .55+ .29           .34 .29 .52+ .29 
Dummy95 -2.68* .32 -2.71* .32 -2.60* .32 
Tech{t-1}          -.11* .03   -.10* .03 
∆ Tech{t-1}   -.58* .14 -.51* .14 
       

ARELLANO-BOND       
CU{t-1} .50* .04 .52* .04 .51* .04 
∆ IP{t-1}            .05* .02 .06* .02 .06* .02 
I/K{t-1} -.78* .26 -.99* .26 -.70* .26 
STDEV{t-1}          -.10  .10 -.19* .08          -.10  .09 
∆ age cap x HT{t-1} -7.59* 1.70 -7.55* 1.87 -6.90* 1.73 
∆ age cap HT{t-1}           .95  .84         -2.19* .84          -.51 .96 
Dummy89 -1.92* .77          -.43 .74         -1.54*  .75 
Dummy95 -3.23* .44 -2.74* .40 -3.13* .42 
Tech{t-1}          -.58* .14            -.45*  .11 
∆ Tech{t-1}   -.98* .23          -.69* .19 
       
 
 
* = significant at 5% level. 
+ = significant at 10% level. 
 

Notes: All models included constants. Standard errors in the AB models were estimated robustly. 



 

Table 3. Estimates of effects of technological change on capacity utilization 
 

                                               Estimated effects on capacity utilitization rate 

 

                              Investment                           Capital      

 (1) (2) (3) (1) (2) (3) 
   
Fixed -0.2 -0.2 -0.3 -1.2 -0.3 -1.2 

Random -0.6 -0.2 -0.7 -1.3 -0.4 -1.4 

Fixed-AB -2.3 -0.3 -1.2 -5.1 -0.6 -4.5 

 

Note: These are estimated effects of technological change on the capacity utilization rate, based 

on observed increases in shares of computers in total investment and in total capital respectively, 

for the average industry, for the 1974-2000 period. (See text for details). 
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Figure 1.  Capacity utilization and employment rates, 1974-2000
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Figure 2.  Shares of computers in investment and in total capital, 1974-2000 
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Data appendix 
 
The empirical analysis was performed using 111 manufacturing industries, largely at the 3-digit 

SIC level; there are 140 3-digit SIC industries in manufacturing, but we were unable to perform 

the analysis strictly at the 3-digit SIC level because for a few industries the lowest-level series in 

Industrial Production (IP) are combinations of two to five 3-digit SIC industries.  

 

Utilization rates: The Survey of Plant Capacity (SPC) from the Bureau of the Census collects 

utilization rate data at the 4-digit SIC level (from 1974 to 1996) and 6-digit NAICS level (from 

1997 on).  The SPC utilization rate data on an SIC basis were aggregated to the 3-digit SIC level 

using value-added weights from the Annual Survey of Manufacturers (ASM) and Census of 

Manufactures (COM). The SPC data on a 6-digit NAICS basis were converted to the 4-digit SIC 

level using ASM/COM shipments weights from the Census NAICS-to-SIC bridge tables and the 

1997 COM, which was reported both on an SIC and a NAICS basis; the resulting 4-digit SIC data 

were aggregated to the 3-digit SIC level as above. The two dummy variables in the regressions 

(from 1989 on and from 1995 on) were included to account for possible effects of changes in the 

SPC design. Prior to 1989, establishments were asked questions about preferred and practical 

capacity; from 1989, the respondents were asked about full capacity and national emergency 

capacity; the concepts of preferred and full capacities appeared to match fairly closely (see 

Doyle, 2000), but we included the 1989 on dummy to account for possible differences. Prior to 

1995, the SPC form was sent to between 9,000 and 10,000 establishments; from 1995 on, the 

survey was sent to between 16,000 and 17,000 establishments. A dummy variable from 1995 on 

was included to account for possible systematic effects on utilization rates from the sample 

expansion. 

 

Nominal investment: ASM/COM data on capital expenditures on new equipment and structures 

are compiled at the 4-digit SIC through 1996. From 1997, data were compiled on total capital 

expenditures on equipment and on structures at the 6-digit NAICS industry levels. The data were 

summed to the appropriate 3-digit level through 1996; bridge tables from the Census, the 1997 

COM, and historical averages of the share of new equipment and structures in total investment 

were used to convert the 1997 to 2000 6-digit NAICS total capital expenditures data to new 

capital spending on a 4-digit SIC basis. 

 

Real investment: Real investment measures require estimating real industry-by-asset investment 

and aggregating these data to the industry level with asset-specific price deflators (see Mohr and 

Gilbert, 1996, for details). This is performed in four steps. First, US-level asset totals are taken 

from the National Income and Product Accounts (NIPA) data. Second, industry-level investment 

totals are taken from the ASM/COM; US-level investment less manufacturing is constructed by 
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summing over the NIPA investment categories and subtracting the manufacturing total. Third, 

given the estimates of total investment by each manufacturing industry (and total US excluding 

manufacturing) and the total US investment in each asset category, industry-by-asset investment 

is estimated using the biproportional matrix balancing (or RASing) technique of Bacharach 

(1965); the initial estimates of the asset distribution of industry investment were taken from the 

roughly quinquennial Capital Flows Tables (CFT) of the BEA.23 The industry-level real investment 

measures are Fisher chain-weighted aggregates of the asset-level investment flows. 

 

Industry-by-asset capital stocks: Asset-level net capital stocks are constructed using the 

perpetual inventory model system (PIMS) methodology (see BLS, 1983, and Mohr and Gilbert, 

1996). Each asset is assigned a specific age-efficiency profile which describes the proportion of 

its original efficiency that remains in each period as the asset ages.24 For a given industry, the 

capital stock in a particular asset category is a weighted sum of all past investment flows, where 

the weights are given by the age-efficiency profile. 

 

Capital stocks:  Industry-level net capital stocks are constructed as a Fisher index of the industry-

by-asset capital stocks, where the weights are the asset-specific prices (see BLS, 1983).   

 

Current-cost capital stocks: The replacement value, in current dollars, of the net capital stock is 

constructed by taking the real capital stock levels for each asset category, multiplying them by the 

asset price deflators for that year, and summing to the industry level.   

 

Capital input: Industry-level capital input measures estimate the potential flow of services derived 

from the net capital stocks in the various asset categories. They are constructed as a Törnqvist 

index of the industry-by-asset capital stocks where the weights are the asset-specific rental prices 

or user costs (see BLS, 1983). The rental price for a particular asset, ( )τδ pprp D−+ , is the 

marginal product of that asset, where p is the asset price, r is a required rate of return, δ is a 

depreciation rate, and τ is a tax term (see BLS, 1983). As indicated by the formula, an asset that 

depreciates more quickly will receive a correspondingly higher weight in the aggregation, as will 

                                                 
23 Given row (asset investment) and column (industry investment) totals that sum to the same 
value; non-negativity constraints on investment; and an initial guess on the asset allocation of 
industry investment, the RASing procedure converges to a unique industry-by-asset investment 
flow. For the years a CFT exists, it is used as the initial guess for the RASing procedure; for years 
between CFTs, a linear interpolation of the adjacent CFTs are used; for years after the most 
recent CFT, the final allocation from the previous year is used as the initial guess for the current 
year; for years before the first CFT, the final allocation from the following year is used as the initial 
guess. 
24 The age efficiency profile is based on integrating over all possible asset service lives given a 
stochastic mean service life and standard deviation (for asset discards) and a hyperbolic beta-
decay function (for asset decay). See Mohr and Gilbert (1996) for details. 
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an asset whose price is declining. The computer asset categories, which do both, consequently 

receive a higher weight in calculating an aggregate capital input measure than in calculating an 

aggregate capital stock measure.  

 

Age of capital: With the PIMS methodology, the entire vintage history of industry-by-asset 

investment is used. It is a simple matter, then, to construct the average age of capital by 

weighting each vintage’s contribution to a year’s current-cost capital stock by the age of that 

vintage, and dividing the overall sum by the total current cost stock for the industry.  

 

High-tech share of investment and the high-tech share of capital: The high-tech share of 

investment is the ratio of current dollar capital spending on computer, office, and communication 

equipment to total current dollar capital spending on all equipment and structures categories.  

The high-tech share of capital input is the share of capital services derived from the high-tech 

asset categories; it is calculated by multiplying the asset level capital stocks in the high-tech asset 

categories by their rental prices and dividing the sum by the sum over all asset categories of the 

products of the asset level capital stocks and their rental prices. See Whelan (2000) for a lucid 

explanation of why these sorts of ratios should be formulated in current dollar (for investment) or 

current cost (for capital) terms. 
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Table A1. Variable names and definitions 

 

 
 
Variable name 

 
Definition 

 
CU   

 
CU*100, where CU is the Q4 utilization rate for the 3-digit industry from the 
Survey of Plant Capacity 
 

 
∆IP 

 
100 times the difference of the log of IP, where IP is industrial production in 
Q4 (a physical measure) 
 

 
I/K[t-1] 

 
Nominal investment divided by the current cost lagged capital stock, times 
100  

STDEV         Standard deviation of the log of IP, 10-year moving average 

∆ AGE  x.ht         Change in average age of capital equipment, excluding high-tech and 
structures. 

∆ AGE ht         Change in average age of high-tech capital equipment 

 
High-tech % inv.  

 
Investment in computer, office and telecommunications equipment divided 
by total investment, times 100, where both are nominal. 
 

 
∆ high-tech % of 
inv.  

 
The change in high-tech share of high-tech equipment in total investment, 
times 100. 
 

 
High-tech % cap. 

 
Capital stock in computer, office and telecommunications equipment divided 
by total capital stock, times 100, where high-tech capital stock is the current- 
cost rental value of these types of equipment, and the denominator is the 
total value of services derived from the capital stock . 
 

∆high-tech % 
cap.  

 
The change in share of high-tech equipment in the capital stock, times 100 
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Table A2. Diagnostic statistics for Arellano-Bond models 

 

 

 High-tech share of: 

 Investment Capital 

 (1) (2) (3) (1) (2) (3) 

One-step       

Sargan test of 
overidentifying 
restrictions * 

1267.51 

(0.0000) 

1254.68   
(0.0000) 

 

 

1257.29   
(0.0000) 

 

1250.61   
(0.0000) 

1240.35   
(0.0000) 

 

1237.93   
(0.0000) 

 

First-order 
autocorrelation ** 

-7.23   
(0.0000)

-7.19   
(0.0000) 

 

-7.18   
(0.0000) 

 

-7.13   
(0.0000) 

 

-7.18   
(0.0000) 

 

-7.13   
(0.0000) 

Second-order 
autocorrelation *** 

-1.07   
(0.2855) 

-1.15   
(0.2485) 

-1.12   
(0.2624) 

 

-1.14   
(0.2549) 

 

-0.93   
(0.3503) 

-1.00   
(0.3151) 

Two-step       

Sargan test of 
overidentifying 
restrictions * 

106.58   
(1.0000) 

107.28  
(1.0000) 

106.58  
(1.0000) 

105.54   
(1.0000) 

 

105.86   
(1.0000) 

107.09 
(1.0000) 

First-order 
autocorrelation ** 

-7.05   
(0.0000) 

 

-7.05   
(0.0000) 

-7.05   
(0.0000) 

-6.94   
(0.0000) 

 

-6.97   
(0.0000) 

 

-6.95   
(0.0000) 

Second-order 
autocorrelation *** 

-1.10   
(0.2718) 

 

-1.14   
(0.2536) 

 

-1.10   
(0.2718) 

 

-1.10   
(0.2692) 

-0.93   
(0.3525) 

-0.96   
(0.3363) 

 
 

 

 
*    Sargan test statistic is distributed chi-square with 603 degrees of freedom. The number is parentheses is  
      Prob > chi-square.  
 
**   Arellano-Bond test that average autocovariance in residuals of order 1 is 0. The number is parentheses 
      is Pr > z = 0.0000. The one-step estimates come from robust estimation.  
 
***  Arellano-Bond test that average autocovariance in residuals of order 2 is 0. The number is parentheses 
      is Pr > z = 0.0000. The one-step estimates come from robust estimation.  
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