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Abstract 
We study an industry of a homogeneous good where n firms with identical technology compete 
by first building capacity, and then, after observing the capacity decisions, choosing a 
“reservation price” at which they are willing to sell their entire capacities. We show that every 
pure strategy equilibrium yields the Cournot outcome, and that the Cournot outcome can be 
sustained by a pure strategy subgame perfect equilibrium. 
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1 Introduction

We study an industry of a homogeneous good where n firms with identical technology

compete by first building capacity, and then, after observing the capacity decisions,

choosing a “reservation price” at which they are willing to sell their entire capac-

ities. We show that every pure strategy equilibrium yields the Cournot outcome,

and that the Cournot outcome can be sustained by a pure strategy subgame perfect

equilibrium.

Unlike in Kreeps and Scheinkman’s model where price competition is à la Bertrand,

in the present model firms compete by setting a sort of elementary supply function

which, together with the market demand, determine the market clearing price and

the output of each firm. Hence all firms sell their output at the same price. As a con-

sequence, no rationing rule is necessary. (Only when several firms choose the same

price and there is not enough demand to absorb their capacities, a “tie-breaking”

rule is needed to allocate demand. The above result holds regardless of the particular

tie-breaking rule used.)

This model of price competition describes more closely than the Bertrand model

many markets. Further, when firms can build capacity instantaneously, i.e., when

capacity decisions have no pre-commitment value, the model reduces to Bertrand

competition. In addition, as in Kreeps and Scheinkman’s model, when capacity is

costless, a case we rule out, outcomes other than the Cournot outcome can be sus-

tained by pure strategy equilibria — see also Osborne and Pitchik (1985).

Interestingly, in this price competition game pure strategy equilibria always exist.

In contrast, in the Bertrand model for some capacity choices the unique equilibrium is

in mixed strategies; in these equilibria firms sometimes “regret” ex-post their pricing

decisions, which questions the validity of the equilibrium prediction since firms can

easily change their prices — see Maggi (1996). Pure strategy equilibria have the “no

regret” property, and are therefore exempt from this critique.

It is also worth to note that for some capacity decisions there are multiple out-

comes that can be sustained by pure strategy equilibria at the price competition stage.

(Multiplicity of equilibria is pervasive in models of competition via supply functions

when uncertainty is absent — see, e.g., Klemperer and Meyer (1989). Note that a

reservation price implicitly defines a sort of elementary supply function.) When ca-
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pacity is endogenized, however, this multiplicity disappears, and only the Cournot

outcome can be sustained by pure strategy equilibria.

2 The model

The description of the industry, except for allowing more than two firms, is identical

to that of Kreeps and Scheinkman (1983).

There are n ≥ 2 firms in the industry. The market (inverse) demand function P (x)
is twice continuously differentiable, strictly decreasing and concave on a bounded

interval (0, X) , where X > 0 satisfies P (x) > 0 for x < X, and P (x) = 0 for

x ≥ X. We write D = P−1 for the market demand. All firms have access to

the same technology. The cost to install capacity x is b (x) , where b : R+ → R+
is twice continuously differentiable, non-decreasing and convex on R+, and satisfies

0 < b0(0) < P (0), and b(0) = 0. The marginal cost of production up to capacity is

constant, and without loss of generality it is assumed to be zero.

Competition runs in two stages: at the first stage firms choose their capacities.

After the first stage firms observe their opponents capacity decisions. At the second

stage firms choose “reservation prices” at which to sell their entire capacities. Firms

capacities and reservation prices are then used to form a supply function which,

together with the market demand, determines the market clearing price, p, and firms

outputs, (y1, . . . , yn). A firm’s profit is the difference between its revenue, pyi, and its

total cost, b(xi).

3 Price competition with capacity constraints

Let x = (x1, . . . , xn) ∈ Rn+ be a profile of firms’ capacities, and denote by g(x) the
subgame firms face in the price competition stage. In this game, each firm i chooses

a reservation price ρi ∈ R+ at which to sell its entire capacity. A profile of reservation
prices ρ = (ρ1, . . . , ρn) ∈ Rn+ determines the aggregate supply, S(ρ; ·), given for p ∈ R+
by S(ρ; p) = [

P
j∈{i∈N |ρi<p} xj ,

P
j∈{i∈N |ρi≤p} xj ], where

P
j∈I xj = 0 if I = ∅. The

market clearing price, p(ρ), is uniquely determined by the market clearing condition

D(p) ∈ S(ρ; p), and the profile of firms’ outputs y(ρ) = (y1(ρ), . . . , yn(ρ)) is then
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readily calculated. (Note that in case of “ties”, i.e., when the reservation price of

several firms are equal to the market clearing price and the demand allocated to

them is less than their capacities, a tie breaking rule must operate to determine

the allocation of output among the tying firms. Our results do not depend on the

particular tie breaking rule used.) Firms’ payoffs (profits) are given for i ∈ N by

πi(ρ) = pi(ρ)yi(ρ)− b(xi). Note that since firms’ capacity costs are sunk, in the game
g(x) firms maximize revenue.

Proposition A below describes the pure strategy equilibria of game g(x). In order

to describe these equilibria, the following notation will be useful. For q ∈ R+ let
r0(q) = argmaxs∈R+ P (q+s)s; i.e., r0 is the “reaction function” (in output) calculated

ignoring capacity constraints and assuming that marginal cost is zero. For i ∈ N,
write x−i =

P
j∈N\{i} xj, and denote by I(x) the set {i ∈ N | xi > r0(x−i)}. Also let

M(x) = {i ∈ I(x) | P (r0(x−i) + x−i)xj ≥ P (r0(x−j) + x−j)r0(x−j), ∀j ∈ I(x)\{i}} .

It is easy to see that M(x) 6= ∅ whenever I(x) 6= ∅: let i ∈ I(x) be such that
xi = maxj∈I(x) xj ; then

x−i ≤ x−j + (xi − xj) = x−j
for j ∈ N, and since P (r0(q) + q) is decreasing, we have

P (r0(x−i) + x−i) = max
i∈N

P (r0(x−i) + x−i);

hence i ∈M(x). For i ∈M(x) define the set of pure strategy profiles

E(i) =
©
ρ ∈ Rn+ | ρi = P (r0(x−i) + x−i), ρj ≤ P (r0(x−i) + x−i)r0(x−i)/xi, ∀j ∈ N\{i}

ª
.

Note that if firms’ capacities are not too large (that any group of n − 1 firms have
enough capacity to serve X = D(0)), then every strategy profile ρ ∈ E(i) leads to
the same outcome (y(ρ), p(ρ)), where all firms but Firm i produce at full capacity

(i.e., yj(ρ) = xj , for j ∈ N\{i}), and Firm i maximizes on the “residual demand,”

determining the market clearing price p(ρ) = P (r0(x−i) + x−i) = ρi, and setting its

output to yi(ρ) = r0(x−i). Thus, the set E(i) contains strategies for which Firm i is, in

a clear sense, the “marginal firm.” The set M(x) contains the indices corresponding

to the firms that can be marginal in a pure strategy equilibrium.

Proposition A. Let x ∈ Rn+ be a vector of capacities.
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(A.1) If I(x) = ∅, then the set of pure strategy equilibria of g(x) is [0, P (Pj∈N xj)]
n.

Moreover, the unique outcome that can be sustained by a pure strategy equilibrium is

yi = xi and p = P d(
P

i∈N xi).

(A.2) If I(x) 6= ∅, then every profile ρ ∈ S i∈M(x)E(i) is a pure strategy equilib-

rium of g(x). Moreover, when #M(x) > 1 there are multiple outcomes that can be

sustained by pure strategy equilibria.

Proof: We prove A.1. Assume that I(x) = ∅. Then each Firm i’s residual demand
is at least D(p) − x−i, and since r0(x−i) > xi profit maximization requires that it

produces at full capacity. Let ρ ∈ [0, P (Pj∈N xj)]
n.We show that ρ is a pure strategy

equilibrium. Since ρk ≤ P (
P

j∈N xj) for k ∈ N\{i}, any reservation price ρi >

P (
P

j∈N xj) leads to an output for Firm i less than xi and is therefore suboptimal,

whereas ρi ≤ P (
P

j∈N xj) leads to an output for Firm i equal to xi and hence is

optimal. Thus, ρ is a pure strategy equilibrium. Now let ρ /∈ [0, P (Pj∈N xj)]
n. We

show that ρ is not an equilibrium. Let N(ρ) = {i ∈ N | ρi > P (
P

j∈N xj)}. Thus
N(ρ) 6= ∅ and Pi∈N(ρ) yi(ρ) <

P
i∈I(ρ) xi. Hence yk(ρ) < xk for some k ∈ N, and

therefore ρ is not an equilibrium. Therefore the set of pure strategy equilibria is

[0, P (
P

j∈N xj)]
n.

We prove A.2. Let i ∈ M(x) and ρ ∈ E(i). We show that ρ is a pure strategy
equilibrium. We have p(ρ) = ρi = P (r0(x−i) + x−i). By construction, Firm i cannot

increase its revenue by setting ρ0i > P (r0(x−i) + x−i), whereas setting

P (r0(x−i) + x−i)r0(x−i)/xi < ρ0i < P (r0(x−i) + x−i)

does not change the outcome (recall that ρj ≤ P (r0(x−i) + x−i)r0(x−i)/xi for j ∈
N\{i}). Moreover, undercutting some other firm j (by setting ρ0i ≤ ρj ≤ P (r0(x−i)+
x−i)r0(x−i)/xi)), leads to a revenue no larger than P (r0(x−i) + x−i)r0(x−i) : if

D (P (r0(x−i) + x−i)r0(x−i)/xi) ≤
nX
j=1

xj,

then Firm i’s revenue is no larger than (P (r0(x−i) + x−i)r0(x−i)/xi) xi, whereas if

D (P (r0(x−i) + x−i)r0(x−i)/xi) >
nX
j=1

xj

then Firm i continues to be “marginal” and therefore its maximal revenue is P (r0(x−i)+

x−i)r0(x−i). Hence Firm i does not have an improving deviation. Now, a deviation
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Figure 1: Equilibria at the price competition stage

by Firm j ∈ N\{i} to ρ0j has no effect on its revenue unless ρ0j ≥ ρi.Moreover, setting

ρ0j = ρi leads a revenue no larger than ρixj, and a deviation to ρ0j > ρi leads to a

revenue no larger than

P (r0(x−j) + x−j)r0(x−j) ≤ P (r0(x−i) + x−i)xj = ρixj.

Hence no firm j ∈ N\{i} has an improving deviation either. Therefore ρ ∈ E(i) is
an equilibrium. ¤

For some profiles of capacities there are multiple outcomes that can be sustained

by pure strategy equilibria at the price competition stage. In Figure 1 we have

plotted, for a linear duopoly, the functions xi = r0(x−i) and P (r0(x−i) + x−i)xj =

P (r0(x−j) + x−j)r0(x−j) for i ∈ {1, 2} — the continuous lines correspond to Firm 1

and the dotted ones to Firm 2. Multiplicity arises when the profile of capacities is in

the area inside the “football.” (It also arises when the capacity of each firm is larger

than the demand at price zero. In all these equilibria, however, the market price is

zero and the entire demand is served.) Multiplicity is perhaps not surprising since in

our model a reservation price implicitly defines an elementary supply function, and

multiplicity of equilibria is common in models of competition via supply functions

when uncertainty is absent; see Klemperer and Meyer (1989).
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4 Equilibria in the full game

Interestingly, the multiplicity that arises in the price competition stage disappears

when capacity is endogenized. As established in the Theorem B below, only the

Cournot outcome (of the industry where firms’ costs are the sum of the costs of

capacity and production) can be sustained by pure strategy equilibria of the full

game.

Theorem B. Every pure strategy equilibrium yields the Cournot outcome. More-

over, the Cournot outcome can be sustained by a subgame perfect equilibrium in pure

strategies.

Proof: Denote by x̄ and ȳ the vectors of capacity choices and outputs at an

arbitrary pure strategy equilibrium of the full game, and let p̄ be the resulting market

price. Clearly x̄i > 0 for some i ∈ N for if x̄i = 0 for every i ∈ N, then since
b0(0) < P (0) a firm benefits by installing a small but positive capacity. And since our

assumptions on cost imply that a firm obtains zero profits by installing no capacity

and producing zero units, we must have p̄ ≥ b(x̄i) > 0 and ȳi > 0 whenever x̄i > 0.
Also, it is easy to show that all but at most one firm must produce at full capacity:

If firms i and j were producing less than their capacities, then ρi = ρj = p̄ > 0, and

therefore either firm could undercut the other firm (by choosing a reservation price

slightly below the market clearing price), and increase its profit. Assume, w.l.o.g.,

that firms 2 to n are producing at full capacity; i.e., ȳi = x̄i for i ∈ N\{1}. For
q ∈ R+ let rb(q) = argmaxs∈R+ P (q + s)s − b(s); i.e., rb is the reaction function
calculated taking into account both the cost of capacity and the cost of production.

We show that x̄1 = rb(x̄−1) = ȳ1. In order for Firm 1 to maximize profits we must

have x̄1 ≥ rb(x̄−1). Moreover, any x1 > rb(x̄−1) is suboptimal. Also producing ȳ1 <
x̄1 = rb(x̄−1) < r0(x̄−1) = r0(

P
j∈N\{1} yj) is suboptimal (recall that production cost

is zero). Hence x̄1 = rb(x̄−1) = ȳ1. Since Firm 1 is also producing at full capacity, the

previous argument applies to firms 2 to n; i.e., x̄i = ȳi = rb(x̄−i) for i ∈ {2, . . . , n}.
Hence x̄ = ȳ form a Cournot equilibrium of the industry where firms’ costs are the

sum of the costs of capacity and production.

Now, every Cournot equilibrium x̄ can be sustained by subgame perfect equilib-

rium in pure strategies: simply let xi = x̄i, for i ∈ N, and for x ∈ Rn+ let ρ(x) be an
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arbitrary pure strategy equilibrium of the game g(x). ¤
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