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1. Introduction

Technology transfer (TT in the sequel) is a central issue within the economics

of technological change and innovation. It has been analyzed from di¤erent per-

spectives (perfect competition, evolutionary models, etc.). In this paper we will

be concerned with TT in static oligopolistic markets.

The basic model is as follows: TT is paid by a �xed fee.1 Firm 1 makes a TT

to Firm 2 in order to maximize joint pro�ts. TT decreases the marginal cost of

Firm 2. After TT has been made, both �rms compete in the goods market.2

Economic intuition -borrowed from, say, the theory of international trade-

suggests that with zero adoption costs the size of TT should be positively related

with the technological distance between �rms. However, Katz and Shapiro (1985)

proved that the properties that characterized TT run counter to the this intuition:

I) TT always occurs between similar �rms with similar costs.

II) TT never occurs if �rms have very di¤erent costs.

III) Under linear demand, joint pro�ts are U-shaped in the marginal cost of

Firm 2 (see also Marjit (1991)).

The explanation of these paradoxical results is that pro�ts of Firm 1 decrease

1If fees are charged on output; they can be used as a collusion device (Katz and Shapiro
[1985] pp. 512-3).

2See Mukherjee (2001) for an extension of this model.
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with the size of TT because the business stealing e¤ect but pro�ts of Firm 2

increase with the size of TT because its costs are reduced. When the marginal

cost of 2 is high the business stealing e¤ect is dominant because the substitution

of output of 1 by output of 2 entails a large loss of pro�ts of 1 but a small increase

in pro�ts for 2. When both �rms are similar, business stealing is small and cost

reduction dominates.

Katz and Shapiro used several simplifying assumptions, including that of prod-

uct homogeneity. This assumption is a useful �rst approximation but restricts too

tightly the scope of the marked under consideration: On the one hand, from the

empirical point of view, product homogeneity does not allow experiences like the

Silicon Valley -where a sizeable part of TT occurs among �rms producing di¤erent

products, the car industry -where six �rms produce the blueprints for all engines

or the consumer electronics industry -where the same invention (e.g. cordless

appliances) has been applied to a variety of products. Moreover, product homo-

geneity implies that all �rms face the same demand function and this discards

the case in which each �rm sells in a di¤erent country. On the other hand, from

the theory point of view, product heterogeneity allows to consider Cournot and

Bertrand competition and the comparison of both equilibria.

In this paper we study TT under the assumption that products are heteroge-
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neous. By simplicity we assume that product heterogeneity is exogenous.3

In Section 2 we present some facts gathered from a speci�c market, that of

a class of antidepressants. We see that under product heterogeneity TT takes a

variety of forms that are hard to reconcile with the analysis of Katz and Shapiro.

Section 3 explain the model and the main concepts.

In Section 4 we consider two examples: Assuming demand is linear or isoelastic

we show that Properties I-III above may not hold: The reason is that if Firm 2

faces a small demand joint pro�ts are maximized if Firm 1makes no TT. Similarly,

TT may happen between �rms with very di¤erent costs as long as Firm 2 faces a

large demand relatively to that of Firm 1. These possibilities can not arise under

good homogeneity because there, all �rms face the same demand. This section

prepares the ground for the more general �ndings of the next section.

In Section 5 we consider TT in general duopoly models of price and quantity

competition. We show that, even under strong restrictions on the class of ad-

missible demand functions, industry pro�ts and the marginal cost of Firm 2 can

be related in any arbitrary form (Proposition 5.1). This can not happen under

product homogeneity where, for instance, joint pro�ts are maximized when Firm

3The only paper with heterogeneous products that we are aware of is Mukherjee and Blasub-
ramanian (1999). They focus attention on the impact of the threat of imitation on the optimal
licencing contract.
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2 produces zero output. The implication is that under product di¤erentiation any

TT can arise. We show that joint pro�ts are increasing in the marginal cost of 2

when the output of 2 is close to zero, if and only if goods are substitutes (Propo-

sition 5.2). This implies that a small TT to Firm 2 never pays o¤ under these

circumstances. Finally. we show that joint pro�ts are increasing in the marginal

cost of 2 when �rms have a similar output, under symmetric demand and small

cross price e¤ects (Proposition 5.3). For the latter we need stronger conditions

under price competition than under quantity competition.

Summing up, we obtain two basic conclusions that are robust to the considera-

tion of both quantity and price competition. Firstly, under product heterogeneity,

TT can take any form. Secondly, the properties found in the homogeneous case

generalize to the heterogeneous case with various degrees of generality. In par-

ticular if demand is not symmetric we may �nd full TT between very di¤erent

�rms and that �rms that are similar in technology do not engage in TT. The next

section provides some evidence of that.
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2. A Case Study: the Market for Antidepressants

Empirical evidence on the forms of TT is a di¢ cult task. However, we have

found useful the insights and lessons to be learn from TT practices in the phar-

maceutical industry related to a speci�c subset of antidepressants, Selective Sero-

tonine Reuptake Inhibitors (SSRI) for several reasons. Firstly, they involve a high

level of innovation and rivalry as their market success have been increasing in

the last �fteen years. Secondly, SSRI drugs have been the �rst antidepressants

advertised directly to consumers and recognized by their trademark rather than

by their molecules, leading to, possibly spurious, product di¤erentiation.4 And,

�nally the period covered allows us to compare the TT policies designed by com-

panies before they faced the threat of generic substitutes and the marketing of

new competing drugs.5

The set of products includes the so called N6A: Prozac R, Paxil R/Seroxat R;

Celexa R/ Cipramil R, Zloft R, E¤exor R/Efexor R/Vandral R/Dobupal R and

Serzone R. The patented active principles behind each product are di¤erent

but still close substitutes in terms of their treatment, prescriptions and e¤ects,

4The results of several clinical trials show that �uoxetine, paroxetine, citalopram and sertra-
line are technologically homogeneous.

5The antidepressant drug market has been studied by Berndt et al. (2002) to determine
wether marketing and advertising e¤orts made by pharmaceutical companies shape market
shares.
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specially for the case of Prozac R -�uoxetine-, Paxil R/Seroxat R -paroxetine-;

Celexa R/Cipramil R -citalopram- and Zloft R -sertraline-. Here, the molecules

are the basic technology while trademarks represent marketing di¤erentiation.

N6A drug makers and technology holders have followed di¤erent technology

strategies, ranging from exclusive exploitation granted by a series of patents and

applications to full TT. In both situations, the products ranked among the top

selling drugs in global sales �gures and contributed to �rms�growth dramatically.

Several examples of this follow.

In 2001, Eli Lilly lost the exclusivity for marketing �uoxetine hydrochloride

-Prozac R- and generic versions became available in the US. In December 2000,

paroxetine�s global market share was 24%. The threat of generic Prozac prompted

to Eli Lilly to �nd alternative ways to keep ahead in the pro�table SRRIs market

-USD 17.1 billion in 2002- by licensing in �uoxetine R from Sepracor. Through

that agreement the licensor -Sepracor- transferred to Eli Lilly all the rights to

market the new active principle under the name of Prozac-R R, launched in 2001.

However, Sepracor did not market �uoxetine-R in its own. This case illustrates

that full TT may occur even when the creator of the technology does not sell it.

In contrast, full TT occurs in the case of Celexa R/Cipramil R in which

the licensor -Lundbeck- a large Danish pharmaceutical company licensed out
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citalopram in 1995 to Forest Lab, a small US drug company, that largely con-

tributed to their growth. Moreover, following the innovation path in this segment,

Cipralex R/Lexapro R based on citalopram R, are also the outcome of full TT and

co-marketing between these companies. Here we observe full TT from a large to

a small �rm.

The case concerning paroxetine -Paxil R/Seroxat R- is quite di¤erent from the

two mentioned above. After the acquisition of the patent by Beecham Pharmaceu-

ticals, paroxetine was marketed by SmithKline Beecham (SB) which was acquired

by GlaxoSmithKline. The threat of generic paroxetine in 2001 pushed Glaxo-

SmithKline to search for SSRIs alternatives. Since 2002 GlaxoSmithKline markets

Paxil-CR R in a formulation that uses SkyePharma�s Geomatrix controlled-release

technology. SkyePharma received an undisclosed payment from GSK in addition

to royalties on net sales. The e¤ects of TT on Skye Pharma�accounts have been

bigger than expected, from 17,7 million sterling pounds in 1999, to 69,6 million

in 2002. In this case there was partial TT from a small to a large �rm.

The examples above show that TT under product di¤erentiation may take

forms that are not possible under product homogeneity and that TT does not

always takes place among similar �rms as under product homogeneity. We will

see that the theoretical model backs these empirical �ndings.
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3. The Model

There are two �rms selling a product each. Firm 1 can sell to �rm 2 a technology

that in�uences its marginal cost: Marginal costs are constant. Let ~c2 be the value

of the marginal cost of �rm 2 before transfer of technology (TT) takes place. Let

c2 be a generic value of the marginal cost of �rm 2, which belongs to the interval

[c2; ~c2] where c2 is the minimum marginal cost that can be achieved by TT. Let

c1 be the marginal cost of �rm 1. Pro�ts of �rm i are �i � (pi � ci)xi where xi is

the output and pi is the price charged by i = 1; 2.

Let yi be the action of �rm i = 1; 2 where yi 2 [0; �y], some �y. We consider two

cases: Price competition, where yi � pi and quantity competition where yi � xi.

Under price competition, payo¤s are (pi� ci)xi(p1; p2) where xi = xi(p1; p2) is the

demand function for �rm i; with @xi
@pi
< 0.6 We will say that good i is a substitute

(resp. complement) of Good j if @xj
@pi
> 0 (resp. < 0). Under quantity competition

payo¤s are (pi(x1; x2)� ci)xi where pi = pi(x1; x2) is the inverse demand function

for �rm i with @pi
@xi
< 0. In this case, goods are substitutes (resp. complements) if

@pj
@xi
< 0 (resp. > 0). Denote by �1(y1; y2) and �2(y1; y2; c2) the payo¤ functions of

�rms 1 and 2. We will assume that they are twice continuously di¤erentiable.

6For simplicity, when the context is clear, we will not write the arguments of the functions.
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The game has two stages. In the �rst stage �rms decide the value of c2 co-

operatively and in the second stage they set their actions non-cooperatively. We

will refer to the second stage as the competition stage that we de�ne below.

De�nition 3.1. A Nash Equilibrium (NE) in the competition stage is a pair

(y�1; y
�
2) such that y

�
1 maximizes �1(y1; y

�
2) and y

�
2 maximizes �2(y

�
1; y2; c2):

Under price competition, NE is called a Bertrand equilibrium (BE) with �rst

order conditions (FOC)

@xi(p
�
1; p

�
2)

@pi
(p�i � ci) + xi(p�1; p�2) = 0; i = 1; 2: (3.1)

Under quantity competition, NE is called a Cournot Equilibrium (CE) with FOC

@pi(x
�
1; x

�
2)

@xi
x�i + pi(x

�
1; x

�
2)� ci = 0; i = 1; 2: (3.2)

We assume that the system of FOC ful�lls the Gale-Nikaido Property. Formally:

Assumption 1: a)
@2�i(y1; y2)

@y2i
< 0 8(y1; y2) 2 [0; �y]2; i = 1; 2:

b)
@2�1(y1; y2)

@y21

@2�2(y1; y2)

@y22
>
@2�1(y1; y2)

@y1y2

@2�2(y1; y2)

@y1y2
8(y1; y2) 2 [0; �y]2
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Assumption 1 (A.1 in the sequel) has two parts: a) implies that the pro�t function

of i is strictly concave in yi: If part a) holds a su¢ cient condition for b) to hold is

that the e¤ect in absolute value of yi on @�i
@yi

is larger than on @�i
@yj

j 6= i i.e. that

the matrix with typical element @2�i
@yiyj

has a Dominant Diagonal (see Friedman

[1977], Assumption 7, p. 71).7 Under quantity competition, A1 reads

a) 2
@pi
@xi

+ xi
@2pi
@x2i

< 0 i = 1; 2:

b) (2
@p1
@x1

+ x1
@2p1
@x21

)(2
@p2
@x2

+ x2
@2p2
@x22

) > (
@p1
@x2

+ x1
@2p1
@x1x2

)(
@p2
@x1

+ x2
@2p2
@x1x2

)

Thus A1a) holds if inverse demand is not too convex. A1b) holds if the impact

of the own price on marginal revenue is larger than the cross price impact. A

similar condition applies under price competition. We now have the following.

Lemma 1. Under A.1 there is a NE. If FOC hold with equality, NE is unique

and yi are continuously di¤erentiable functions of c2, i = 1; 2.

Proof. The existence of a NE follows from Kakutani �xed point theorem (see,

e.g. Friedman [1977]) since by A.1 �i( ) is continuous and concave and actions

belong to a compact set. Uniqueness and di¤erentiability follows from applying

7If goods are homogeneous, A.1a) implies �+2 > 0 and A1b) is equivalent to �+3 > 0 where

� � xd
2p(x)
dx2 =

dp(x)
dx where x � x1 + x2: � + 2 > 0 is equivalent to marginal revenue decreasing

which is the assumption made by Katz and Shapiro (1985).
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Theorem 4 in Gale and Nikaido (1965) to FOC of a NE.

We will assume that Firm 1 is always active in any NE. Let �c2 be the minimum

value of c2 for which the output of �rm 2 is zero in a NE. Under our assumptions

this value exists.

By Lemma 1 we can write y1 and y2 as functions of c2, i.e. yi = yi(c2);

i = 1; 2. Write �1(c2) = �1(y1(c2); y2(c2)) and �2(c2) = �2(y1(c2); y2(c2)); c2):

Thus, industry pro�ts can be written as � �
P2

i=1 �i = �1(c2) + �2(c2) � �(c2).

Finally we assume that in the �rst stage of the game c2 is chosen from [c2; ~c2];

to maximize �. Formally,

De�nition 3.2. c�2 solves the TT two stage game if �(c
�
2) � �(c02), 8c02 2 [c2; ~c2]

We �nally remark that the model is su¢ ciently �exible to incorporate alter-

native interpretations. 1) TT may refer to a product that was previously not

produced by Firm 2. In this case we set ~c2 = �c2. 2) Positive adoption costs.

Suppose that these costs are a function of the pre-TT output and actual output.

Since the former is given, write this as F (x2). Thus, under quantity competition,

�2 � (p2(x1; x2)� c2)x2�F (x2) = (p2(x1; x2)�F (x2)=x2� c2)x2: Now we can in-

terprete p2(x1; x2)�F (x2)=x2 as the inverse demand function of Firm 2 and carry

on as before. These two interpretations do not �t well with product homogeneity:
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The �rst because joint pro�ts are maximized when Firm 2 does not produce at

all so it is impossible to explain any positive TT. The second, because product

homogeneity implies that the two �rms face the same demand function.
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4. Two Examples

In this section we explore what di¤erence product di¤erentiation makes to

TT by considering two examples. The �rst deals with quantity competition and

generalizes the linear inverse demand case worked out by Katz and Shapiro (1985)

and Marjit (1991). The second example considers price competition with linear

demand.

Example 1: Quantity competition. Inverse demand functions read

pi = ai � bix�i � dix�j ; �; ai; bi > 0; i 6= j = 1; 2:

If d1 and d2 are positive (resp. negative), goods are substitutes (resp. comple-

ments). It is easy to check that A1a) holds and A1b) reads (1 + �)2b1b2 > d1d2.

We �rst calculate the CE for a given c2. We have that,

��i = �bi(
(1 + �)bj(ai � ci)� di(aij � cj)

(1 + �)2b1b2 � d1d2
)
1
�
+1 i; j = 1; 2; i 6= j: (4.1)

In order to guarantee that pro�ts are non negative in the CE, we assume that

(1+�)b2(a1� c1) > d1(a2� c2) and (1+�)b1(a2� c2) � d2(a1� c1) 8c2 2 [c1; �c2].8

8If goods are substitutes these conditions imply A.1 b). If goods are complements these
conditions always hold for ai > ci.

14



From (4.1) we get that the sign of d�
dc2
equals the sign of

d1(b2(a1�c1)(1+�)�(a2�c2)d1)
1
��(1+�)b2((a2�c2)b1(1+�)�d2(a1�c1))

1
� : (4.2)

We now check for the properties I-II-III stated in the Introduction.

I : If a2 is su¢ ciently small in relationship with a1 we see from (4.2) that

� is increasing on c2 so TT never occurs: The reason is that Firm 2 faces a

demand curve that, relative to that of Firm 1; is small so is not pro�table to

transfer technology to a �rm that is relatively ine¢ cient selling the good. We

will refer to the question of the relative size of demand as the Marketing E¤ect.

Assuming a1 = a2 � a; b1 = b2 � b; d1 = d2 � d, we see from (4.2) that

sign d�
dc2
jc1=c2= signf(a� c1)

1
� (b(1+�)� d) 1� (d� (1+�)b)g < 0: Thus I holds in

our model under symmetric demand.

II : From (4.1) we see that (1 + �)(a2 � �c2)b1 = d2(a1 � c1). Equation (4.2)

implies that sign d�
dc2

jc2=�c2= sign d1: So d�
dc2

jc2=�c2> 0 i¤ good 2 is substitute of

good 1. Thus, II holds in our model as long as products are substitutes:

III : From (4.2) we get that d2�
dc22

> 0. Thus, �( ) is strictly convex and �( )

attains a minimum at d�
da2

= 0. We now give su¢ cient conditions for �( ) to be

U-shaped with a minimum at ĉ2 2 (c1; �c2). Letting Q � ( (1+�)b2
d1

)� we get from
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(4.2) that the value of c2 which minimizes � is

ĉ2 = a2 �
(1 + �)(a1 � c1)b2 + (a1 � c1)d2Q

d1 +Qb1(1 + �)
< �c2(= a2 �

d2(a1 � c1)
(1 + �)b1

):

Assume substitute goods (if goods are complements (4.2) implies d�
da2

> 0 so full

TT is optimal) and symmetric demand. Keep the notation introduced in I above.

If ĉ2 � c1; we had that

1 � (1 + �)b+ dQ

d+Qb(1 + �)
, Q � 1, (1 + �)b � d; contradiction. Thus ĉ2 > c1:

Example 2: Price competition. Demand functions read

xi = ai � pi + dipj; i; j = 1; 2:

If d1 and d2 are positive (resp. negative), goods are substitutes (resp. comple-

ments).9 It is easy to check that A1a) holds an that A1b) reads 4 > d1d2. In a

BE,

��i = (
2(ai � ci) + di(aj + cj + cidj)

4� d1d2
)2; (4.3)

9If d1 = d2 = 1 demand functions are identical to those in the circular model of Salop (1979).
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In order to guarantee that BE prices never fall short of marginal costs, we assume

2(a1 � c1) + d1(a2 + c2 + c1d2) > 0 and 2(a2 � c2) + d2(a1 + c1 + c2d1) � 0:

From (4.3) we get that the sign of d�
dc2
equals the sign of

(2(a1�c1)+d1(a2+c2+c1d2))d1+(2(a2�c2)+d2(a1+c1+c2d1))(d1d2�2)) (4.4)

We now check for the properties I-II-III stated in the Introduction.

I) Again, it is easy to see that lack of symmetry may imply d�
dc2
jc1=c2> 0. But

even under symmetric demand if d1 = d2 > 0 and d1d2 � 2; d�
dc2

jc1=c2> 0. In

this case cross substitution e¤ects are very strong and reductions in c2 exacerbate

competition making TT unpro�table. However if d1; d2 < 1, d�dc2 jc1=c2> 0: So in

this case we need symmetry and small cross substitution e¤ects for I to hold.

II) From (4.3) we get �c2 =
2a2+d2(a1+c1)

2�d1d2 . If goods are substitutes, d�
dc2
jc2=�c2> 0.

III) From (4.4), we get that d2�
dc2

> 0: Thus �( ) is strictly convex. Suppose

that �( ) achieves an interior minimum. Then,

ĉ2 =
(2� d1d2)(2a2 + c1d1 + d2(a1 + c1))� d1(2a1 + d1a2)

d21 + (d1d2 � 2)2
:

Convexity of �( ) and d�
dc2
jc2=�c2> 0 imply that ĉ2 < �c2. Let us prove that ĉ2 > c1.
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Suppose otherwise. Then,

ĉ2 =
(2� d2)(2a+ c1d+ d(a+ c1))� d(2a+ da)

d2 + (d2 � 2)2 � c1 ,

(�d3 � 3d2 + 4)a � c1(d4 � d3 � 4d + 4). Since �d3 � 3d2 + 4 > 0 for 1 < d < 0

and a > c1; we obtain d4 + 3d2 > 4d, which is impossible for 0 < d < 1. Thus

ĉ2 > c1. Since ĉ2 < �c2, �( ) is U-shaped with a minimum at ĉ2 2 (c1; �c2).

It is now time to sum up our �ndings in this section:

1: The assumption of homogeneous product hides two important assumptions:

that demand for both �rm is the same and that goods are substitutes. If demand

functions do not satisfy these assumptions the properties that characterize TT

under homogeneous products do not hold. However, once demand is assumed to be

symmetric and goods are substitutes these properties also hold in our framework.

2: Quantity competition and price competition yield the same conclusions

under similar assumptions. The assumptions necessary for I) to hold are a little

bit stronger in the case of price competition.

3: The marketing e¤ect can explain that the owner of a patent does not exploit

it, as in the Sepracor/Eli Lilly case in the previous section, or that a large �rm

licences to a small one, as in the Lundbeck/Forest Lab case. In the �rst case it
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may be argued that the success of Prozac R gave to Elli Lilly a large advantage

in marketing the product. In the second case both �rms had relative advantages

in marketing the product in di¤erent locations, EU and USA.

4: However, as long as demand functions ful�ll the properties assumed in this

section, partial TT, as in the GlaxoSmithKline/SkyePharma case, can not be

explained. Because joint pro�ts are strictly convex on c2 the TT policy can only

be full transfer or no transfer.

Equipped with these �ndings we are prepared to study the form of �( ) in a

general framework.
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5. General Properties of Technology Transfer

In this section we investigate the shape of �( ) in order to derive the implications

for the kind of TT that we may expect in general.

Our �rst result shows that the shape of �( ) is arbitrary even under strong

assumptions on the form of demand/inverse demand functions. All proofs are

gather in the Appendix.

Proposition 5.1. Let 	 : [c2; �c2] ! <++ be a continuous function with �c2 > c1.

There are inverse demand (resp. demand) functions pi( ) (resp. xi( )) i = 1; 2

that are linear on xi (resp. pi) yielding payo¤ functions that satisfy A:1 such that;

a) There is a unique NE in which Firm 1 is active and Firm 2 inactive i¤ c2 = �c2:

b) 	(c2) = �(c2) 8c2 2 [c2; �c2]:

Proposition 5.1 implies that any TT can be rationalized as arising from the

maximization of joint pro�ts followed by a competition stage with payo¤ functions

satisfying A.1 and demand/inverse demand that are linear in the action controlled

by the �rm. This result implies that any TT between two �rms can be rational-

ized as arising from these �rms playing the previous game with payo¤ functions

satisfying A.1. Thus, we can not expect Properties I-II-III in the Introduction

hold when the product is di¤erentiated.
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Next, we show that the properties of �( ) in the boundaries, i.e. in c2 and

�c2 found in the case of homogeneous goods hold in our framework under the

appropriate assumptions.

First, we study the form of �( ) in c2 = �c2. In this case, the property found

in the homogeneous good case holds under reasonable circumstances.

Proposition 5.2. Under A.1, d�
dc2
jc2=�c2> 0, Good 2 substitute of good 1.

Next, we study the form of �( ) in c2: In this case, some extra conditions are

needed in order to prove the result obtained under homogeneous goods. Examples

1 and 2 above give us some clues: Demand functions must are symmetric and cross

e¤ects must not be very large. Our next two assumptions deal with symmetry.

Assumption 2: a) c2 = c1: b) �1( ) = �2( , c1):

Assumption 3. a) @�1(0; 0)
@y1

> 0: b) There is a y0 such that @�1(y
0; y0)

@y1
< 0:

A2 is a symmetry assumption. A2a) says that the minimum marginal cost

that can be achieved is that of Firm 1. A2b) says that demand/inverse demand

functions are symmetric. Let us now concentrate on A.3. Consider quantity

competition: From (2.2), @�1(0;0)
@x1

= p1(0; 0)�c1: Thus A3a) says that p1(0; 0) > c1:

If x1 and x2 are very large we expect that prices fall below marginal costs so
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@�1
@x1

= @p1
@x1
x1 + p1 � c1 < 0 and A3b) holds: Under price competition from (2.1),

@�1(0;0)
@p1

= �@x1
@p1
c1 + x1 > 0: If p1 and p2 are very large we expect x1 ' 0 and

@�1
@y1

' @x1
@p1
(p1 � c1) < 0; so A3b) holds: Thus, the behavior of @�1@y1

assumed by A.3

seems reasonable.

Lemma 2. Under A.1-2-3, NE is symmetric when c1 = c2:

Proof. Consider @�1(y; y)
@x1

as a function of y: Let f(y) � @�1(y; y)
@x1

. By A. 3, f( )

changes sign when we go from y = 0 to y = y0: By the intermediate value theorem,

there is a value of y; y� such that f(y�) = 0. By A. 2, say y� also solves the FOC of

pro�t maximization for Firm 2 so, under A.1a) y� is a symmetric NE. By Lemma

1 NE is unique, so the symmetric NE is the only NE:

Now we make assumptions that guarantees that the impact of the action of

the competitor on the marginal pro�t of a �rm is smaller than the impact of the

action taken by this �rm. Let p� (resp. x�) be the action in the BE (CE) when

c1 = c2.

Assumption 4.�@xi(p
�;p�)

@pi
> @xi(p

�;p�)
@pj

and �@x2i (p
�;p�)

@2pi
� @2xi(p

�;p�)
@pipj

; i 6= j = 1; 2

Assumption 4�. @2pi(x
�;x�)

@xixj
x� + @pi(x

�;x�)
@xi

< 0 and @2pi(x
�;x�)

@x2i
x� + @pi(x

�;x�)
@xi

�

0; i 6= j = 1; 2
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Under homogeneous products, A.4�is a local version of the so called strong

concavity assumption (Corchón [1994]). Notice that, as hinted in Examples 1

and 2, the assumption dealing with price competition is, somehow, stronger than

the assumption dealing with quantity competition. A. 2-3-4�are satis�ed by the

inverse demand functions used in Example 1 if A1 = A2 > 0; b1 = b2 and d1 = d2.

A.2-3-4 are satis�ed by the demand functions used in Example 2 if a1 = a2, and

d1 = d2 < 1.10 Now we are prepared for the result.

Proposition 5.3. Assume A.1-2-3. Under price competition and A4, or under

quantity competition and A4� d�
dc2
jc1=c2< 0:

10We remark that there is no relationship between A.1 and A.4-4�. On the one hand A.1
is a global assumption, i.e. holds for all prices and quantities and A.4-4�only apply in points
that are a NE when c1 = c2. On the other hand, Proposition 5.1 implies that demand/inverse
demand functions satisfying A.1 can not yield a result like Proposition 5.3 below.
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6. Conclusions

In this paper we have explored the consequences of assuming product het-

erogeneity by considering quantity and price competition. Both models yield

identical results under similar assumptions. We proved that the three properties

that characterized TT under product homogeneity hold in our framework under

suitable assumptions:

- Under symmetric demands and small cross substitution e¤ects, d�
dc2
jc1=c2< 0

(Proposition 5.3).

-If goods are substitutes d�
dc2
jc2=�c2> 0 (Proposition 5.2).

- If demands are linear and/or isoelastic, symmetric and cross e¤ects are not

very large �( ) is U-shaped (Examples 1 and 2).

Our analysis has uncovered the importance of symmetry and small substitution

e¤ects for properties I and III to hold. Symmetry is specially important because,

in our case, a small �rm is not necessarily one with low productivity: It might be

that the demand for this �rm is small, i.e. the marketing e¤ect is important here.

We also have found new features of TT, namely:

- Under asymmetric demand functions or with strong substitution e¤ects d�
dc2
jc1=c2>

0 is possible, even if goods are substitutes (Examples 1 and 2)
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- Under general demand functions the shape of �( ) is arbitrary (Proposition

5.1).

Summing up, the answer to the question what di¤erence makes the consider-

ation of heterogeneous products is that we expect here a richer set of interactions

between �rms regarding TT. In particular, we have to keep a close eye on the

following possibilities.

i) If Firm 1 faces a small demand it might be o¤ business after TT. This

resembles the Sepracor/Eli Lilly case in Section 2 where Sepracor licenced the

product but it did not market it.

ii) Even if ~c2 is high, Firm 2 may receive large quantities of TT if its demand

is large relative to that of Firm 1 or the markets in which both �rms operate are

independent. This resembles the Lundbeck/Forest Lab case in Section 2 where

the two �rms involved had very di¤erent sizes.

iii) TT may be partial like in the GlaxoSmithKline/SkyePharma case recorded

in Section 2.

iv) Even if ~c2 is close to c1, �rm 2 may not receive TT at all because its demand

is small or because cross price e¤ects are large. The latter could be a potential

candidate to explain why TT seldom occurred among the big companies in the

market for antidepressants.
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8. APPENDIX

Proof of Proposition 5.1

Let us tackle �rst the case of price competition. Let � be such that � <

	(c2)8c2 2 [c2; �c2]: De�ne the candidate demand functions: For good 2; x2 =

max(0; b(�c2 � p2)) and for good 1, x1 = b(�c2 � p1)f(p2) with

f(p2) =
4	(max(c2;min(2p2 � �c2; �c2)))� b(�c2 � p2)2

b(�c2 � c1)2
:

Take b such that 4	(c2)� b(�c2 � c1)2 � � 8c2 2 [c2; �c2]: Thus f(p2) > 0:

The above demand functions ful�ll the desired properties: They are linear and

satisfy A1. Since demands are linear in their own price and marginal costs are

constant, pro�t functions are strictly concave on their own price. Therefore, the
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BE for the above demand functions is found by setting @�i
@pi
= 0. This yields,

p�i =
�c2 + ci
2

i = 1; 2; x�1 =
bf(p�2)(�c2 � c1)

2
; and x�2 =

b�c2 � bc2
2

:

2p�2 � �c2 = c2 � �c2; min(2p�2 � �c2; �c2) = c2 and max(c2; c2) = c2:

f(p�2) = 4
	(c2)� b(�c2 � p�2)2

b(�c2 � c1)2
= 4

	(c2)� b( �c2�c22
)2

b(�c2 � c1)2

�1(c2) =
f(p2(c2))(�c2 � c1)2b

4
and �2(c2) =

b(�c2 � c2)2
4

:

�(c2) = 	(c2)� b(
�c2 � c1
2

)2 + b(
�c2 � c1
2

)2 = 	(c2):

Now consider the case of quantity competition. Let � be such 0 < � < 	(c2)

8c2 2 [c2; �c2]: Under our conditions � exists. Let p1 = max(0; �c2 � f(x2)x1), with

f(x2) =
( �c2�c1

2
)2

max(	(max(c2; �c2 � 2bx2))� bx22; �)

and p2 = max(0; �c2 � bx2) where b is chosen such that

� < 	(c2)�
(�c2 � c2)2

4b
;8c2 2 [c1; �c2]:

These demand functions ful�ll the conditions stated in the result: They are linear,

satisfy A.1 -because @2�2
@x1x2

= 0- and pro�t functions are strictly concave on their
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own output Thus, the unique CE for the above inverse demand functions is found

by setting @�i
@xi
= 0. Then,

p�i =
�c2 + ci
2

; i = 1; 2: x�1 =
�c2 � c1
2f(x�2)

; ��1 =
(�c2 � c1)2
4f(x�2)

x�2 =
�c2 � c2
2b

��2 =
(�c2 � c2)2

4b
:

Since �c2 > c1; x�1 > 0: Also x
�
2 = 0, c2 = �c2; so part a) is proved. Then

max(c2; �c2 � 2bx�2) = max(c2; c2) = c2: Thus 	(c2)� bx�22 = 	(c2)�
(�c2 � c2)2

4b
> �:

f(x2(c2)) =
b(�c2 � c1)2

4b	(c2)� (�c2 � c2)2
. �1(c2) =

(�c2 � c1)2
4f(x2(c2))

= 	(c2)�
(�c2 � c2)2

4b
:

Finally, �2(c2) =
(�c2 � c2)2

4b
: Therefore �1(c2) + �2(c2) = 	(c2):

Proof of Proposition 5.2

Taking into account that in a NE @�i
@yi
= 0; i = 1; 2; we have that

d�

dc2
=
@�1
@y2

dy2
dc2

+
@�2
@y1

dy1
dc2

+
@�2
@c2

. (8.1)

At c2 = �c2, x2 = 0: Thus, @�2@c2
= �x2 = 0. Under CE, @�2@x1

= @p2
@x1
x2 = 0: Under BE
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@�2
@p1

= (p2 � �c2)@x1@p1
= 0. Di¤erentiating FOC of NE we obtain that

dy1
dc2

=

@2�1
@y1y2

@2�2
@c2y2

@2�1
@y21

@2�2
@y22

� @2�1
@y1y2

@2�2
@y1y2

and
dy2
dc2

=
�@2�1

@y21

@2�2
@c2y2

@2�1
@y21

@2�2
@y22

� @2�1
@y1y2

@2�2
@y1y2

(8.2)

Plugging (8.2) in (8.1), and taking into account A1b)

d�

dc2
j c2=�c2 =

@�1
@y2

dy2
dc2

=
@�1
@y2

�@2�1
@y21

@2�2
@c2y2

@2�1
@y21

@2�2
@y22

� @2�1
@y1y2

@2�2
@y1y2

.

sign
d�

dc2
j c2=�c2 = sign

@�1
@y2

@2�2
@c2y2

In BE, @�1
@y2

= p1
@x1
@p2

and @2�2
@c2y2

= �@x2
@p2

> 0 and in CE, @�1
@y2

= @p1
@x2

and @2�2
@c2y2

= �1:

Thus, in both cases d�
dc2
jc2=�c2> 0, Good 2 is substitute of good 1.

Proof of Proposition 5.3:

Proof. From (8.1), A:2 and @�2
@c2

= �x�, we obtain that

d�

dc2
=
@�1
@y2

[
dy2
dc2

+
dy1
dc2
]� x�

Now from (8.2), and A:2 again

dy2
dc2

+
dy1
dc2

=

@2�2
@c2y2

( @
2�1

@y1y2
� @2�1

@y21
)

(@
2�1
@y21
)2 � ( @2�1

@y1y2
)2
=

� @2�2
@c2y2

@2�1
@y21

+ @2�1
@y1y2
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Let us tackle �rst the case of price competition. In this case, � @2�2
@c2y2

= @x2
@p2

and

@�1
@y2

= (p� � c1)@x1@p2
: From the FOC of a BE (p� � c1) = �x�

@x1
@p1

, thus @�1
@y2

= �x�
@x1
@p1

@x1
@p2
.

Then, using symmetry again,

d�

dc2
=
�x�
@x1
@p1

@x1
@p2

@x2
@p2

@2�1
@p21

+ @2�1
@p1p2

� x� =
�x� @x1

@p2
@2�1
@p21

+ @2�1
@p1p2

� x� = x�
�@x1
@p2
� @2�1

@p21
� @2�1

@p1p2

@2�1
@p21

+ @2�1
@p1p2

By A1b) the denominator is negative so sign
d�

dc2
= sign (

@x1
@p2

+
@2�1
@p21

+
@2�1
@p1p2

)

Computing,
@2�1
@p21

=
@2x1
@p21

(p� � c1) + 2
@x1
@p1

and
@2�1
@p1p2

=
@2x1
@p1p2

(p� � c1) +
@x1
@p2

:

@x1
@p2

+
@2�1
@p21

+
@2�1
@p1p2

= (
@2x1
@p21

+
@2x1
@p1p2

)(p� � c1) + 2(
@x1
@p1

+
@x1
@p2

) < 0; by A.4.

Next consider the case of quantity competition. In this case, @2�2
@c2y2

= �1 and

@�1
@y2

= x� @p1
@x2
: Then, using symmetry again,

d�

dc2
=

x� @p1
@x2

@2�1
@x21

+ @2�1
@x1x2

� x� = x�
@p1
@x2
� @2�1

@x21
� @2�1

@x1x2

@2�1
@x21

+ @2�1
@x1x2

By A1b) the denominator is negative so sign
d�

dc2
= sign (

@p1
@x2

� @
2�1
@x21

� @2�1
@x1x2

)
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Computing,
@2�1
@x21

=
@2p1
@x21

x1 + 2
@p1
@x1

and
@2�1
@x1x2

=
@2p1
@x1x2

x� +
@p1
@x2

:

sign
d�

dc2
= sign[�( @

2p1
@x1x2

+
@2p1
@x21

)x� � 2@p1
@x1

] > 0; by A.4�.
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