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1 Introduction

1.1 Stochastic Stability in Economic Models

The objective of this paper is to apply the concept of stochastic stability to non-strategic

contexts where property rights play an important role in determining the outcome. Private

ownership economies and cooperative games are two examples of the frameworks we have

in mind. Stochastic stability has been introduced to game theory by Kandori, Mailath

and Rob (1993), and Young (1993), who applied it to 2 × 2 games as a selection device.1

Since then it has been applied successfully to a wide variety of models (see Young (1998)).

The concept of stochastic stability belongs to the “evolutionary” approach to explaining

the emergence of equilibria, conventions or social norms.2 Within this approach, agents are

not necessarily fully rational, but “programmed” to behave in a fixed way until they are

replaced by other agents that, unless they are unlikely mutations, are better prepared to

face their environment.

The usual application of stochastic stability to non-cooperative games fixes a one-shot

game in normal form (strategy sets and payoff functions) played by myopic players. A

stochastic process is specified to explain how players choose their strategies in each period.

The process consists of three forces: inertia, selection and randomness. Inertia is the driving

force that is in place most of the time: typically players simply repeat what they played in

the last period, or copy the strategy played by his immediate ancestor playing the game,

without really giving a thought to their choice. At times, however, the system is taken over

by selection: a player may want to put some thought into his strategy, for example choosing

it as a best response to a representative sample of past history. Finally, randomness appears

as instances of mutations or experimentation in players’ choices. The question posed then

is what strategies are most likely to be played in the long run when this stochastic process

is in place. These strategies are said to be stochastically stable, and have been shown to

have a close relationship with interesting properties such as risk dominance.

Similarly, in this paper we consider a one-shot exchange economy (preferences and en-

1This methodology, based on the techniques developed for stochastic dynamical systems by Freidlin and

Wentzell (1984), was first applied to evolutionary biology by Foster and Young (1990).
2Other references for evolutionary game theory in general are Weibull (1995), Vega Redondo (1996),

Samuelson (1997) and Young (1998).
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dowments) with myopic agents that is repeated over time. We are interested in the evolution

of the allocations , when they follow a stochastic process that is composed of the same three

forces. The main force, within which the other two are embedded, can be seen as a flow of

inertia. In each period the agents take their fixed initial endowments and trade them for

a given consumption bundle, repeating the pattern of trade of the previous period. These

bundles constitute a status-quo allocation which is consumed every period, unless some-

thing disturbs the system. Embedded in this flow of inertia there is a process of selection.

In each period a coalition is chosen with some small probability and it has the opportunity

to find a reallocation of its resources that makes its members better off. If they find one

such reallocation they carry it out, thus sending the economy to a new status-quo alloca-

tion, which will be repeated each period until the next disturbance takes place. Finally,

there is randomness represented by a process of mistakes.3 When a coalition is selected to

look for a profitable recontract, there is a small probability that some of its members agree

to a reallocation that makes them worse off. This persistent randomness ensures that the

system does not get stuck at any given state. Instead, it keeps transitting all the time from

one state to the next. Stochastic stability then identifies those states (allocations, in this

case) that are visited by the system a positive proportion of time in the very long run.

Fixing the preferences and endowment of the economy allows us to compare the stochas-

tically stable allocations to the ones prescribed by classical solution concepts, such as the

core or Walrasian equilibrium. Therefore, our goal is to identify those allocations that will

be visited by Edgeworth’s recontracting process a positive proportion of time in the long

run if mistakes are small probability events that all agents make all the time.4 We shall offer

two kinds of results. First, under some conditions, stochastic stability will provide a new

foundation of the Walrasian logic. And second, and perhaps more fundamentally because

this is likely to be the result to be expected in general, stochastic stability highlights that

some solution concepts -like the core- might be missing an aspect of coalitional stability

that stochastic dynamics may help capture.

3Indeed, papers in cooperative game theory have no mistakes. We shall depart from this noble tradition.
4In contexts closer to a social choice model, where only preferences and not the endowments are part

of the primitives, Ben-Shoham, Serrano and Volij (2004) and Kandori, Serrano and Volij (2004) explore

related models that use mistakes in decision making or random utility maximization.
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1.2 Coalitional Recontracting

The question of what outcomes will arise in decentralized trade amongst arbitrary groups

of agents dates back to Edgeworth (1881). His answer was the set of “final settlements”

and it is what today we refer to as the core, i.e., the set of allocations “which cannot be

varied with advantage to all the contracting parties.” Although Edgeworth’s definition

of his “final settlements” applies to a static exchange economy, he motivates them with a

description of a recontracting process that is inherently dynamic, and which received elegant

formalizations in the analysis of Feldman (1974) and Green (1974).5 These authors show

that under certain assumptions on the economy, their recontracting process converges to

a core allocation. In contrast to these papers, ours considers the possibility of mistakes in

agents’ decision-making within the context of dynamic coalitional exchange.

In Feldman (1974) and Green (1974), a dynamic random process was imposed on a

coalitional game. Starting from an arbitrary feasible allocation, the process allows each

coalition to meet with positive probability in every period. When a coalition meets, they

can choose to stay at the original allocation or move to a new allocation, feasible for them,

if they all improve as a result. When this happens, the complement coalition is sent back

to their individual endowments (in Feldman (1974)) or to a Pareto efficient allocation of

their resources (in Green (1974)). The adjustment of resources of the complement coalition

ensures that the path followed in utility space by the process is not monotonic, and renders

the convergence question interesting and non-trivial.

In the present paper we analyze a dynamic recontracting process similar to those of

Feldman (1974) and Green (1974), but applied to the class of housing economies introduced

by Shapley and Scarf (1974), which have a finite set of allocations, amenable to the use of

finite Markov chains. One interesting feature of these economies is that they do not satisfy

some of the Feldman-Green conditions (free disposal of utility for every coalition). Hence,

in these economies those recontracting systems and ours fail to converge to core allocations.

Indeed, in the specification of the dynamics, some recurrent classes arise which consist solely

of non-core allocations. In view of this emergence of a large number of recurrent classes,

one is led to consider refinement techniques. Adding mistakes and resorting to stochastic

5One other aspect of dynamics and the core is provided by its extensive-form non-cooperative imple-

mentation (e.g., Perry and Reny (1994), Dagan, Serrano and Volij (2000)).
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stability is a way to accomplish this.

To be more precise, when we analyze the recontracting process free of mistakes, each

core allocation constitutes an absorbing state, and in addition, we find recurrent classes

consisting of cycles of non-core allocations. Bringing mistakes to bear, our results turn out

to depend on the class of economies one considers.

In economies where preferences are strict, we are able to get a remarkable refinement of

the set of recurrent classes by perturbing the system with mistakes. Our first main result is

that the unique stochastically stable state of the recontracting process with mistakes is the

Walrasian allocation, provided that serious mistakes (those where agents end up worse off as

a result) are sufficiently more costly than minor ones (those where the agent joins a coalition

to end up indifferent to how he started). At the heart of this result is the property of “global

dominance” of the Walrasian allocation for economies with no indifferences, uncovered in

Roth and Postlewaite (1977): for every feasible allocation of the economy, there exists a

coalition that can (weakly) improve upon the status quo with their components of the

Walrasian allocation. This is of course quite special to this setting, and one should not

expect to be able to extend this result to general economies, yet the sufficient conditions

assumed are of interest and a new foundation of Walrasian equilibria is provided.

The conclusions of our analysis are quite different in the more general case of economies

with indifferences, where we obtain non-Walrasian results. We provide a series of examples

to illustrate that the predictions of stochastic stability will not coincide with any of the

classical solution concepts. In particular, we regard Example 5 as the other main result of

the paper: it shows that non-core (and hence, non-Walrasian) cycles are sometimes stochas-

tically stable, whereas some core allocations are not. This is worth stressing for two reasons.

First, in recontracting with mistakes, the economy may frequently visit coalitionally unsta-

ble cycles: despite their being ruled out by the definition of the core, they represent classes

of states in which the economy spends a very significant amount of time. Second, entire

regions of the core will not be reached but a zero proportion of time in the very long run.

That is, dynamics allows one to go beyond the core definition and classify allocations within

the core in terms of how easy it is for the economy to get there. This suggests that there are

different levels of “decentralization” behind each core allocation: for instance, whereas some

may arise as a result of a simple sequence of trades and are therefore easy to reach, others

will require complicated transactions, and hence one should not expect to reach them so

4



easily. Also, to the best of our knowledge, this appears to be one of the first examples in the

evolutionary literature where a non-singleton recurrent class turns out to be stochastically

stable.

As a robustness check of our results in the coalitional recontracting process, we also

study a second process based on weak coalitional recontracting. We find that stochastic

stability always selects a non-empty subset of Walrasian allocations when the unperturbed

process contains only singleton recurrent classes (in particular, in economies with only strict

preferences, the only Walrasian allocation is the unique recurrent class of this unperturbed

process). If the mistake-free process allows also non-singleton recurrent classes, however,

stochastic stability is compatible with the appearance of cycles containing non-Walrasian

allocations.

1.3 Plan of the Paper

The paper is organized as follows. Section 2 presents the model and basic definitions.

Section 3 introduces the unperturbed recontracting process. Its perturbed version with

mistakes is found in Section 4. Section 5 contains our result when preferences are strict.

Section 6 focuses on economies with non-singleton indifference sets, and goes through a

series of examples. To check the robustness of our results, Section 7 analyzes an alternative

model of weak recontracting and mistakes. Section 8 discusses the relation of our dynamic

model with Edgeworth’s description of the recontracting process. Section 9 concludes.

2 A Housing Economy

We shall pose our questions in the context of the housing model of Shapley and Scarf (1974),

a simple exchange economy with only indivisible goods (see Roth, Sonmez and Umver (2004)

for a recent successful application of the model).

Formally, a housing economy is a 4-tuple E ≡ 〈N, H, (�i, ei)i∈N 〉, where N is a finite set

of individuals, H is a finite set of houses with |H| = |N |, and for each individual i ∈ N ,

�i is a complete and transitive preference relation over H, with �i denoting its associated

strict preference relation and ∼i its indifference relation. Finally, (ei)i∈N is the profile of

individual endowments.
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A coalition S of agents is a non-empty subset of N . The complement coalition of S, N\S,

will be sometimes denoted by −S. A feasible allocation for coalition S is a redistribution

of the coalitional endowment (ei)i∈S among the members of S. Denote the set of feasible

allocations for coalition S by AS. We simply write A for AN . An allocation x ∈ A is

individually rational if there is no individual i ∈ N for whom ei �i xi. An allocation x ∈ A

is a core allocation if there is no coalition S and no feasible allocation for S, y ∈ AS, such

that yi �i xi for all i ∈ S. An allocation x ∈ A is a strong core allocation if there is no

coalition S and no feasible allocation for S, y ∈ AS, such that yi �i xi for all i ∈ S and

yj �j xj for some j ∈ S. An allocation x ∈ A is a Walrasian allocation if there exists

p ∈ IRH
+\{0} such that for all i ∈ N pxi

= pei
, and for all i ∈ N and for all h ∈ H, h �i xi

implies ph > pei
. It has been shown (see Shapley and Scarf (1974)) that an allocation

x is Walrasian if and only if it can be obtained as a result of trading cycles. That is, if

and only if there exists a partition of the set of agents {S1, S2, . . . , Sm} such that for every

k = 1, 2, . . . , m,

xSk
∈ ASk

, and for every j ∈ Sk, xj �j xi for every i ∈ Sk ∪ . . . Sm.

In words, the agents in S1 redistribute their endowments and get their most preferred

houses; the agents in S2 redistribute their endowments and get their most preferred houses

out of the endowments of S2 ∪ . . . Sm, etc.

In the following sections, we shall define a perturbed Markov process for any given

housing economy. The states of the process are the allocations of the housing economy.

In each period a coalition of agents is selected at random and the system moves from one

state to another when the matched agents recontract. In the unperturbed Markov process

M0 of Section 3, agents do not make mistakes in their coalitional meetings: they sign a

contract if and only if there is a strictly beneficial coalitional recontracting opportunity. In

the perturbed process Mε of Section 4, agents will make mistakes with a small probability,

and sign a contract with a coalition even when they do not improve as a result. In Section 7

we study Markov trading processes in which coalitions can find a weak (rather than strict)

coalitional recontracting move.

It is often the case that an unperturbed Markov process (and it will certainly be the

case for M0) has many stationary distributions. On the other hand for all ε ∈ (0, 1), the
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perturbed process Mε is ergodic, which implies that it has a unique stationary distribution,

denoted by µε. This stationary distribution, which is independent of the initial state,

represents the proportion of time that the system will spend on each of its states in the long

run. It also represents the long run probability that the process will be at each allocation.

In order to define the stochastically stable states, we check the behavior of the stationary

distribution µε as ε goes to 0. It is known that limε→0 µε exists and further it is one of the

stationary distributions of the unperturbed process M0. The stochastically stable states of

the system Mε are defined to be those states that are assigned positive probability by this

limit distribution. We are interested in identifying these allocations because they are the

ones that are expected to be observed in the long run “most of the time.”

3 An Unperturbed Recontracting Process

Consider the following unperturbed Markov process M0, adapted from Feldman (1974)

and Green (1974). In each period t, if the system is at the allocation x(t), all coalitions are

chosen with arbitrary, but positive, probability. Suppose coalition S is chosen.

(i) If there exists an S-allocation yS ∈ AS such that yi �i xi(t) for all i ∈ S, the coalition

moves with positive probability to one of such yS in that period. Then, the new state

is either

x(t + 1) = (yS, x−S(t)) if x−S(t) ∈ A−S, or

x(t + 1) = (yS, e−S) if x−S(t) /∈ A−S.

(ii) Otherwise, x(t + 1) = x(t).

The interpretation of the process is one of coalitional recontracting. Following a status

quo, a coalition can form and modify it if all members of the coalition improve as a result.

When this happens, upon coalition S forming, the complement coalition N\S continues to

have the same houses as before if this is feasible for them. Otherwise, N\S breaks apart

and each of the agents in it receives his individual endowment.6 If after coalition S gets

together, all its agents cannot find any strict improvement, the original status quo persists.

6Our treatment of the complement coalition constitutes a small difference with respect to the processes

in Feldman (1974) and Green (1974). Our results are robust to different specifications. For instance, this
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It is clear that the absorbing states of this unperturbed process are precisely the core

allocations of the economy. However, the absorbing states are not the only recurrent classes

of M0, as shown by the following example.

Example 1 Let N = {1, 2, 3} and denote by (e1, e2, e3) the individual endowment alloca-

tion. Let the agents’ preferences be as follows:

e3 �1 e2 �1 e1;

e1 �2 e3 �2 e2;

e2 �3 e1 �3 e3.

Consider the following three allocations: x = (e1, e3, e2), y = (e2, e1, e3) and z =

(e3, e2, e1). These three allocations constitute a recurrent class: if the system is at x,

the state changes only when coalition {1, 2} meets, yielding y. At y, the system can move

only to z, when coalition {1, 3} meets. Finally, the system will move out of z only by going

back to x, when coalition {2, 3} meets.

Note that the unique Walrasian allocation w = (e3, e1, e2) also constitutes a singleton

recurrent class.

We can prove the following result, characterizing the recurrent classes of the unperturbed

process M0:

Proposition 1 The recurrent classes of the unperturbed process M0 take the following

two forms:

(i) Singleton recurrent classes, each of which containing each core allocation.

(ii) Non-singleton recurrent classes: in each of them, the allocations are individually ra-

tional but are not core allocations.

Proof: It is clear that each core allocation constitutes an absorbing state of M0, and that

every absorbing state must be a core allocation. For the second form of recurrent class,

is the case if only those agents in N\S who are directly or indirectly affected by the reallocation proposed

by S are sent to their initial endowments, while the rest of the economy stays put.

8



note that, by construction of the system, no state in a recurrent class can ever be non-

individually rational: if at some state x in which ei �i xi the coalition {i} is chosen, then,

the system moves to the individual endowment e, never to return to a non-individually

rational allocation. It is also clear that each of the states in the recurrent class cannot be

absorbing, i.e., a core allocation.

Thus, each core allocation is an absorbing state of the unperturbed Markov process

M0, and in principle there may be additional non-singleton recurrent classes, as that in

Example 1. Note also that as soon as the economy has more than one core allocation, the

system M0 has many stationary distributions.

4 A Perturbed Recontracting Process

Next we introduce the perturbed Markov process Mε for an arbitrary small ε ∈ (0, 1), a

perturbation of M0. Suppose the state of the system is the allocation x and that coalition

S meets. We shall say that a member of S makes a “mistake” when he signs a contract

that either leaves him indifferent to the same house he already had or he becomes worse off

upon signing. Each of the members of S may make one of these “mistakes” with a small

probability, as a function of ε > 0, independently of the others. Specifically, for a small

fixed ε ∈ (0, 1), we shall postulate that an agent’s probability of agreeing to a new allocation

that leaves him indifferent is ε, while the probability of agreeing to an allocation that makes

him worse off is ελ for a sufficiently large positive integer λ. That is, the latter mistakes are

much less likely than the former, while both are rare events in the agent’s decision-making

process.7

Before we define the perturbed process, we need some notation and definitions. Consider

an arbitrary pair of allocations z and z′. Let T (z, z′) ⊆ 2N\{∅} be the set of coalitions such

that, if chosen, can induce the perturbed system to transit from z to z′ in one step. Note

7Following Bergin and Lipman (1996), the results will depend on the specification of these probabilities.

Our results are robust to any specification that preserves the Pareto criterion, i.e., a transition that makes

an agent worse off be less likely than one in which the only frictions are indifferences (e.g., a lexicographic

specification, in which making an agent worse off implies automatically a lower transition probability than

one involving only indifferences).
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that it is always the case that T (z, z′) 6= ∅ since N ∈ T (z, z′) for any z and z′.

In the direct transition from z to z′ and for each S ∈ T (z, z′), define the following

numbers:

nI(S, z, z′) = |{i ∈ S : zi ∼i z′i}|,

nW (S, z, z′) = |{i ∈ S : zi �i z′i}|,

n(S, z, z′) = λnW (S, z, z′) + nI(S, z, z′).

Here nI(S, z, z′)is the number of individuals in S that are indifferent between allocations z

and z′. Similarly, nW (S, z, z′) is the number of members of S that make a mistake agreeing

to move from z to z′, which is worse for them. Finally, n(S, z, z′) is the weighted number

of mistakes that are made in the transition from z to z′, where λ > 1 is the weight given to

“serious” mistakes relative to those that lead to just indifferences.

In the perturbed Markov process Mε the transition probabilities are calculated as fol-

lows. Suppose that the system is in allocation z. All coalitions are chosen with a fixed

positive probability. Assume coalition S is chosen. If S /∈ T (z, z′), then S moves to z′ with

probability 0. If S ∈ T (z, z′) and n(S, z, z′) > 0, then coalition S agrees to move to z′ with

probability εn(S,z,z′). If S ∈ T (z, z′) and n(S, z, z′) = 0, coalition S moves to those z′ with

some (possibly state-dependent) probability δ, where 0 < δ < ε/|A|.
For all ε ∈ (0, 1) small enough, the system Mε is a well-defined irreducible Markov

process. As such, it has a unique invariant distribution. This distribution gives the prob-

ability that the system is in each of the allocations in the long run. We are interested

in the limit of the corresponding invariant distributions as ε tends to 0. More precisely,

we are interested in the allocations that are assigned positive probability by this limiting

distribution. These allocations are called the stochastically stable allocations.

In order to obtain our results, we will use the techniques developed by Kandori, Mailath

and Rob (1993), and Young (1993). But before that, we need some definitions.

Note that by the definition of the perturbed Markov process Mε, for every two allo-

cations z and z′, the direct transition probability µz,z′(ε) converges to the limit transition

probability µz,z′(0) of the unperturbed process M0 at an exponential rate. In particu-

lar, for all allocations z, z′ such that µz,z′ = 0, the convergence is at a rate r(z, z′) =

minS∈T (z,z′) λnW (S, z, z′) + nI(S, z, z′). We call the value r(z, z′) the resistance of the direct
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transition from allocation z to allocation z′. For any two allocations z, z′, a (z, z′)-path is a

sequence of allocations ξ = (i0, i1, . . . , im) such that i0 = z, im = z′. The resistance of the

path ξ is the sum of the resistances of its transitions. Let Z0 = {E0, E1, . . . , EQ} be the

set of recurrent classes of the unperturbed process M0, and consider the complete directed

graph with vertex set Z0. We want to define the resistance of each one of the edges in this

graph. For this, let Ei and Ej be two elements of Z0. The resistance of the edge (Ei, Ej) in

the graph, r(Ei, Ej), is the minimum resistance over all the resistances of the (zi, zj)-paths,

where zi ∈ Ei and zj ∈ Ej. A spanning tree rooted at Ej, or Ej-tree, is a set of directed

edges such that from every recurrent class different from Ej, there is a unique directed

path in the tree to Ej. The resistance of a spanning tree rooted at Ej is the sum of the

resistances of its edges. The stochastic potential of the recurrent class Ej is the minimum

resistance attained by a spanning tree rooted at Ej. As shown in Young (1993), the set of

stochastically stable states of the perturbed process Mε consists of those states belonging

to the recurrent classes with minimum stochastic potential.

5 Economies with Singleton Indifference Sets

In this section we shall assume that for every agent i ∈ N the preference relation �i is anti-

symmetric, which implies that all indifference sets are singletons. Making this assumption,

Roth and Postlewaite (1977) proved the following result:

Lemma 1 Let E be a housing economy where all preferences are strict. Then,

(i) There is a unique Walrasian allocation w.

(ii) The allocation w is the only strong core allocation.

(iii) For every allocation x ∈ A, x 6= w, there exists a coalition S such that wS is feasible

for S and satisfies wi �i xi for all i ∈ S and wj �j xj for some j ∈ S.

Lemma 1 will be useful in proving our first main result, to which we turn now.

Theorem 1 Let E be a housing economy where all preferences are strict. Suppose that

λ > |N | − 2. Then, the unique stochastically stable allocation of the perturbed process Mε

is the Walrasian allocation w.
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Proof: Since when |N | = 2, the core consists of the singleton w and there are only two

feasible allocations, it is clear that the statement holds, by Proposition 1. Thus, assume that

|N | ≥ 3. Recall that we denote the set of recurrent classes of the unperturbed process M0

by {E0, E1, . . . , EQ}, and let E0 be the singleton recurrent class containing the Walrasian

allocation w. Denote the stochastic potential of E0 by sp(E0). We show that the stochastic

potential of any other recurrent class Ek, k = 1, . . . , Q, is greater than sp(E0). Let Ek 6=
E0 be an arbitrary recurrent class. Consider an Ek-tree of stochastic potential sp(Ek).

Introduce in it the following two modifications:

(i) Delete the edge that connects the class E0 to its successor Ej on the path to Ek.

(ii) Add a directed edge going from Ek to E0.

Note that the resulting graph is an E0-tree. Moreover, the resistance of this new E0-tree

r(T ) equals

r(T ) = sp(Ek) − r(E0, Ej) + r(Ek, E0).

To finish the proof, we show in the following two lemmas that r(E0, Ej) > r(Ek, E0).

This means that we would have constructed an E0-tree whose resistance is less than sp(Ek),

thereby showing that sp(E0) < sp(Ek).

Lemma 2 Consider the edge E0 → Ej that is deleted from the Ek-tree. Then, r(E0, Ej) ≥
λ.

Proof: Consider a path that attains the resistance r(E0, Ej), of the edge that connects the

Walrasian allocation, w, to the recurrent class Ej, and let x1 be the first allocation in this

path. We claim that, in the direct transition from w to x1, at least one agent becomes worse

off. Let the coalition involved in this transition be S1. If it were the case that x1
i �i wi

for every i ∈ S1, we would be saying that w is not a strong core allocation, contradicting

Lemma 1, part (ii). Therefore, at least one agent becomes worse off in this direct transition,

from which it follows that r(E0, Ej) ≥ λ.

Lemma 3 Consider the edge Ek → E0 that is added to the Ek-tree. Then, r(Ek, E0) ≤
|N | − 2.
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Proof: We calculate an upper bound for r(Ek, E0) as follows. Let x ∈ Ek. By Lemma

1, part (iii), there exists a coalition S such that (wi)i∈S ∈ AS, wi �i xi for all i ∈ S and

wj �j xj for some j ∈ S. In the next paragraphs, we refer to S as one of the maximal (in

the sense of set inclusion) such coalitions . We have two cases.

Case 1: S = N . In this case, the maximum possible resistance associated with the direct

transition from x to w is (|N |−2), i.e., the one given by the highest number of indifferences

that can occur in N .

Case 2: S 6= N . This case admits two subcases:

Subcase 2.1: Suppose that x−S /∈ A−S. Then, when coalition S meets, the system

moves to y = (wS, e−S) with positive probability. The resistance of this transition cannot

be greater than (|N | − 2) because, within S, one can have at most (|S| − 2) indifferences.

But note that from y, the system can move to w with a resistance no bigger than |N\S|−2:

if necessary, the coalition T ⊆ N\S of agents who are not receiving their Walrasian house at

y will be partitioned in subsets (according to the trading cycles), each of which to perform

the necessary trade so that the final result is w. Therefore, since |S| ≤ |N | − 2, the number

of indifferences found in this transition is at most (|N | − 4).

Subcase 2.2: x−S ∈ A−S. In this case, coalition S meets and the system moves to

y = (wS, x−S) with positive probability. But then, by our choice of S and Lemma 1, part

(iii) applied to the subeconomy consisting of agents N\S, it must necessarily be the case

that x−S = w−S. Therefore, N\S = ∅ because otherwise S would not be a maximal blocking

coalition. So in this case S = N and we are back in case 1.

Therefore, the resistance of the transition Ek → E0 is bounded above by the maximum

of the two expressions involved in the two cases analyzed, which is (|N | − 2).

In consequence, it follows from our assumption on the size of λ that r(Ek, E0) <

r(E0, Ej), which concludes the proof.

6 Economies with Non-Singleton Indifference Sets

In this section we explore how the stochastic process of recontracting with mistakes, Mε,

performs over the class of economies that allow non-singleton indifference sets for some

agents. Over this larger class of economies, recall that Proposition 1 still holds. However,
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the conclusions of Lemma 1 do not extend. First, although existence is guaranteed, there

may be multiple Walrasian allocations. Second, the strong core may also contain multiple

allocations, while it may sometimes be empty. And third, the “global dominance” property

of Walrasian allocations as specified in Lemma 1, part (iii), is also lost.

In economies with only strict preferences, the Walrasian allocation correspondence and

the strong core coincide, and under our assumption on λ, the same allocation is the only

one that passes the test of stochastic stability. It is convenient, therefore, to examine

the larger class of economies to disentangle the different forces at work in the selection of

the stochastically stable allocations. The recontracting system with mistakes gives rise to

complicated dynamics, and no general result of equivalence can be established. Therefore,

we learn that the paths of least resistance followed in our stochastic dynamic analysis are

not intrinsically associated with the strong core property or with the Walrasian property of

allocations.

We shall present four examples. We arrange them by increasing difficulty and relevance.

Indeed, we regard Example 5 as the other main result of the paper. In some of these

examples, one agent has a completely flat indifference map, but this is only for simplicity

of exposition. Also, in the examples we shall use the notation z →r
S z′ to express that the

transition of least resistance from z to z′ takes place through coalition S at a resistance r.

We begin by showing that the set of stochastically stable allocations is not the strong

core. As we just pointed out, the strong core may be empty in these economies, while

stochastic stability always selects at least one allocation; but even when the strong core is

non-empty, one can generate examples where it does not coincide with the set of stochasti-

cally stable states of Mε.

Example 2 In this example, a non-empty strong core is strictly contained in the set of

stochastically stable allocations. Let N = {1, 2} and agents’ preferences be described as

follows:
e1 ∼1 e2;

e1 �2 e2.

In this economy there are two allocations, both of which are Walrasian, but only the one

resulting from trade is in the strong core. Note that both allocations are stochastically

stable: (e1, e2) →1
N (e2, e1) and (e2, e1) →1

{1} (e1, e2).
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The next example shows that the set of stochastically stable allocations may be a strict

subset of the strong core and of the set of Walrasian allocations.

Example 3 Let N = {1, 2, 3} and the agents’ preferences be given by:

e1 ∼1 e2 ∼1 e3;

e1 ∼2 e3 �2 e2;

e1 ∼3 e2 �3 e3.

In this economy, all allocations except the initial endowment allocation are Walrasian and

belong to the core. The strong core consists of the following three allocations: (e2, e3, e1),

(e3, e1, e2) and (e1, e3, e2). The unique stochastically stable allocation is x = (e1, e3, e2). To

see that x is the only allocation with minimum stochastic potential, one can construct an

x-tree as follows. First, we note that the only recurrent classes of M0 are the five absorbing

states corresponding to each Walrasian allocation. Next, note that to go from (e2, e3, e1) to x

can be done with a resistance of 1 (only one indifference): (e2, e3, e1) →1
{1} (e1, e2, e3) →0

{2,3}

x. The same goes for the transition (e3, e1, e2) to x: (e3, e1, e2) →1
{1} (e1, e2, e3) →0

{2,3} x. As

for the other transitions, we have (e3, e2, e1) →1
{2,3} x and (e2, e1, e3) →1

{2,3} x. Therefore,

the resistance of this x-tree is 4 and one cannot build a cheaper tree than that. On the other

hand, to get out of x, the resistance will always be at least 2, i.e., at least two indifferences,

which implies that, in constructing a tree for any of the other recurrent classes, its resistance

must be at least 5.

Our next example illustrates the only substantive difference in results between the recon-

tracting process Mε and its counterpart based on weak recontracting that will be studied

in Section 7. Specifically, we now construct an economy for which all recurrent classes of

M0 are singletons and where the set of stochastically stable allocations of Mε contains an

allocation that is not Walrasian.

Example 4 Let N = {1, 2, 3, 4} and the agents’ preferences be described as follows:
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e1 ∼1 e3 ∼1 e4 �1 e2;

e1 ∼2 e4 �2 e3 �2 e2;

e2 �3 e1 �3 e3 �3 e4;

e2 �4 e3 �4 e4 �4 e1.

One can check that there are four Walrasian allocations: w1 = (e3, e4, e1, e2), w2 = (e1, e4, e3, e2),

w3 = (e4, e1, e3, e2), and w4 = (e3, e1, e2, e4). In addition, there are three other core alloca-

tions that are not Walrasian: y1 = (e1, e4, e2, e3), y2 = (e4, e1, e2, e3), and y3 = (e4, e3, e1, e2).

Since Proposition 1 also applies to the economies considered in this section, it follows that

each of these seven allocations constitutes an absorbing state of M0. Further, it can be

checked that there are no additional recurrent classes. Apart from the seven core alloca-

tions, the only absorbing states of M0, there are four more individually rational alloca-

tions. One is e = (e1, e2, e3, e4) -the initial endowment allocation-, and the other three are

x1 = (e1, e3, e2, e4), x2 = (e3, e2, e1, e4) and x3 = (e4, e2, e1, e3). It can be checked that from

each of these four allocations one can go at zero resistance to one of the core allocations.

Consider now the following {y1}-tree comprising the following edges: w1 → y1, w2 → w1,

w3 → w1, w4 → w2, y2 → w2, y3 → y1. We check next that each of these edges has resistance

1 (corresponding to a transition with only one indifference), thereby implying that the tree

has minimum stochastic potential. We detail these transitions at present:

w1 →1
{1} e →0

{2,3,4} y1,

w2 →1
{1,3} x2 →0

{2,4} w1,

w3 →1
{1,3} x2 →0

{2,4} w1,

w4 →1
{2,4} w2,

y2 →1
{2,4} w2,

y3 →1
{1} e →0

{2,3,4} y1.

Thus, y1 is stochastically stable, although it is not a Walrasian allocation. It is not in

the strong core either: indeed, the unique strong core allocation in this economy is w1.
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The next example shows how different the conclusions one reaches in the analysis of

cooperation with mistakes may be from those of standard cooperative game theory. It

turns out that in a dynamic model where agents may make mistakes in decision-making,

the core may not agree with the set of states that are visited by the process a positive

proportion of time. In contrast, some non-core allocations may fare better in this sense

than some core allocations.

Example 5 8 This example, an outgrowth of Example 1, shows that a cycle of non-core

allocations may be stochastically stable, at the same time as some core allocations having

higher stochastic potential. Let N = {1, 2, 3, 4}, and the agents’ preferences be as follows:

e4 �1 e3 �1 e2 �1 e1;

e1 �2 e3 �2 e2 �2 e4;

e2 �3 e1 �3 e3 �3 e4;

e1 ∼4 e2 ∼4 e3 ∼4 e4.

Consider the following three allocations: x = (e1, e3, e2, e4), y = (e2, e1, e3, e4) and

z = (e3, e2, e1, e4). Since agent 4 cannot strictly improve, he cannot be part of any blocking

coalition. In fact, as in Example 1, these three allocations constitute a recurrent class: if

the system is at x, the state changes only when coalition {1, 2} meets, yielding y. At y, the

system can move only to z, when coalition {1, 3} meets. Finally, the system will move out of

z only by going back to x, when coalition {2, 3} meets. That is, x →0
{1,2} y →0

{1,3} z →0
{2,3} x.

The core consists of the following five allocations: c1 = (e3, e1, e2, e4), c2 = (e4, e1, e2, e3),

c3 = (e4, e1, e3, e2), c4 = (e4, e3, e1, e2), and c5 = (e4, e3, e2, e1). It is easy to see that

these five absorbing states –i.e., the core allocations– and the cycle are the only recurrent

classes of the unperturbed system: the 12 allocations where e4 is allocated to either agent

2 or agent 3 are not even individually rational. And from each of the remaining four

allocations, one gets to one of the already identified recurrent classes with 0 resistance:

8As communicated to us by Bob Aumann, a similar story is told in the Talmud: there is a cycle of three

two-person coalitions improving the status quo. The three players involved in the cycle are the two wives

of a man and a third party who buys the man’s estate. The cycle occurs after the man died and left his

estate. The diseased agent naturally corresponds to our agent 4, who has a flat indifference map. See also

Binmore (1985) for a more recent related problem.
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a1 = (e1, e2, e3, e4) →0
{1,2,3} c1, a2 = (e2, e3, e1, e4) →0

{1,2,3} c1, a3 = (e4, e2, e1, e3) →0
{2,3} x,

and a4 = (e4, e2, e3, e1) →0
{2,3} c5.

Let E = {x, y, z} be the non-singleton recurrent class consisting of non-core allocations.

Next, we construct an E-tree and show that it has minimum stochastic potential. This

tree must have five edges, coming out of each of the five core allocations. We detail the

transitions below:

c1 →1
{1,4} a4 →0

{2,3} c5,

cj →1
{4} a1 →0

{1,2} y, for j = 2, 3, 4, 5.

Therefore, the class E has minimum stochastic potential.

Note also that there are four Walrasian allocations: c1, c2, c3 and c5. Thus, the example

also shows that there are non-Walrasian stochastically stable allocations.

However, apart from E, the only stochastically stable allocations are the four Walrasian

allocations c1, c2, c3 and c5: there are allocations in the core that are not visited in the long

run but a zero proportion of time. In particular, it can be checked that it takes at least two

indifferences to get out of other recurrent classes to go to c4. This implies that c4 cannot

be stochastically stable. As an illustration, we construct a {c4}-tree as follows:

c1 →1
{1,4} a4 →0

{2,3} c5,

cj →1
{4} a1 →0

{1,2} (y ∈ E), for j = 2, 3, 5,

(z ∈ E) →2
N c4.

Thus, the dynamic analysis, which sheds light on how each allocation comes about,

uncovers a difference among core allocations. Some core allocations (like c4 in the example)

are actually very hard to get to, when compared to other allocations in the core or even

outside of the core. The point is that the usual emphasis in the definition of the core is given

to the non-existence of a coalitional blocking move, whereas the issue of how the allocation

in question comes about is disregarded. Dynamics should have something to say about the

matter, and Example 5 is a confirmation that this is indeed the case.
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7 Recontracting Based on Weak Blocking

As a robustness check of our results, we analyze in this section a Markov process in which

transitions take place whenever there is an instance of weak coalitional blocking, instead of

the strict version thereof, as was the case in the process M0.

7.1 The Unperturbed Process

Consider the following unperturbed Markov process M0
W , which represents the “weak re-

contracting” version of the process presented in Section 3. In each period t, if the system

is at the allocation x(t), all coalitions are chosen with arbitrary, but positive, probability.

Suppose coalition S is chosen.

(i) If there exists an S-allocation yS ∈ AS such that yi �i xi(t) for all i ∈ S and yj �j xj(t)

for some j ∈ S, the coalition moves with positive probability to some of such yS in

that period. Then, the new state is either

x(t + 1) = (yS, x−S(t)) if x−S(t) ∈ A−S, or

x(t + 1) = (yS, e−S) if x−S(t) /∈ A−S.

(ii) Otherwise, x(t + 1) = x(t).

The interpretation of this new process is one of weak coalitional recontracting. Following

a status quo, a coalition can form and modify the status quo if at least one member of the

coalition improves as a result, and none of the other members is made worse off. Apart

from this change, the process is identical to the one in Section 3. That is, when the weak

coalitional recontracting move happens, upon coalition S forming, the complement coalition

N\S continues to have the same houses as before if this is feasible for them. Otherwise,

N\S breaks apart and each of the agents in it receives his individual endowment (the

same comment as in footnote 6 applies here in terms of alternative specifications). If after

coalition S gets together, it cannot find any such weak coalitional improvement, the original

status quo persists.

The absorbing states of the unperturbed process M0
W are precisely the strong core

allocations of the economy. However, the absorbing states are not the only recurrent classes
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of M0
W . The easiest way to see this is to note, as we already did, that there are economies

in which the strong core is empty.

We can prove the following result, similar to Proposition 1, characterizing the recurrent

classes of the unperturbed process M0
W :

Proposition 2 The recurrent classes of the unperturbed process M0
W take the following

two forms:

(i) Singleton recurrent classes, each of which containing each strong core allocation.

(ii) Non-singleton recurrent classes: in each of them, the allocations are individually ra-

tional but are not strong core allocations.

Proof: The proof is similar to that of Proposition 1.

Thus, each strong core allocation is an absorbing state of the unperturbed Markov

process M0
W , and in principle there may be additional non-singleton recurrent classes.

Note also that as soon as the economy has more than one strong core allocation, the system

M0
W has many stationary distributions. The conclusions of Proposition 2 extend to all

economies where preferences are complete and transitive, not necessarily antisymmetric.

One can now obtain a simple generalization of the conclusions of Theorem 1. In fact,

the Walrasian result is obtained even before mistakes are added to the process.

Proposition 3 Let E be a housing economy where all preferences are strict. Then, the

unperturbed process M0
W is ergodic and the only recurrent class is the singleton consisting

of the unique Walrasian allocation.

Proof: The proof follows from the definition of the transitions in the process and from

Lemma 1.

Notice how, as in Theorem 1, the “global dominance” property of the Walrasian alloca-

tion in these economies makes it the only prediction of the dynamic process, this time as

the strong attractor of the unperturbed system.
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7.2 A Perturbed Process

Our next attempt is the generalization of the non-Walrasian conclusions obtained by our

dynamic analysis in economies with indifferences. For this purpose, we next introduce the

perturbed Markov process Mε
W for an arbitrary small ε ∈ (0, 1), a perturbation of M0

W .

Suppose the state of the system is the allocation x and that coalition S meets. We shall

say that a member of S makes a “mistake” when he signs a contract that makes him

worse off upon signing. Each of the members of S may make a “mistake” with a small

probability, as a function of ε > 0, independently of the others. Specifically, for a small

fixed ε ∈ (0, 1), we shall postulate that an agent’s probability of agreeing to an allocation

that makes him worse off is ε. In addition, we shall say that the coalition S makes an

“indifference-based coalitional mistake” if it agrees to a trade which leaves each and every

one of its members exactly indifferent. In consonance with our assumption on λ made in

Section 4 (see footnote 7), indifference-based coalitional mistakes are somewhat less serious

than individual mistakes. On the other hand, they will be more unlikely the larger the size

of the coalition involved. Details are provided below.

Before we define the perturbed process, we need some notation and definitions. Consider

an arbitrary pair of allocations z and z′. Let T (z, z′) ⊆ 2N\{∅} be the set of coalitions such

that, if chosen, can induce the system to transit from z to z′ in one step. Again, note that

it is always the case that T (z, z′) 6= ∅ since N ∈ T (z, z′) for any z and z′.

In the direct transition from z to z′ and for each S ∈ T (z, z′), define the following

numbers:

nI(S, z, z′) = |{i ∈ S : zi ∼i z′i}|,

nW (S, z, z′) = |{i ∈ S : zi �i z′i}|

In the perturbed Markov process Mε
W the transition probabilities are calculated as

follows. Suppose that the system is in allocation z. All coalitions are chosen with a fixed

positive probability. Assume coalition S is chosen. If S /∈ T (z, z′), then the system moves

to z′ with probability 0. If S ∈ T (z, z′) and nW (S, z, z′) > 0, then coalition S agrees to

move to z′ with probability εnW (S,z,z′). If S ∈ T (z, z′), nW (S, z, z′) = 0, and nI(S, z, z′) = |S|
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coalition S moves to z′ with probability ε|S|/|N |. Finally, if S ∈ T (z, z′), nW (S, z, z′) = 0, and

nI(S, z, z′) < |S|, coalition S moves to z′ with some (possibly state-dependent) probability

δ, where 0 < δ < ε/|A|.
For all ε ∈ (0, 1) small enough, the system Mε

W is a well-defined irreducible Markov

process. Therefore, it has a unique invariant distribution µε
W . We are now interested in

identifying the stochastically stable states of Mε
W , i.e., those allocations in the support of

limε→0 µε
W . Of course, we already know the answer for economies with no indifferences: from

Proposition 3, stochastic stability, which always selects a non-empty set of states, yields the

unique Walrasian allocation. The rest of the section considers economies with indifferences.

Note that by the definition of the perturbed Markov process Mε
W , for every two allo-

cations z and z′, the direct transition probability µz,z′(ε) converges to the limit transition

probability µz,z′(0) of the unperturbed process M0
W at an exponential rate. In particular,

if we let

r(S, z, z′) =





nW (S, z, z′) if nW (S, z, z′) > 0

|S|/|N | if nW (S, z, z′) = 0 and nI(S, z, z′) = |S|
∞ otherwise

for all allocations z, z′ such that µz,z′ = 0, the convergence is at a rate r(z, z′) = minS∈T (z,z′) r(S, z, z′).

As already done in previous sections, we call the value r(z, z′) the resistance of the direct

transition from allocation z to allocation z′. The resistance of a path is defined similarly.

Given Z0 = {E0, E1, . . . , EQ}, the set of recurrent classes of the unperturbed process M0
W ,

one considers the complete directed graph with vertex set Z0, and defines the resistance of

each edge in the graph as before. Given a spanning tree rooted at Ej, one can calculate its

stochastic potential. The stochastically stable states of the process Mε
W are those contained

in the recurrent classes of M0
W with minimum stochastic potential. As such, these are the

allocations that are easiest to access from anywhere else in the system, the only ones in

which the system will spend a positive proportion of time in the long run when mistakes

are possible but unlikely events.

Now we shall show that suitable generalizations of our previous results are obtained. It

will be instructive to separate the analysis into two: economies in which the recurrent classes

of M0
W are all singletons, and those in which non-singleton recurrent classes also exist. As
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it turns out, in the former we find the only substantive difference in results between the

strict and weak processes of recontracting.

7.2.1 Economies without Non-Singleton Recurrent Classes

For this case, stochastic stability will select a subset of the strong core, which is a subset

of the Walrasian allocations. Therefore, one can see this as a difference with respect to the

results of the process Mε based on strict recontracting –recall Example 4 (even though the

economies where recurrent classes of M0 are all singletons do not coincide with those in

which the same is true for M0
W ). Specifically, one can show the following result.

Proposition 4 Let E be a housing economy in which all recurrent classes of M0
W are

singletons. The stochastically stable states of Mε
W are Walrasian allocations.

Proof: By Proposition 2, if all recurrent classes of the unperturbed process M0
W are

singletons, they correspond to each of the strong core allocations. To finish the proof, we

show now that all the strong core allocations are Walrasian. To see this, take a strong

core allocation x of an economy E = 〈N, H, (�i, ei)i∈N〉 with indifferences, and consider an

economy E ′ = 〈N, H, (�′
i, ei)i∈N〉 that is obtained from E by undoing indifferences in the

following way: if for agent i ∈ N , xi ∼i h, then xi �′
i h; on the other hand, for all i ∈ N

if h′ �i h, h′ �′
i h. In the resulting economy E ′, x is a strong core allocation. To see this,

note that if coalition S can weakly block x in the economy E ′, it could also block in the

economy E , contradicting that x is in the strong core of E . Since E ′ is an economy with

no indifferences, by Lemma 1, parts (i) and (ii), x is the only strong core allocation and

the only Walrasian allocation of E ′. But then x must be Walrasian in E , because the same

prices that support it in E ′ also support it in E .

Thus, in economies where all recurrent classes of M0
W are singletons, stochastic stabil-

ity will select a subset, always non-empty, of the strong core, and therefore of the set of

Walrasian allocations. In particular, note how Proposition 3 follows from this result.

The next example shows that the set of stochastically stable allocations of Mε
W may be

a strict subset of the strong core (and a fortiori, of the set of Walrasian allocations).
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Example 6 This example studies the process Mε
W on the same economy as in Example 3.

That is, let N = {1, 2, 3} and the agents’ preferences be given by:

e1 ∼1 e2 ∼1 e3;

e1 ∼2 e3 �2 e2;

e1 ∼3 e2 �3 e3.

Recall that in this economy, all allocations except the initial endowment allocation are

Walrasian, and that the strong core consists of the following three allocations: (e2, e3, e1),

(e3, e1, e2) and (e1, e3, e2). In each of these allocations, each agent receives one of his top-

ranked houses. Further, each of these allocations Pareto dominates the other three al-

locations. The three constitute the only recurring classes of the system. However, only

(e1, e3, e2) is stochastically stable in Mε
W . The system transits from each of the other two

strong core allocations to the endowment with a resistance of only one indifference (that of

agent 1) and from there to (e1, e3, e2) with a resistance of 0. On the other hand, in order

to leave (e1, e3, e2), the system encounters a resistance of at least 2: two indifferences in

a two-agent coalition containing agent 1, after which the grand coalition recontracts at no

cost leading to one of the other recurrent classes.

7.2.2 Economies with Non-Singleton Recurrent Classes

For this class of economies, we shall show that some non-singleton recurrent classes are

selected by stochastic stability. When this happens, the weak recontracting process with

mistakes identifies extra allocations that the economy will visit a positive proportion of

time in the long run, even though none of them are coalitionally stable in the sense of

the strong core. The next example shows that the set of stochastically stable states may

contain non-Walrasian allocations, as well as allocations that are not Pareto indifferent to

Walrasian ones.
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Example 7 Let N = {1, 2, 3} and suppose the agents’ preferences are as follows:

e2 ∼1 e3 �1 e1;

e1 �2 e3 �2 e2;

e1 �3 e2 �3 e3.

Here, the strong core is empty because either coalition {1, 2} or {1, 3} always improves

weakly upon any allocation. There are two Walrasian allocations: (e2, e1, e3) and (e3, e2, e1).

The endowment allocation and the allocation (e1, e3, e2) are not in any recurrent class of

the unperturbed process based on weak blocking: one cannot get to the endowment from

anywhere else by means of weak improvements of any coalition; and one can get to (e1, e3, e2)

in that way only from the endowment allocation. However, the other four allocations

constitute a recurrent class. We detail the coalitions involved in each transition:

(e2, e1, e3) →N (e3, e1, e2) →{1,3} (e3, e2, e1) →N (e2, e3, e1) →{1,2} (e2, e1, e3).

Therefore, the four allocations in the unique recurrent class are stochastically stable in the

process Mε
W .

8 Recontracting with Mistakes and Edgeworth’s Tra-

dition

In this section we discuss how our process of recontracting with mistakes integrates in

Edgeworth’s tradition. In particular, we devote special attention to the issue of when

consumption takes place. Our model has several features to be emphasized now:

1. There is a static exchange economy;

2. This economy is repeated over time;

3. In each period a potentially different allocation obtains and, presumably, is consumed.

Based on these features, we shall argue that our model is a faithful description, though not

the only one, of the recontracting process envisioned by Edgeworth.
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When Edgeworth describes the process of contracting and recontracting, it is clear that

he has a static exchange economy in mind:

. . . the disposition and circumstances of the parties are assumed to remain

throughout constant. [Edgeworth (1925), p. 313.]

In this context, the recontracting process consists of a series of

. . . agreements [that] are renewed or varied many times. [Edgeworth (1925), p.

314.]

Note that the renewal of contracts is consistent with a market that takes place periodi-

cally over time. This is also suggested by the fact that Edgeworth chose the labor market

to exemplify his concepts. Workers and entrepreneurs show up in the market every period

with the same endowment and preferences. In particular, entrepreneurs do not sell the labor

units that they bought the previous period. The renewal of contracts is also consistent with

the landlord-tenant relationship, another example mentioned by Edgeworth (see below).

Edgeworth is interested in the “final settlements” or what we today call core allocations.

A “final settlement” consists of

a set of agreements which cannot be varied with advantage to all the recontract-

ing parties. [Edgeworth (1925), p. 314.]

The market presumably reaches a final settlement after going through various “settlements”

or “temporary equilibria.” Edgeworth is not clear as to when consumption takes place:

whether at each temporary equilibria or only at a final settlement. Indeed, when he ex-

plains the meaning of recontracting (or blocking, in the modern economist’s jargon) he

gives two examples which point to different directions concerning the issue of the timing of

consumption9:

Thus an auctioneer having been in contact with the last bidder (to sell at such a

price if no higher bid) recontracts with a higher bidder. So a landlord on expiry

of lease recontracts, it may be, with a new tenant. [Edgeworth (1881), p. 17.]

9Emphasis in the original.
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In the first case there is no transaction (an a fortiori no consumption) between the auctioneer

and the last bidder, due to the appearance of a higher bidder. In the second example, on

the other hand, there is a transaction every period between a landlord and a tenant that

leads to consumption. Here, although each period’s contract is just a settlement, it is not

necessarily a final one.

Edgeworth proposed the core as an alternative to the competitive equilibrium alloca-

tions, identified several years earlier by Walras (1874). He found that the core was most

of the times indeterminate as a solution concept, by prescribing a large set of final settle-

ments; this was contrasted to the more determinate concept due to Walras (believed to be

“unique”). Because of this comparison, Edgeworth was especially interested in this question

of “uniqueness” of the core, and was the first to notice the connection between the core

and Walrasian allocations in large economies.10 Thus, for Edgeworth’s main purpose, the

timing of consumption is irrelevant. One can interpret his temporary equilibria, very much

in the Walrasian tattonement tradition, as agreements that are not carried out but which

are intermediate steps leading to a final settlement; and one can interpret his settlements

as agreements that are carried out each period without affecting the “disposition and cir-

cumstances” of the parties for next period. Edgeworth’s main point can be understood

adopting either interpretation.

However, when one focuses on the dynamic process of recontracting, the interpretation

of states of the system is important. The models in Feldman (1974) and Green (1974), since

they do not have random perturbations, may potentially (and in fact, actually) converge

to an absorbing state. Therefore they are consistent with an interpretation in which con-

sumption only takes place after convergence is achieved. In our model, since agents make

random mistakes, the system has no absorbing states. Therefore an interpretation more

in line with the landlord-tenant example, in which there are transactions and consumption

10This observation gave rise to the important core convergence/equivalence literature (Debreu and Scarf

(1963), Aumann (1964)) as one of the leading game theoretic justifications of Walrasian equilibrium. See

Anderson (1992) and Aumann (1987) for surveys. Although the robustness of the equivalence result is

remarkable, several violations thereof have been identified, from which one can learn the role of certain

frictions in markets. These references include Anderson and Zame (1997) for infinite dimensional commodity

spaces, Manelli (1991) for instances of satiation in preferences, and Serrano, Vohra and Volij (2001) for

asymmetric information.
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every period, is more appropriate.

Essential to the recontracting process is the idea that any individual is free to contract

and recontract without the consent of third parties. But note that within the first interpre-

tation there is no consumption until all agents reach an agreement. That is, no one can

consume until we are sure that every agent has reached a final settlement. In fact, it may

well be the case that along the path toward the final settlement, some agents hold bundles

that are strictly preferred to the bundle that is consumed by them at any final settlement.

Postponing consumption until the very end seems to contradict the spirit of recontracting

without the consent of others. If one can recontract without others’ permission, then it

would appear that one should be able to also consume without their consent.

9 Concluding Remarks

1. Theorem 1 uses the “global dominance” property of the Walrasian allocation, as specified

in Lemma 1, part (iii). Although the models are very different, this dominance of the

Walrasian allocation resembles the main driving force of the result in Vega-Redondo (1997).

His paper proposes an evolutionary process based on imitation, and its Walrasian result

relies on the fact that if a firm produces the competitive output in a symmetric oligopoly,

its profit is always higher than that of those firms that produce any other output level.

2. Note that the sufficient condition on the cost of a serious mistake, λ > |N | − 2, used

to obtain Theorem 1, is jeopardized when |N | grows. Thus, for a given specification of λ,

the system may get stuck at other allocations because the number of indifferences required

to abandon a non-Walrasian allocation to go to the Walrasian allocation grows. If one fixes

λ, making the economy large is an obstacle to the Walrasian result: other allocations could

also be visited by the process a positive fraction of time in the long run. This contrasts

with the core convergence literature, based on the existence of more blocking coalitions in

large economies.

3. Along the same lines, if indifferences are present in the economy, the examples in

Section 6 demonstrate that stochastic stability may yield a variety of patterns, and that the

long run prediction may be compatible with the presence of market frictions – non-Walrasian

allocations. In particular, Example 5 suggest that the core may not be exactly capturing

coalitional stability in a model where mistakes are allowed. Thus, dynamic analysis may be
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a useful complement to the set of core allocations, one of the central recommendations of

cooperative game theory. It may happen that some regions of the core are hard to access,

while some non-core allocations may have strong dynamic attractor properties.11

4. Our results are robust if the transition rule in the unperturbed process is that of

coalitional weak blocking, instead of the strict blocking specified in M0. As the analysis

of the process M0
W in Section 7 shows, one can find conditions under which only some

Walrasian allocations are stochastically stable, while in general one must also contemplate

the possibility of stochastically stable cycles that include non-Walrasian allocations.

11In a different setting that includes externalities, Gomes and Jehiel (2005) analyze a dynamic game of

coalition formation. In their model, the agents are forward-looking and the Markov perfect equilibria do

not provide support to the core. They interpret their result as an instance of how forward-looking agents

may disturb the core predictions. In contrast, our agents are myopic, but the stochastic dimension -the

presence of mistakes- also leads to questioning the core. See also Ray and Vohra (2001) and Konishi and

Ray (2003).

29



References

Anderson, R. M. (1992), “The Core in Perfectly Competitive Economies”, chapter 14 in R.

J. Aumann and S. Hart (eds.) Handbook of Game Theory with Economic Applications

(vol. I), North Holland, Amsterdam.

Anderson, R. M. and W. Zame (1997), “Edgeworth’s Conjecture with Infinitely Many

Commodities: L1,” Econometrica 65, 225-273.

Aumann, R. J. (1964), “Markets with a Continuum of Traders”, Econometrica 32, 39-50.

Aumann, R. J. (1987), “Game Theory”, in J. Eatwell, M. Milgate and P. Newman (eds.)

The New Palgrave Dictionary of Economics, Norton, New York.

Ben-Shoham, A., R. Serrano and O. Volij (2004), “The Evolution of Exchange,” Journal

of Economic Theory 114, 310-328.

Bergin, J. and B. Lipman (1996), “Evolution with State Dependent Mutations,” Econo-

metrica 64, 943-956.

Binmore, K. G. (1985), “Bargaining and Coalitions,” in Game-Theoretic Models of Bar-

gaining, Roth, Alvin E., ed., Cambridge University Press, New York and Sydney;

269-304.

Dagan, N., R. Serrano and O. Volij (2000), “Bargaining, Coalitions and Competition,”

Economic Theory 15, 279-296.

Debreu, G. and H. Scarf (1963), “A Limit Theorem on the Core of an Economy”, Inter-

national Economic Review 4, 235-246.

Edgeworth, F. Y. (1881), Mathematical Psychics, Kegan Paul Publishers, London, reprinted

in 2003, P. Newman (ed.) F. Y. Edgeworth’s Mathematical Psychics and Further Pa-

pers on Political Economy , Oxford University Press.

Edgeworth, F. Y. (1925), Papers Relating to Political Economy (Vol. 2), Burt Franklin,

New York.

Feldman, A. (1974), “Recontracting Stability,” Econometrica 42, 35-44.

30



Foster, D. P. and H. P. Young (1990), “Stochastic Evolutionary Game Dynamics,” Theo-

retical Population Biology 38, 219-232.

Freidlin, M. and A. Wentzell (1984), Random Perturbations of Dynamical Systems, Berlin:

Springer-Verlag.

Gomes, A. R. and P. Jehiel (2005), “Dynamic Processes of Social and Economic Interac-

tions: On the Persistence of Inefficiencies,” Journal of Political Economy 113, 626-

667.

Green, J. (1974), “The Stability of Edgeworth’s Recontracting Process,” Econometrica 42,

21-34.

Kandori, M., G. Mailath, and R. Rob (1993), “Learning, Mutations and Long Run Equi-

libria in Games,” Econometrica 61, 29-56.

Kandori, M., R. Serrano and O. Volij (2004), “Decentralized Trade, Random Utility and

the Evolution of Social Welfare,” Working Paper 2004-06, Department of Economics,

Brown University.

Konishi, H. and D. Ray (2003), “Coalition Formation as a Dynamic Process,” Journal of

Economic Theory 110, 1-41.

Manelli, A. (1991), “Monotonic Preferences and Core Equivalence”, Econometrica 59,

123-138.

Perry, M. and P. J. Reny (1994), “A Non-Cooperative View of Coalition Formation and

the Core,” Econometrica 62, 795-817.

Ray, D. and R. Vohra (2001), “Coalitional Power and Public Goods,” Journal of Political

Economy 109, 1355-1384.

Roth, A. and A. Postlewaite (1977), “Weak versus Strong Domination in a Market for

Indivisible Goods,” Journal of Mathematical Economics 4, 131-137.

Roth, A., T. Sonmez and M. U. Unver (2004), “Kidney Exchange,” Quarterly Journal of

Economics 119, 457-488.

31



Samuelson, L. (1997), Evolutionary games and equilibrium selection, MIT Press, Cam-

bridge, Massachusetts.

Serrano, R., R. Vohra and O. Volij (2001), “On the Failure of Core Convergence in

Economies with Asymmetric Information,” Econometrica 69, 1685-1696.

Shapley, L. and H. Scarf (1974), “On Cores and Indivisibility,” Journal of Mathematical

Economics 1, 23-28.

Vega-Redondo, F. (1996), Evolution, games, and economic behavior , Oxford University

Press, Oxford, New York.

Vega-Redondo, F. (1997), “The Evolution of Walrasian Behavior,” Econometrica 65, 375-

384.

Walras, L. (1874), Elements of Pure Economics, or the Theory of Social Wealth, English
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