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1 Introduction

In the literature of cooperative games there has been an interest on charac-
teristic functions that can be obtained after a more primitive model. Moulin
(1989) suggested that, given a non-cooperative game, di¤erent characteristic-
form games could be de…ned after di¤erent speci…cations of a characteristic
function. In this fashion he de…ned the ®-core and the ¯-core of a normal
form game as the core of the associated cooperative games. More recently,
several authors have de…ned subclasses of cooperative games for which the
characteristic function has an economic interpretation. Examples of this ap-
proach that are relevant to our work include externality games in Grafe et
al. (1998) and …nancial games in Izquierdo and Rafels (1996). Having more
structure than general cooperative games, it is only natural to ask whether,
for each subclass of games, one can …nd more interesting properties or de…ne
more appealing solution concepts.

In the present work we de…ne the class of generalized externality games,
GEG, which include externality games as de…ned by Grafe et al. (1998).
The characteristic function of GEG can be separated in two functions, one
that depends on the totality of the resources belonging to the coalition, and
another that depends on the number of members of the coalition. Then,
using the methodology in Izquierdo and Rafels (1996 and 2001), we study
some properties of this new class of games. In particular, we …nd that each of
the families that form the class of GEG has a vectorial space structure, and
furthermore, that minimum participation games form an interesting base.
Next GEG are shown to be semi-convex, but not convex, and show su¢cient
conditions for convexity. It is also shown that GEG belong to the family of
average monotonic games.

The importance of these properties becomes clear when we study di¤erent
solution concepts. In the spirit of many other works we de…ne a proportional
solution for GEG and present an axiomatic characterization. The vector-
ial space structure of GEG and the fact that minimum participation games
constitute a base are used in showing this result. Interestingly enough the
axiomatization of the proportional solution for GEG is the same as for …nan-
cial games, but is not a generalization of the axiomatization for externality
games.

From the above mentioned properties it follows that the core of GEG is
non empty, as the proportional solution is always in it, and that the core
and the bargaining set coincide. The conditions for convexity are useful if
one is interested in GEG for which the Shapley value is in the core. Finally,
the property of semi-convexity allows us to use a simple formula for another
solution concept, the ¿ -value.
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In section 2 we de…ne generalized externality games and provide some
economic examples. In section 3 we prove some properties. Section 4 charac-
terizes the proportional solution. Section 5 discussed other solution concepts.
Section 6 concludes.

2 De…nition and examples

Externality games were introduced by Grafe et al. (1998) as a class of co-
operative games. In this section we present a generalization of these games
and show some interesting economic situations that can be interpreted as
generalized externality games.

Using conventional notation, ¡N will denote the set of characteristic form
games of N players. In these games, each subset S ½ N (called a coalition)
is associated with a value v (S).

De…nition 1 A game v 2 ¡N is a generalized externality game, GEG, if
there exists a vector ¯ = (¯i)i2N in <N

+ , a parameter ® ¸ 1, and a non-
decreasing function N ! <+, such that v (S) = (

P
i2S ¯i)

®r (s), where s
denotes the cardinal of coalition S. The set of generalized externality games
of N players will be denoted by GEGN .

When ® = 1, this is the de…nition of externality games. Generalized ex-
ternality games can be interpreted as a situation in which players contribute
both with their endowments (¯i) and their presence (through the function r)
to the coalition where they belong. One can easily check that these games are
monotone and superadditive. Monotonicity requires that v (S) · v (T ) when-
ever S ½ T , whereas superadditivity means that v (S) + v (T ) · v (S [ T )
for all coalitions such that S \ T = ;.

Example 1 (Joint venture): Suppose that a group of n …rms decides
to collaborate in a joint venture, and that each …rm participates with two
factors. One of them, Li (e.g., labor) is idiosyncratic to each …rm and the
other, K (e.g., capital) must be equal for all …rms. If the technology of
the joint venture can be represented by a Cobb-Douglas function we can
write f (K;

P
Li) = (nK)® (

P
Li)

¯ . When we consider the possibility of
coalitions of …rms having their own joint venture, a generalized externality
game is de…ned if ® ¸ 0. Firms may use a solution of this game to decide
upon a division of revenues generated by this activity.

Example 2 (Provision of public goods): Consider the following model in
Moulin (1992). Let A be a set of public decisions and denote by c(a) the
cost of …nancing decision a. A set of agents, N = f1; 2; :::; ng, must share
the cost of decision a. A feasible outcome is a vector (a; y1; :::; yn) where
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a 2 A; P
i2N yi = c(a), and yi is agent i’s cost share. Preferences are repre-

sented by ui(a; yi). Suppose now that we have a quadratic cost function and
linear utilities; i.e., c(a) = a2=2 and ui(a; yi) = ¯ia ¡ yi, where the parame-
ter ¯i is agent i’s marginal rate of substitution between private and public
goods. If we compute the surplus v(S) generated by coalition S standing
alone (

P
i2S yi = c(a)) as v(S) = max

P
i2S(¯ia ¡ yi) = (

P
i2S ¯i)

2=2 a
generalized externality game is de…ned with r (s) = 1

2
and ® = 2.

3 Properties of generalized externality games.

It is well known that characteristic form games are a vectorial space of di-
mension 2N¡1, and that unanimity games constitute a base of this space. It
is useful to know, for a given class of characteristic form games, whether it
preserves the structure of vectorial space and whether one can …nd an inter-
esting base. In the next proposition we show that this is indeed the case for
each one of the subclasses that constitute the class of generalized externality
games. To this end we need the following de…nition. Coalitions will be de-
noted by upper case letters and their cardinality by the corresponding lower
case letter.

De…nition 2 A game of minimum participation associated to a vector ¯ and
a coalition T is denoted by vT;¯ and de…ned as:

vT;¯ (S) = 0 if s < t or
if s = t and

P
i2S ¯i <

P
i2T ¯i,

vT;¯ (S) =
P

i2S ¯i if s ¸ t or
if s = t and

P
i2S ¯i ¸ P

i2T ¯i.

The set of games of minimum participation associated to a generalized
externality game v, denoted by v¯, is de…ned by v¯ = (vT ; ¯)T22N .

For a given game consider a maximal set of coalitions satisfying that,
for every two coalitions S and T , either their cardinal is di¤erent, s 6= t,
or

P
i2S ¯i 6= P

i2T ¯i. Then de…ne the set L = fS0; S1; :::; Smg, where (i)
sk¡1 < sk or (ii) if sk¡1 = sk, then

P
i2Sk¡1 ¯i <

P
i2Sk ¯i. Coalitions out of

this set will be identi…ed with a coalition in the set with the same cardinal
and same amount of resources. Now we can state a proposition about the
algebraic structure of the GEGN that will be useful when studying solutions
for these games. Denote byGEGN (®; ¯) the subset ofGEGN with parameter
® and with vector ¯ of endowments of coalitions.

Proposition 1 Given a game in GEGN(®;¯), de…ne a set L of coalitions as
before. Then, the set of minimum participation games associated to coalitions
in L, v¯ = (vT;¯)T2L, form a base of GEGN (®; ¯).
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Proof. First show that games in v¯ = (vT;¯)T2L are linearly independent.
This means that X

T2L
¸T vT;¯ = 0N ; (1)

where 0N is the vector in <N with a zero in each component, has ¸T = 0 for
all T . Suppose that this is not the case and that there exists a ¸T 6= 0. Select
a coalition S 2 L such that ¸S 6= 0, s · t for all T 2 L, and, whenever, s = t,P

i2S ¯i <
P

i2T ¯i: We can rewrite (1) as

vS;¯(S) =
X

T 6=S2L
¡¸T
¸S
vT;¯ (S)

=
X

T :t<s

¡¸T
¸S
vT;¯ (S) +

X

T :t>s

¡¸T
¸S
vT;¯ (S)

+
X

T :t=sP
i2T ¯i>

P
i2S ¯i

¡¸T
¸S
vT;¯ (S) +

X

T :t=sP
i2T ¯i<

P
i2S ¯i

¡¸T
¸S
vT;¯ (S)

=
X

T :t<s

¡¸T
¸S
vT;¯ (S) =

X

T :t<s

¡¸T
¸S

X

i2S
¯i

Notice that in the expression in the middle, all terms are zero except for
the …rst. In the second and third, vT;¯ (S) = 0 because of the de…nition of
minimum participation games, and in the fourth ¸T = 0 for all T because
of the way S was chosen. From vS;¯(S) =

P
T :t<s ¡¸T

¸S

P
i2S ¯i we haveP

T :t<s¡¸T
¸S
= 1 as vS;¯(S) =

P
i2S ¯i. But this means that ¸T 6= 0 for some

T , in contradiction with the way S was chosen.
Now we show that every v 2 GEGN (®; ¯) can be written as a linear com-

bination of games of minimum participation. To this end notice that, given
any v 2 GEGN (®; ¯), for any S ½ N; there exists a coalition Sh 2 L such
that

P
i2Sh ¯i =

P
i2S ¯i and sh = s: Now consider the linear combinationP

Sk2L ¸SkvSk;¯, with ¸Sk de…ned as

¸Sk =
v (Sk)P
i2Sk ¯i

¡ v (Sk¡1)P
i2Sk¡1 ¯i

then we have

X

Sk2L
¸SkvSk;¯ (S) =

X

Sk2L

"
v (Sk)P
i2Sk ¯i

¡ v (Sk¡1)P
i2Sk¡1 ¯i

#
vSk;¯ (S)

=
X

Sk2L:sk<s

"
v (Sk)P
i2Sk ¯i

¡ v (Sk¡1)P
i2Sk¡1 ¯i

#X

i2S
¯i
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+
X

Sk2L:sk=sP
i2Sk ¯i·

P
i2S ¯i

"
v (Sk)P
i2Sk ¯i

¡ v (Sk¡1)P
i2Sk¡1 ¯i

# X

i2S
¯i

+
X

Sk2L:sk=sP
i2Sk ¯i>

P
i2S ¯i

"
v (Sk)P
i2Sk ¯i

¡ v (Sk¡1)P
i2Sk¡1 ¯i

#
vSk;¯ (S)

+
X

Sk2L:sk>s

"
v (Sk)P
i2Sk ¯i

¡ v (Sk¡1)P
i2Sk¡1 ¯i

#
vSk;¯ (S)

= v (S)

This completes the proof.

This property of generalized externality games will be used in the next
section, when the proportional rule is axiomatized for these games.

Another interesting property for cooperative games is convexity as it al-
lows to relate di¤erent solution concepts. However, convexity is a too strong
concept for many purposes. Weaker versions of this concept have been de-
veloped, among them, semiconvexity. Next we show that GEGN are semi-
convex, but not convex.

De…nition 3 (Driessen and Tijs, 1983) A cooperative game (N; v) is semi-
convex if (i) v (N)¡ v (Nn fig) ¸ v (fig) ; and (ii)
v (S) ¡ P

j2Snfig(v (N) ¡ v(Nn fjg)) · v (fig) for all individuals and
coalitions.

Proposition 2 Generalized externality games are semiconvex.

Proof. To show that (i) in the de…nition is satis…ed recall that ¯®i r (1) ·
¯®i r (n) : Then

¯®i r (1) · (
X

j2Nni
¯j)

® (r (n)¡ r (n¡ 1))

+

µ
®
1

¶
(
X

j2Nni
¯j)

®¡1¯ir (n) + :::+

µ
®
®

¶
¯®i r (n)

= (
X

i2N
¯i)

®r (n)¡ (
X

j2Nni
¯j)

®r (n¡ 1) :

To show (ii):

¯®i r (1) ¸ (
X

j2S
¯j)

®r (s)
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¡ (s¡ 1) (
X

i2S
¯i +

X

i2NnS
¯i)

®r (n)¡
X

j2Sni
(
X

i2Nnj
¯i)

®r (n¡ 1)

= (
X

j2S
¯j)

®r (s)¡ (s¡ 1) (
X

i2N
¯i)

®r (n)¡
X

j2Sni
(
X

i2Nnj
¯i)

®r (n¡ 1)

= (
X

j2S
¯j)

®r (s)¡
X

j2Sni
(
X

i2N
¯i)

®r (n)¡ (
X

i2Nnj
¯i)

®r (n¡ 1) :

This property of GEGN will be helpful to provide a simple formula to
compute the ¿ -value, a cooperative solution.

Generalized externality games are not convex in general, as the following
example shows. Next we show a su¢cient condition for a class of generalized
externality games to be convex.

De…nition 4 A cooperative game (N;v) is convex if v(S [ fi; jg) ¡ v(S [
fjg) ¸ v (S [ fig)¡ v (S) for all S ½ N , i; j =2 S:

Counterexample: Consider the generalized externality game de…ned by
N = f1; 2; 3g, ¯ = (1; 2; 20), ® = 2, and r (1) = 1, r (2) = 3, and r (3) = 4.
This game is not convex as, for example, v (f3g [ f2; 1g) ¡ v (f3g [ f1g) =
793, whereas v (f3g [ f2g)¡ v (f3g) = 1; 052:

Proposition 3 Let (N; v) be a symmetric generalized externality game with
® 2 N , then, if r(s+1)

r(s)
> 2, the game v is convex.

Proof. Recall that symmetry means that v(S [ fjg) = v (S [ fig) for all
S ½ N , i; j 2 N . The condition of convexity for symmetric games can be
written as

2v (S [ fig)¡ v (S) · v(S [ fi; jg) for all i; j =2 S: (2)

In the case of generalized externality games symmetry implies
P

i2S ¯i =P
i2T ¯i whenever s = t; and we can write

2v (S [ fig)¡ v (S)
= 2(

X

k2S
¯k + ¯i)

®r (s+ 1)¡ (
X

k2S
¯k)

®r (s)

= 2(
X

k2S
¯k + ¯i)

® r (s+ 1)

r (s+ 2)
¡ (

X

k2S
¯k)

® r (s)

r (s+ 2)

= (
X

k2S
¯k)

® 2r (s+ 1)¡ r (s)
r (s + 2)

+ [

µ
®
1

¶
(
X

k2S
¯k)

®¡1(¯i) + :::]
2r (s+ 1)

r (s+ 2)
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· (
X

k2S
¯k)

® 2r (s+ 1)¡ r (s)
r (s + 2)

+ 2

µ
®
1

¶
(
X

k2S
¯k)

®¡1 (¯i)
r (s+ 1)

2r (s+ 2)
+ :::

· [(
X

k2S
¯k)

® +

µ
®
1

¶
(
X

k2S
¯k)

®¡1(¯i + ¯j) + :::+ (¯i + ¯j)
®]

= v(S [ fi; jg)
as required by convexity.

Another property of interest relatesGEGwith the class of average monotonic
games (Izquierdo and Rafels, 2001). This is formalized in the next proposi-
tion.

De…nition 5 (Izquierdo and Rafels, 2001) A cooperative game (N; v) is av-
erage monotonic if

(i) v (S) ¸ 0 for all coalitions S ½ N , and
(ii) there exists a vector ® 2 <N

+n f0g such that (
P

i2T ®i)v (S) · (
P

i2S ®i)v (T )
for S ½ T ½ N .

Proposition 4 GEG are average monotonic.

Proof. To show (i) in de…nition 5 see that ¯i ¸ 0 and r (s) ¸ 0 imply
v (S) ¸ 0. To show (ii) let ® = ¯. Then

v (S)P
i2S ®i

=
(
P

i2S ¯i)
®r (s)P

i2S ¯i
= (

X

i2S
¯i)

®¡1r (s)

· (
X

i2T
¯i)

®¡1r (t) =
v (T )P
i2T ®i

.

The inequality holds because both r and x®¡1 with ® ¸ 1 are increasing
functions.

4 The proportional solution

Proportional solutions have been suggested in many context, like bankruptcy
problems (see Chun, 1988; O’Neill, 1982, and Thomson, 1995). For GEG we
provide the following de…nition.

De…nition 6 (Adapted from Izquierdo and Rafels, 2001 to GEG). Let (N; v)
be a generalized externality game with ¯ = (¯1; :::; ¯n) as players’ endow-
ments, then the proportional solution, p(v; ¯) 2 <n is de…ned as

p(v; ¯) = (pi(v; ¯))i2N = (
¯iP
i2N ¯i

v (N))i2N :
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Grafe et al. (1998) de…ne the proportional rule for externality games
as ¦(v; ¯) = (¦i(v; ¯))i2N = (¯iv (N))i2N . For these games, the de…ni-
tion above gives pi(v; ¯) =

¯iP
i2N ¯i

v (N) = ¯iP
i2N ¯i

P
i2N ¯iv (n) = ¯iv (n) =

¦i(v; ¯). Thus de…nition 6 generalizes the proportional solution for external-
ity games.

Izquierdo and Rafels (1996) and Grafe et al. (1998) present an axiomatic
characterization of the proportional solution for …nancial games (a subset
of average monotonic games) and externality games, respectively. We show
that, for GEG, the characterization in Izquierdo and Rafels (1996) applies,
but that the one in Grafe et al. (1998) does not. It is immediate to show
that generalized externality games satisfy the following properties (listed in
Izquierdo and Rafels (1996)).

-Individual pseudo-rationality (IPR): if v (N) ¸ P
i2N ¯i, then pi(v; ¯) ¸

¯i. This means that, if the grand coalition can get more than the total
of endowments provided by the individuals, each player gets, at least, her
endowment.

-E¢ciency (EF):
P

i2N pi = v (N).
-Restricted linearity (RL): Let v1 and v2 be two games in GEGN with

the same vector ¯, then (i) pi(v1; ¯) + pi(v2; ¯) = pi(v1 + v2; ¯), and (ii)
pi(¸v; ¯) = ¸pi(v; ¯) for all ¸ 2 <+:

The next proposition shows the su¢ciency of these properties to charac-
terize the proportional solution for GEGN .

Proposition 5 The proportional solution is the only solution that satis…es
IPR, EF and RL within the set of GEGN .

Proof. Let v 2 GEGN , and consider a solution ©n that satis…es IPR,
EF and RL, the we show that it coincides with the proportional solution.
By proposition 1 v can be expressed as v =

Pm
k=1 ¸SkvSk;¯, where ¸Sk =

( v(Sk)P
i2Sk ¯i

¡ v(Sk¡1)P
i2Sk¡1 ¯i

), and vSk;¯ are minimum participation games.

Using properties IPR and RL we can write

©i(v; ¯) = ©i(
mX

k=1

¸SkvSk;¯; ¯) =
mX

k=1

¸Sk©i(vSk;¯; ¯)

¸
mX

k=1

¸Sk¯i =
v (N)P
i2N ¯i

¯i = pi(v; ¯):

By EF of the proportional solution it must be ©i(v; ¯) = pi(v; ¯) for all
i 2 N .
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Grafe et al. (1998) provide a characterization of the proportional solution
for externality games (GEG with ® = 1). However, this result cannot be gen-
eralized to generalized externality games. The axioms in Grafe et al.(1998)
for a solution © on EGN are:

-Individual rationality (IR): for all v in EGN , ©i (v) ¸ ¯ir (1) :
-Monotonicity (M): for all v (¯; r) and v (¯; r0) in EGN : if r (t) · r0 (t)

for all t 2 f1; :::; ng then ©i (v (¯; r)) · ©i (v (¯; r
0)) :

-E¢ciency (EF): As before.
It is straightforward to show that the proportional solution veri…es these

axioms for the class of generalized externality games. However, it is not
characterized by them, as there are other solutions that satisfy the same set
of axioms. For instance, take the solution ª de…ned by ªi =

¯®iP
j2N ¯

®
j
v (N).

It is immediate to show that this solution satis…es EF and M. To show that
it also satis…es IR write

ªi =
¯®iP
j2N ¯

®
j

v (N) =
¯®iP
j2N ¯

®
j

(
X

j2N
¯j)

®r (n)

¸ ¯®iP
j2N ¯

®
j

(
X

j2N
¯j)

®r (1) =
(
P

i2N ¯j)
®

P
j2N ¯

®
j

v (i) ¸ v (i) :

The last inequality holds because (
P

i2N ¯j)
® ¸ P

j2N ¯
®
j for ® ¸ 1.

5 Other solutions of GEGN :

Izquierdo and Rafels (2001) show that the core of average monotonic games
is non empty and that it contains the proportional solution. They also show
that the core coincides with the two most important de…nitions of bargain-
ing set presented in Aumann and Maschler (1964) and in Mas-Colell (1989).
Since generalized externality games are average monotonic, the same prop-
erties apply.

Grafe et al. (1998) show an example of an externality game (and, a
fortiori, a GEG) where the Shapley value is not in the core. When the game
is convex, the Shapley value is in the core. Proposition 4 provided a su¢cient
condition for GEG to be convex.

Tijs (1981) proposes the solution concept called the ¿¡value. The moti-
vation for this value is that it represents a compromise among players, as it
is gives every player a payo¤ between a superior and an inferior bound. The
superior bound is de…ned as M v = (Mv

i )i2N , with M v
i = v (N )¡ v (Nn fig) ;

while the inferior bound is mv = (mv
i )i2N , with mv

i = maxS½Nnfig[v(S[fig¡
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P
j2SM

v
j )]: See that the superior bound has the marginal contribution of

every player to the grand coalition, and that the inferior bound has the mini-
mum payo¤ that players have after the other players in the coalition are given
their superior bound. The ¿¡value is de…ned only for quasi-equilibrated
games. These are games that satisfy

P
i2Sm

v
i · v (N) · P

i2SM
v
i and

mv
i ·M v

i for all i 2 N . Games with a non-empty core are quasi-equilibrated.
Thus the ¿¡value is well de…ned for GEG.

De…nition 7 The ¿¡value of a quasi-equilibrated game is de…ned as the
only e¢cient point that lies on the segment joining the superior and inferior
bounds.

Driessen and Tijs (1983) show that, for games with a non-empty core,
the ¿¡value can be computed using the formula ¿ (v) = (1¡ ±)mv + ±M v;
where

± =
v (N)¡ P

i2Sm
v
iP

i2SM
v
i ¡ P

i2Sm
v
i

:

This formula can be used for games in GEGN :
Driessen and Tijs (1983) also show that, for balanced semiconvex games

with at most four players, the ¿¡value belongs to the core. As generalized
externality games are both balanced and semiconvex, the same applies for
these games whenever N · 4: For the general case, Driessen and Tijs (1983)
provide a necessary and su¢cient condition for the ¿¡value to belong to the
core in semiconvex games, which include GEGN :

6 Conclusion

We have de…ned GEG as a generalization of externality games. The di¤er-
ent families of GEG have the structure of a vectorial space with minimum
participation games as a base. This property makes possible an interesting
characterization of the proportional solution. The relations between other
properties of GEG and solutions are also explored. One interesting feature
that may deserve more attention is the relation between GEG and …nancial
games, as they share many properties although the two classes of games are
not related by inclusion.

11



References
Aumann and Maschler (1964) The bargaining sets for cooperative games.

Princeton University Press, New Jersey, 443-476.

Chun Y (1988) The proportional solution for right problems. Mathemat-
ical Social Sciences, 15 231-246.

Driessen TSH and SH Tijs (1983) The ¿ -value, the core and semiconex
games. International Journal of Game Theory, 15 229-248.

Grafe F, E. Iñarra and JM Zarzuelo (1998) Population monotonic allo-
cation schemes on externality games. Mathematical Methods of Operation
Research 48 1, 71-80.

Izquierdo and Rafels (1996) A Generalization of the bankruptcy game:
Financial cooperative games. Working Paper. Universidad de Barcelona.

Izquierdo and Rafels (2001) Average monotonic cooperative games. Games
and Economic Behavior 36, 174-192.

Mas-Colell (1989) An equivalence theorem for bargaining sets. Journal
of Mathematical Economics, 18 129-139.

Moulin H (1989) Game Theory for the Social Sciences. New York Uni-
versity Press.

Moulin H (1992) All Sorry to Disagree: A general principle for the pro-
vision of nonrival goods. Scandinavian Journal of Economics 94(1), 37-51.

O’Neill B (1982) A problem of rights arbitration from the Talmud. Math-
ematical Social Sciences, 2 345-371.

Thompson W (1995) Bankruptcy and taxation problems: an axiomatic
analysis. University of Rochester Working Paper. Ocobre 1995. Forthcoming
in Mathematical Social Sciences.

Tijs SH (1981) Bounds for the core and the ¿-value. Game Theory and
Mathematical Economics, Eds. O Moeschin and D Pallasche, North Holland,
123-132.

12


